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Abstract

Drawing hydraulic head contour maps is one of the rst requested results in hydrogeology.
This goal can be achieved in several manners : solving the partial di erential equation within
discretized models calibrated so as to t the head data, or more simply using spatial data
interpolation techniques. One of these techniques is kriging, a stochastic approach that
estimates the value of a natural phenomenon in unsampled sites, using an unbiased linear
combination of neighboring measures of the phenomenon, with a minimum variance. The
rst part of this thesis explains the basics of the kriging theory.

However, the main goal of this work is to combine this geostatistical method with some
features of the partial di erential equations problem to provide a mapping tool that has the
kriging simplicity of use but provides scienti cally better results. Two di erent improvements
are described in this thesis. The rst one introduces the use of boundary conditions in the
kriging algorithm, and the second one focuses on covariance models that take into account
the transmissivity values, both for kriging and cokriging estimation. For both features, the
theoretical explanation is followed by application examples that highlight the improvements
in the estimated results. Finally, the use of the improved cross-covariance models to solve the
inverse problem (determining the transmissivity knowing the hydraulic head) is detailed. All
the examples were made using GSLIB kriging and cokriging algorithms that were modi ed
for that purpose.

The results presented in this thesis show that Kriging under Boundary Conditions is
an e cient way of improving the interpolated contour maps without involving discretized
modeling. Cokriging between the hydraulic head and the transmissivity with a structural
analysis focused on ensuring that the two variables verify the partial di erential equation
allows to take into account the variations of the transmissivity while assuming a regionally
monodirectional ow of constant hydraulic gradientd and a dischargeQ = 0. It can be used
to solve both the direct and the inverse problem. The rst results are promising, but there is
still some work to be done to have a tool as robust as Kriging under Boundary Conditions.

Keywords :

Geostatistics, kriging, cokriging, covariance, variogram, hydrogeology, hydraulic head, trans-
missivity, boundary conditions, prescribed head, prescribed ux, gradient information, inter-
polation, contour mapping, modeling, inverse problem.
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Introduction

One of the main parameters hydrogeologists need to know for their studies is the hydraulic
head. Thus, drawing adequate head contour maps is a common issue in hydrogeology. Two
very di erent methodologies can be used to achieve this goal :

Solving the partial di erential equation within discretized models :

This method requires the input of the needed parameters to solve the di usivity equa-
tion so that the computed head surface knows the head data points. In most cases, the
problem is too complex to nd an analytical solution and a numerical simulation has
to be computed, often based on either the nite di erence or nite element methods,
as explained byde Marsily (1981). This approach provides the best results, but it cer-
tainly requires some knowledge in hydrogeologic modeling, su cient parameters data,
and, obviously, the adequate code.

Using a spatial interpolation technique :

Spatial interpolation is a mathematical processing that allows the reconstruction of a
phenomenon over a domain based on a limited number of data samples of this phe-
nomenon. Basically, one only has to enter his data and choose an interpolation method
to build his contour map. However, if the estimate produced is correct, it does not
veriy the same partial di erential equation that the real data does. In hydrogeology,
that means that the ow equation will not be veri ed.

Knowing this, the goal of this thesis is to suggest some elements to combine both of these
very di erent methods to produce hydraulic head maps that are scienti cally better than
the ones obtained with classic interpolation, but still easier to create than the ones made
by solving the partial dierential equations. The chosen interpolator is kriging, because
it already takes into account the spatial dependency of the data, and the programming
work has been centered on Geostatistical Software Library (GSLIB) kriging and cokriging
algorithms. GSLIB is available in the public domain, distributed by Stanford University and
documented inDeutsch and Journel(1998). Their algorithms are widely used in research or
commercial codes. In particular, they are present in several Waterloo Hydrogeologic software
programs, includingGW Contour, an easy-to-use data interpolation and contouring program
that also provides techniques for mapping velocity vectors and particle tra¢ksThe aim of
my internship was to improve the kriging algorithm for this software, in order to have better
head maps, and thus better velocity vectors and particle tracking.

The rst chapter of this thesis presents the kriging theory, which was the interpolation
method chosen to implement the new features. The second chapter explains how kriging

More information available on |http://www.waterloohydrogeologic.com/software/gw_contour/gw_con\
discretionary{-{}{}tour_ov.htm


http://www.waterloohydrogeologic.com/software/gw_contour/gw_condiscretionary {-}{}{}tour_ov.htm
http://www.waterloohydrogeologic.com/software/gw_contour/gw_condiscretionary {-}{}{}tour_ov.htm

2 0. Introduction

can take care of the boundary conditions when mapping the hydraulic head, and presents
some examples that show the improvements resulting from this addition. The third chapter
suggests another way of improving the head kriging while using some transmissivity data and
the partial di erential equation background to improve the covariance computation. It also
details the cokriging process between head and transmissivity, while also taking into account
the di usivity equation results to compute the cross-covariance. This method can actually
be used for both estimating the hydraulic head and the transmissivity, thus in theory, it can
be used to solve the inverse problem. Finally, the conclusion rounds up the results of these
various researches, explains how they will be implemented @wW Contour, and what the
further developments could be.



Chapter 1
Kriging

The word kriging and the method itself have been created by G. Matheron in 1963, after
the name of D.G. Krige, a South-African mining engineer whose work initiated Matheron's.
This chapter presents some elements of the theory of regionalized variables needed to under-
stand the kriging method. The mathematic process is then described for Universal Kriging,
also called Kriging with a Trend model, which is the most generalized version of kriging.
Finally, some characteristics useful for the following chapters are detailed. All the theory
presented in this chapter comes from the work a¥latheron (1962, 1963} 1965, 1969, 1970,
1971al 1973, 1974). The following references have also been helpfgostatistics : Modeling
Spatial Uncertainty by |Chiles and Del ner| (1999), GSLIB : Geostatistical Software Library
and User's Guideby Deutsch and Journel(1998), the various lecture notes on Geostatistics
from the Ecole Nationale Supérieure des Mines de Paris @hauvet (1993); Rivoirard | (1995,
2003);Wackernagel(1993) andLe krigeage : revue de la théorie et application a l'interpolation
spatiale de données de précipitatiora well done Master's Thesis bjBaillargeon (2005).

1.1 Prerequisites

1.1.1 Random Variable

The basic paradigm of predictive statistics is to characterize any unknown valueas a
random variable (RV) Z, the probability distribution of which models the uncertainty about
z. Arandom variable is a variable that can take a variety of outcome values according to some
probability distribution. The RV model Z, and more speci cally its probability distribution,
is usually location-dependent ; hence the notatiod (x), with x being the location coordinates
vector of a point. In the continuation of this thesis, we will work inR?, thus a point x will
be de ned by its two coordinatesx and y. The RV Z(x) is also information-dependent in
the sense that its probability distribution changes as more data about the unsampled value
z(x) become available.

The cumulative distribution function (cdf) of a continuous RV Z(x) is denoted :
F(x;z)= ProbfzZ(x) zg (1.2)

When the cdf is made speci ¢ to a particular information set, for examplén) consisting ofn
neighboring data valueZ (x )= z(x ); =1;:::;n, the notation conditional to n is used,
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de ning the conditional cumulative distribution function (ccdf) :

F(x;zj(n)) = ProbfzZ(x) zj(n)g (1.2)

Expression [(1.1) models the uncertainty about the unsampled valugx) prior to using
the information set (n) while expression[(1]2) models the posterior uncertainty once the
information set (n) has been accounted for. The goal of any predictive algorithm is to
update prior models of uncertainty such as/ (1}1) into posterior models such &s {1.2). The
ccdf F(x;zj(n)) is a function of the locationx, the sample size and geometric con guration
(i.e. the data locationsx ; =1;:::;n), and the sample valuegz(x ); =1;:::;n.

From the ccdf (1.2) one can derive di erent optimal estimates for the unsampled value
z(x) in addition to the ccdf mean, which is the least-squares error estimate. One can also
derive various probability intervals.

In geostatistics, most of the information related to an unsampled value(x) comes
from sample values at neighboring locationg® whether de ned on the same attributez
or on some related attributey. Thus it is important to model the degree of correlation
or dependence between any number of R\&(x);Z(x ); = 1;:::;n and more generally
Z(X);Z(x); = 1;::5;mY(x%; =1;:::;n% The concept of a random function (RF)
allows such modeling and updating of prior cdfs into posterior ccdfs.

1.1.2 Random Function

A random function (RF) is a set of RVs de ned over some eld of interest, such as
fZ(x);x 2 study areay also denoted simply aZ (x). Usually the RF de nition is restricted
to RVs related to the same attribute, sayz, hence another RF would be de ned to model the
spatial variability of a second attribute, sayf Y (x);x 2 study area.

Just as an RVZ(x) is characterized by its cdf[(1.]l), an RFZ(x) is characterized by the set

Of particular interest is the bivariate (K = 2) cdf of any two RVs Z(x), Z(x9, or more
generallyZ (x), Y (x9 :

F(x;x%z;2% = Probfz(x) z;Y(X% 2% (1.4)

1.1.3 Other De nitions

1.1.3.1 Regionalized Variable

G. Matheron de ned a regionalized phenomenon as a phenomenon that spreads in space
and exhibits a certain spatial structure. Ifz(x) denotes the value at the pointx 2 D of a
characteristic z of this phenomenon, we shall say thatz(x) : x 2 D R"g s a regionalized
variable.
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The key, in geostatistics, is that we actas thoughthe regionalized variable under study
z(x) is a realization of a parent random functiorf Z(x) : x 2 R"g. In particular, |Delhomme
(1976, 1978) demonstrated that a number of elds of hydrogeologic variables (head, transmis-
sivity, thickness of aquifer layers...) possess a spatial structure and are therefore amenable
to geostatistical techniques.

1.1.3.2 Spatial Distribution

A random function is described by its nite-dimensional distributions, namely the set of

1.1.3.3 Distance between two points

The distance between two points irR?, A(xa;Yya) and B(Xg;VYg), is de ned by the Eu-
clidean norm of the vector determined by these two points :

p
dag = (X8 Xa)?2+(Ys VYa)?

1.1.3.4 Moments

The mean of the RF is the expected valuen(x) = E[Z(x)] of the RV Z(x) at point X.
It is also called the drift of Z, especially whenm(x) varies with location. The (centered)
covarianceCowv(x;y) is the covariance of the RVZ(x) and Z(y) :
h [
Covx;y)= E Z(x) m(x) Z(y) m(y) (1.5)

In general, this function depends on botlx andy. When x = y, Cov(x;x) = Var[Z(X)] is
the variance ofZ (x). Higher-order moments can be de ned similarly.

Naturally, in theory, these moments may not exist. As usual in probability theory the
mean is de ned only ifE jZ(x)j < 1 . If E[Z(X)]? is nite at every point, Z(x) is said to be
a second-order RF : it has a nite variance, and the covariance exists everywhere.

1.1.4 Stationarity Hypothesis

1.1.4.1 Strict Stationarity

A RF is called stationary when the nite-dimensional distributions are invariant under
an arbitrary translation of the points by a vectorh :

Physically, this means that the phenomenon is homogeneous in space and repeats itself in
the whole space.
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1.1.4.2 Second-Order Stationarity

When the random function is stationary, its moments, if they exist, are obviously invariant
under translations. The second-order stationarity hypothesis consider that the rst two
moments (mean and covariance) are stationary. We have then for pointsand x + h of R" :

8
< EhZ(x) =m : w7
E Z(xX) m Z(x+h) m =E Z(X)Z(x+h) m?=C(h)

The mean is constant and the covariance functio@ has the following properties :

It only depends on the separatiorh,

It is bounded and doesn't exceed the constant variance :

jC(h)] C(0)= Var Z(x)
It is an even function : C( h) = C(h).

By de nition, an RF satisfying the above conditions is second-order stationary and will
be further called Stationary Random Function or SRF. An SRF is isotropic if its covariance
function only depends on the lengthhj of the vector h, and not on its orientation.

1.1.4.3 Intrinsic Hypothesis

A milder hypothesis is to assume that for every vectdr the incrementY,(x) = Z(x + h)
Z(x) is an SRF inx. Then Z(x) is called an intrinsic random function (IRF) and is charac-
terized by the following relationships :

8

2 EZ(x+h) Z(x) = hahi

. h |l (1.8)
- E Z(x+h) Z(x) " =VarzZ(x+h) zZ(x) =2 (h)

ha; hi is the linear drift of the IRF (drift of the increment) and (h) is its variogram function.

If the linear drift is zero, that is, if the mean is constant, we have the usual form of the

intrinsic model :
E Z(x+h) Z(Xx) =0

Var Z(x+h) Z(x) =2 (h) (1.9)
This gives us a de nition of the usual form of the theoretical variogram :
1 h 2i
(h) = EE Z(x+h) Z(x) (1.10)

The variogram has the following properties :

It only depends on the separatiorh,

It is an even function : ( h)= (h),



1.1 Prerequisites 7

It is nonnegative : (h) O,and (h=0)=0.

Existence of the expectation of the increments of an IRF does not imply the existence of
the expectation of the IRF itself. An IRF can have an in nite variance while its increments
do have a nite variance for each vectoh. In particular, that means that, whereas we can
infer the variogram from the covariance function with the following formula :

(hy= C(0) C(h); 8h (1.11)

the opposite is not true : you can't de ne a covariance function from every variogram.

1.1.5 A Useful Result

The following calculation provides another result that links the covariance and the vari-
ogram. It will be used further to establish the kriging system. Whert Z(x;) Z(Xo) =
E Z(Xj) Z(Xo) =0,
Cov[Z(xi) Z(xo0); Z(xj) Z(X0)] =

h i
EhZ(Xi) Z(xo) Z(x})  Z(Xo)

E Z(X)Z(X)) Z(Xi)Z(Xo) Z(Xj)Z(Xo0)+ Z(X0)?

E Z(x)Z(xj) E Z(x)Z(x0)) E Z(X)Z(x0) + E Z(xo)?

= %E Z(x)? + E Z(x)Z(x)) %E Z(x;)?

+ %E Z(xi)> E Z(X)Z(Xo) + %E Z(x0)’

£ SE 200 E Z(3)Z(xo) + 3E Z(xo0°

= JEZ() Z(x) P+ SE Z() Z(xo) + SE Z(¢) Z(xo) ’

= (Xi X))+ (Xi Xo)+ (Xj Xo)
This result :
Cov Z(xi) Z(Xo);Z(X)) Z(Xxo) = (Xi X))+ (Xi X+ (X X0 (1.12)
combined with equation [1.1]l) provides, if the covariance function is de ned :
CovZ(xi) Z(Xo);Z(X;) Z(Xo) =C(xi Xj) C(xi Xo) C(X; xo)+ C(0) (1.13)
More precisely, the result that will be further used to solve the kriging system is :

h i
E Z(x) Z(xo) Z(x) Z(x) =C(x x) C(x xi) C(x xo)+ C(0) (1.14)
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1.2 Structural Analysis

1.2.1 Experimental Variogram

In practice, the spatial variability of a regionalized variablez(x) can be measured at
various scales by computing the di erence between two data values and z, located in two
points x; and x, of the spatial distribution. This di erence ? is de ned by :

2
? depends on the distance and the orientation of the pair of points, described by the
vectorh = X, X, whatever the position of the points in the spatial distribution is :

2 1 2
“(h) = > zZ(x1+ h)  z(x1)

Taking the mean of the ? dierences for all the n, couples of data points linked by a
given vectorh for a given mesh, we can build the experimental variogram :
2y = 17X 2
‘(h) = > z(x +h) z(x) (1.15)

=1

1.2.2 Variogram Characteristics

1.2.2.1 Nugget E ect

The behavior of the variogram near its origin (i.e. for small values df) is key, as it
shows the degree of continuity of the regionalized variable : di erentiable, continuous but
not di erentiable, or not continuous. If this last case is true, i.e. iflimy, o (h) = Co> 0O,
then C, is called the nugget e ect (see gurg 1]1). A steep nugget e ect denotes a weak
correlation between two very close data values. This can be explained by some undetected
variations at a very small scale. The name nugget e ect has been given after the fact that
such big variations at a small scale can be observed in gold deposits, where there are gold
nuggets.

1.2.2.2 Sill and Range

Usually, we tend to notice that ?(h) increases withjhj and it frequently reaches a variation
plateau for big distances. When this plateau is reached, that means that there is no further
spatial dependency between data. This distance is called range , and the word sill describes
the variance for which this plateau appears (see gufe 1.1). Sometimes, the sill is only reached
asymptotically. In that case, the real range in in nite, but a practical range is de ned by the
distance at which the variogram reaches 95% of the value of its sill.

If a variogram is not bounded, it does not have any range nor sill. The variance of the
RF is then unde ned, and such an RF is not an SRF, but only an IRF. Another possibility
is to notice that the variogram slope changes steeply. One can then imagine that there is an
intermediate sill. That in fact means that the variogram has several nested structures, each
one being de ned by its own range and sill (see gure 1.1).
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Figure 1.1: A variogram and a nested structure example.

1.2.3 Variogram Examples
The goal of this thesis is not to explain how one can determine the variogram of a region-

alized variable through a data set. However, here are some examples of the most common
models of isotropic variograms, withr = jhj, a being the range andc being the sill :

Spherical model :

8
< r r 3 .
c 1.5- 05 - if r a
(h)=". a a (1.16)
" cC if r a
Cubic model :
8 r 2 r 3 r 5 r 7
< . . .
h)= c 7 3 875 3 +3:5 a 0:75 a if r a (1.17)
" C if r a
Exponential model : h |
(h)=c 1 exp ; (1.18)
Gaussian model :
I'2
(h)=c 1 exp o (2.19)
Power model, with a power0 < < 2 and a positive slopec :
(hy=c:r (1.20)

The representation of these variogram functions can be seen in Figlre] 1.2.
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Figure 1.2: Variogram models with unit sill and scale parameters, froi@hilés and Del ner
(1999).

1.3 Kriging Basics

Kriging is an interpolation method, thus its goal is to estimate the value of the studied
regionalized variableZ (x) (considered an RF) at a pointxg where its value is unknown, using
a linear combination of theN neighboring data :

X
Z7(Xo) = i(X0) Z(Xi) + o(Xo) (1.21)

i=1

The weights ; associated to the regionalized variable data are chosen to make an unbiased es-
timate, whose variance is minimum. These weights depend on the location of the data points
and their distance to the estimated point, and on the structure of the spatial dependency. In
fact, kriging is the name given to the Best Linear Unbiased Estimator (BLUE).

Kriging is also the rst interpolation method to take into account the spatial dependency
structure of data. In fact, from a physical point of view, the RFZ(x) can be described as
the following decomposition :

Z(xX) = m(x) + R(x) (1.22)

In this equation, m(x) is a smooth deterministic function that describes the systematic aspect
of the phenomenon and is usually called the mean (it is indeed the mean of the E[x))
when m(x) is constant and the drift otherwise.R(x) is a zero-mean RF, called the residual,
whose spatial variation structure is known, and which captures the erratic uctuations of the
RF Z(x).

The structure of the function m(x) determines the type of kriging processed :

Simple Kriging (SK) : m(x) = m is a known constant,Z(x) is supposed an SRF.

Ordinary Kriging (OK) : m(x) = m is an unknown constant,Z (x) is supposed an IRF.
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Universal Kriging (UK) :

hS
mx)=  af'(x) (1.23)
1=0
In which the f'(x) functions are known basis functions an@, are xed but unknown
coe cients.

Four constraints sum up the kriging process :

1. Linearity constraint
The estimate has to be a linear combination of the data, and thus has to be written as

in equation (1.21).

2. Authorization constraint
The expectation and the variance of the estimate erraZ ’(xo) Z(Xo) have to exist.
This constraint is used only when the residuaR(x) is considered an IRF.

3. Unbiasedness constraint
The kriging estimate must be unbiased. That means thaE[Z?(X,) Z(Xo)]=0. A
direct consequence of this constraint is that kriging is an exact interpolator.

4. Optimality constraint
The weights ; are determined in order to minimizeV ar[Z”(xo) Z(Xo)] while following
the other constraints. This makes kriging a smoothing interpolator, as that implies
Var[Z?(x))] Var[Z(x;)].

These constraints lead to the linear system of equations that will be solved to determine
the kriging weights and nd the estimate. In the next section, is explained how to solve the
Universal Kriging system.

1.4 Universal Kriging or Kriging with a Trend Model

Universal Kriging doesn't require the validity of some stationarity hypothesis, as opposed
to Simple or Ordinary Kriging. In particular, it takes into account any possible drift of the
regionalized variable. Applied to the hydraulic head, that means Universal Kriging is able to
take into account the existence of a hydraulic gradient, which is more often than not di erent
from nil due to the ow conditions. That explains why this kriging method is used in the
further developments of this thesis and why its basics are detailed below.

1.4.1 Drift Terms

As explained in sectior] 1]3, in the Universal Kriging method, the REZ(x) can be de-
scribed as in equations| (1.22) and (1.23) :

X
Z(x)= m(x)+ R(x)  with m(x)=  af'(x)
1=0
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In order to solve the kriging system, one has to determine tHé (x) functions that de ne
the trend. ldeally, they should be speci ed by the physics of the problem. Though, in the
absence of any information about the shape of the trend, the dichotomization of tize data
into trend and residual components is somewhat arbitrary : what is regarded as stochastic
uctuations R(x) at large scale may later be modeled as a trend if additional data allow
focusing on the smaller-scale variability. In the absence of a physical interpretation, the
trend is usually modeled as a low-order ( 2) polynomial of the coordinates ofx, i.e. x and
y in our 2D case.

In GSLIB's algorithm, nine drift terms can be included in the kriging system on top of
the constant term :

linear terms inx, y or z,
quadratic terms in x?, y? or z?,

cross quadratic terms inxy, xz or yz.

As we are kriging the hydraulic head in 2D, we obviously won't use the terms in So, an
example of a possible trend model in our case would be a linear 2D one :

m(x) = o+ 1X+ 2y

1.4.2 Linearity Constraint

As previously mentioned in equation[(1.21)Z (x) has to be a linear combination of the
Z(x;j) data and thus it is written :

X
Z7°(Xo) = i(X0) Z(Xi) +  o(Xo)

i=1

1.4.3 Authorization Constraint

In the Universal Kriging method, the residual functionR(x) only follows the intrinsic
hypothesis. That means only linear combinations of increment®(x+ h) R(x) have second
order moments necessarily de ned. Then the estimate error has to be a linear combination
of increments of the residual functiorR(x) to be sure it has a variance.

The following can be written for the estimate error :

X
Z7(x0)  Z(X0) =  olXo)+ i(Xo) Z(Xi)  Z(Xo)

i=1

= o(Xo) * i(Xo) M(Xi)+ R(Xi) m(xo) R(Xo)
i=1
X X

= o(Xo)*+ i(Xo) m(xi) m(Xo) + i(Xo) R(Xi)  R(Xo)

| g y i

non random terms
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Z?(xo) Z(Xo) is a linear combination of increments of the residual functioR(x) if and
only if :

X
o(Xo) + i(Xo) M(Xj) mM(Xe) =0 (1.24)
i=1
1.4.4 Unbiasedness Constraints

To have an unbiased estimate, the following condition has to be true, with the simpli ed
notation ;= {(Xo) :

" E[Z7(xo) Z(Xogl =0
X
E o+ i Z(Xi) Z(Xo) =0
i=1
X
o+ im(xi) m(xp) = 0
i=1
X X X
ot i arf'(x) af'(x)) = 0
=1 1=0, 1=0 4
X X
ot & flx) f'xo) =0
1=0 i=1
This is true if :
X
0=0 and 81=0;:::;L; fl(xi) f'(xe)=0 (1.25)

One can see that, under such conditions, the above-said authorization constraintds
facto met. Unbiasedness and authorization constraints actually coincide. Sintg(x) has to

be set equal tol; 8x, since the mean is unknown, fok =0, i f'(xi) = f'(x0) becomes :
i=1

=1 (1.26)

So we have to work with a sum of kriging weights equal td.
The estimate then becomes :
N X X
Z7(Xo) = i Z(xi) with fl(xi) = f'(x) 81=0;::::L

i=1 i=1
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1.4.5 Optimality Constraint

The optimality constraint goal is to minimize the estimation variance. Using the unbi-
asedness constraintg (1.25) and the result (1]14), and assuming that the covariance function
C is de ned for the RF Z[1:

Var[Z?(xo) Z(xq)] =

|)(\I #
= Var i Z(Xi)  Z(Xo)
w =1
» #
= Var i Z(xi) Z(Xo)
2u i=1 #23 ..X\l #
= E4 i Z(Xi) Z(Xo) 3 since E i Z(Xi) Z(Xo) =0
i=1 i=1
X #
= E i Z(X%)  Z(Xo)  Z(X)) Z(Xo)
i=1 j=1

XX h |
= i B Z(Xi) Z(Xo) Z(X)) Z(Xo)

i=1 j=1

X h ‘
= i | C(xi %) C(Xi X0 C(xj xo)+ C(0)

i=1 j=1

XX X
= i jC(xi %) 2 i C(Xi  Xo)+ C(0)

i=1 j=1 i=1

Under the unbiasedness constraint, the problem is now to n#l weights ; minimizing
Var[Z?(xo) Z(xo)]. This is classically solved by the method of Lagrange multipliers. We
consider the function :

! #
, VS X | |
Q= Var[Z"(Xo) Z(xo)]+2 | iF(x) T (Xo)
=0 i=1
where2 =2 (Xo), 1 =0;:::;L, areL +1 additional unknowns, the Lagrange multipliers,

and determine the unconstrained minimum of) by equating the partial derivatives ofQ to
zero.

X X
%_sz i Cxi x)+2 (X)) 2C(x; x0)=0 8i=1;::5;N
i Ww=1 |
@o, * .
@I:z fl(xi) f'(xq) =0 8l=0;1:::;L

i=1

The fact the extremum is indeed a minimum is guaranteed by the convexity d ar[Z ?(X,)
Z(Xo)] as a function of the ;. This leads to the following set ofN + L + 1 linear equations

IThis is not a prerequisite in Universal Kriging, but GSLIB works with covariance models, that is why we
use them instead of the variograms here.
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with N + L +1 unknowns :
8
X b | .
% i Cxi xp)+ FI(Xi)) = C(Xi Xo) 8i=1;:::;N
1= 1=0 1.27
s X (1.27)
. Fl(xi) = (o) 8l=0;::::L

i=1

In matrix notations, the Universal Kriging system (1.27) is of the formAX=B  with the

following structure : 0 10 1 0 1
Cj fi j Cio
@ A@ A=@ A
fl 0 | f
| —{z—} -z} {22
A X B
With the simpli ed notations detailed below :

1 0
C(xy1 X1) i1 C(X1 Xn) 1 fi(xy)
Cij = % fi| =
C(xy X1) i C(Xn  Xn) 1 fh(xq)

0 1 0
j:%fg :%DE

f 1(XN)1

FL(xn)

1 0 c( )1 0 1 1
X1  Xo 1
g Cio = % 5 g f(l) _ %f (:Xo)§

N L C(XN XO) f L (XO)

fjl = t(fil)

The kriging variance is obtained by premultiplying the rst N equations of (1.2]7) by i,
summing overi, and then using the last(L +1) equations. The result is the Universal Kriging

variance :

X
Sk = EZ°(x0) Z(xo)*=CO)  iClx Xo)

1.4.6 Solving the Kriging Equations

1.4.6.1 Conditions for Nonsingularity

1 (Xo)

(1.28)

The linear system ) has a unique solution if and only if its matri¥ is nonsingular.

This holds under the following set of su cient conditions :

1. That the submatrix (Cj ) is strictly positive de nite,

2. That the submatrix (f!) is of full rank L + 1 (equal to the number of columns).

The proof follows from straightforward matrix algebra.

Strict positive de niteness of (Cj;) is ensured by the use of a strictly positive de nite
covariance function and the elimination of duplicate data points. The condition orf )
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expresses that theL + 1 basis functionsf '(x) are linearly independent on the spatial distri-
bution S :

af'(x) 8x2S ) g=0: 1=0;:::;L
1=0

This is a standard condition of sampling design . For one thing there must be at least as
many data points as there are basis functions (thud L +1). Moreover the arrangement
of the points must provide enough constraints to allow the determination of the coe cients
a in the linear model (1.28). A counterexample in 2D is whem(x) is a plane and all
sample points are aligned : obviously the plane is not constrained by a single line. Likewise,
when m(x) is a quadratic function, the system is singular if all data points lie along two
lines, a circle, an ellipse, a parabola, or a hyperbola. In view of these remarks, one must be
careful, particularly when using moving neighborhoods, not to create singular systems by a
bad selection of the data points.

1.4.6.2 Computing the Solution

In GSLIB, the kriging system of linear equations[(1.37) is solved by the classic Gaussian
elimination algorithm, with a use of partial pivoting to take into account that the matrix A
is not positive de nite in Universal Kriging.

1.5 Multivariate Geostatistics : Cokriging

The goal of multivariate geostatistics is to improve the estimate using the correlation
between several regionalized variables. In particular, this can improve the results when
the studied regionalized variable is undersampled and when there is data of one or several
correlated variable(s) available.

For example, the cokriging estimate for the regionalized variable at a point Xg, with
some correlated data of the regionalized variableis a linear combination :

X x
z’(Xo) = o(Xo) + i(Xo) z(xi) + s(X0) Y(Xs) (1.29)

i=1 s=1

The weights of this linear combination are chosen to minimize the estimate variance under
an unbiasedness constraint, as in kriging. In order to do this, all the regionalized variables are
considered as random functions, even the secondary variables. That means that the spatial
dependency of all the considered variables is taken into account. The cokriging equations
won't be detailed here, as cokriging applied to hydrogeology is discussed further.



Chapter 2

Kriging under Boundary Conditions

Kriging as described in Chapter 1, when used to draw contour maps of the hydraulic
head, is strictly an interpolation tool. Its main advantage on other interpolation methods
is its ability to take into account the spatial variability of the data. Besides this, kriging is
only using the data and their location to make an estimate. This chapter describes how we
can introduce in the kriging data a key component, used to solve the di usivity equation in
hydrogeology, the boundary conditions.

2.1 Boundary Conditions in Hydrogeology

As explained inde Marsily (1981), the diusivity equation that dictates the ow in
hydrogeology is often written as following, with the usual simpli cations(cf. de Marsily
(1981), chapter 5) :

. h
div (T gradh) = S%t+ Q (2.1)

with :

T, the tensor of order2 of transmissivity [L2:T 1],
h, the hydraulic head[L],
S, the storage coe cient [:],

Q, the total discharge[L%:T 1.

In the following, we will assume a 2D steady state ow%*t‘: 0), that Q is nil and that
T is isotropic and, for the time being, constant. A simpli ed equation can thus be derived
from @.1) :

h h
rzh:g+g:9:0 (2.2)
@ @y T

In order to solve this partial di erential equation for a concrete case, one needs to de-
termine the boundary conditions on the integration domain. There are three usual types of
boundary conditions :

the Dirichlet conditions, on the variable itself : prescribec,
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iy - . : h
the Neumann conditions, on the rst derivative of the variable : prescnbe%h

the Fourier conditions, on bothh and @h: prescribedh + @h
@n @n

A fourth type of boundary condition can be added : it concerns speci ¢ double conditions (a
head condition and a distinct gradient one) such as the phreatic surface or a seepage surface.
But this type of boundary is only encountered in 3D ow. Therefore they won't be detailed
below. The Fourier conditions would normally fall into the same category as Dirichlet and
Neumann conditions, but their introduction into the kriging equations is slightly trickier. So
they won't be detailed below either.

2.1.1 Prescribed Head

Dirichlet conditions are required on boundaries where the hydraulic head on the boundary
doesn't depend on the ow conditions in the aquifer. It will generally be where the aquifer is
in direct contact with free water, such as a river, a lake or a sea. Along this contact between
the aquifer and the river(or lake, sea...), the hydraulic head is constant and prescribed by
the water elevation in the river. The river can either feed or drain the aquifer. Of course, the
water level in the river can change along its course, but the river still prescribes the hydraulic
head along the boundary.

It is pretty obvious to imagine how we can take into account this type of boundary
condition in the kriging system : by discretizing the continuous boundary into a nite number
of data points which will be assigned the prescribed head value(s). We will simply add these
points to the data points provided by water table measurements.

2.1.2 Prescribed Flux

This is the Neumann condition in hydrogeology. According to the Darcy law, prescribing

the head gradient normal to the boundary,@h is indeed the same as prescribing the ux
@h

T @non this boundary, providedT is known. There are two distinct conditions of prescribed

ux :

: h .
The no ow boundaries : @n: 0. For example, in a 2D ow, the contact between an
aquifer and neighboring impervious formations.

The prescribed ux with a value di erent than 0. For example, runo water entering
an aquifer along a boundary.

Introducing data that speci es the gradient component normal to the prescribed ux
boundary is not something as obvious as adding head data points. It necessitates cokriging
with head gradient data, i.e. adding the ux (or head gradient) as a secondary variable.

In principle, since the prescribed ux contour is continuous, one should consider a con-
tinuous cokriging estimator. But in the same way as for prescribed head conditions, the
head gradient will only be speci ed at discrete points along the prescribed ux contour. The
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(co-)kriging estimate would then be, with the simpli ed notation ; = (Xp) and s= s(Xo),
and h represented as the RFZ :
, X X
Z'(Xo)= ot i Z(Xi) + s Z9xs) (2.3)
i=1 s=1

A further simpli cation can be introduced, replacing gradients by nite di erences. In prac-
tice, it su ces to discretize the problem and replace the orthogonal gradient component by
the di erences between pairs of dummy points : one of the dummy points is on one side of
the boundary while the other is on the other side, the two points drawing a segment perpen-
dicular to the boundary, as depicted in Figurg 2]1.

Figure 2.1: From gradient to a pair of dummy points.

Z being the variable estimated (the hydraulic headh), this gure is in fact the graphic
representation of the mathematical approximation :

@ Z(X1) Z(X2)
—(x - . 24
@i( ) X1 X @4
The kriging estimate can then be written :
, X VS
Z'(Xo)= ot i Z(Xi) + s [Z (Xs1)  Z(Xs,)] (2.5)

i=1 s=1

In the no ow boundary case, one notices that the di erenceg (xs,) Z (Xs,) are zeros.
Why then consider these di erences at all since their contribution to the estimator is nil ?
Because, and that is key, the weights; are di erent from kriging weights based on theZ (x;)
alone.

This was rst presented by Delhomme (1979) at a conference but never published. We
worked together to bring this one time application into a widespread robust algorithm.
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2.2 The Kriging under Boundary Conditions System

The same work ow as for Universal Kriging is applied.

2.2.1 Linearity Constraint

As previously mentioned in equation[(2]5)Z(x) has to be a linear combination of the
Z(x;) and Z (Xs,) Z (Xs,) data. Thus it is written :

X x
Z?(Xo) = ot i Z(Xi) + s [Z (Xsl) z (XSZ)]
i=1 s=1

2.2.2 Authorization Constraint

Similarly to the Universal Kriging method, we can write for the estimate error :

X x
ot i Z(xi) + s [Z (Xs1)  Z(Xs;)]  Z(X0)
i=1 s=1

Z7(Xo)  Z(Xo)

1
o
+

i Mm(X;)+ R(Xj) m(Xo) R(Xo)

+ S [m (Xsl) + R (Xsl) m (st) R (st)]

s=1
X x
= o+ i m(xi) + s MXs,) mM(Xs;)]  m(Xo)
| i=1 s=1 {Z }
non random terms
X x
+ i R(xi)  R(xo) + s [R(Xs;)  R(Xs,)]
i=1 s=1

As in Universal Kriging, Z?(xo) Z(Xo) is a linear combination of increments of the
residual function R(x) if and only if :

ot i m(x;) + s [MXs;) M(Xs;)] m(xo) =0 (2.6)
i=1 s=1
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2.2.3 Unbiasedness Constraints

To have an unbiased estimate, the following condition has to be true :

" E[Z7(xo) Z(Xogl =0
X S
E ot i Z(Xi) + slZ(Xs) Z(Xs,)] Z(%) =0
i=1 s=1
xS
ot im(x;) + s [M(Xs;) mM(Xs,)] m(xe) = O
i=1 s=1
b\ S xS b S
o+ i a4f'(xi)+ s a f'(Xsl) f'(XSZ) a|f'(Xo) =0
i=1 1=0 n s=1 1=0 1=0 #
hS X x
ot 3 F(xi) + s flixs,) f'(Xs,) f'(xo) = 0
1=0 i=1 s=1
Thisis true if =0 and :
X x
81=0;::::L; Fx) + s Flixs) fl(Xxs,) fl'(x0)=0 (2.7)
i=1 s=1

Under such conditions, the authorization constraint isle facto met. Slmllarly to Universal
Kriging, we have to setf °(x) = 1; 8x and equation .) is written forl =

i+ s 1) 1=0 or =1 (2.8)

The estimate becomes :

X NS
Z7(x0) = ZO0)F S [Z (%) Z(Xs)]
i=1 s=1
X NS
with o)+ s fl(xey)  Fl(xe) =fl(x0)  81=0;:1iL
i=1 s=1

2.2.4 Optimality Constraint

The optimality constraint minimizes the estimation variance, using the covariance of
increments instead of the covariance for the prescribed ux data points. The calculation still
uses the unbiasedness constrain{s (2.7) and the res{lt (1.14). The derivation of the equations
is not as detailed as for the Universal Kriging, as the method is the same.
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Var[Z?(xo) Z(x0)] =

"X“ x #
= Var i Z(x)+ s Z(Xs)  Z(Xs,) Z(Xo)
w izl s=1 "
¥ h i
= Var i Z(Xi) Z(Xq) + s Z(Xs;) Z(Xo) Z(Xs,) Z(Xo)
2u i=1 s=1 oy 3
¥ h i 72
= g4 i Z(xi)  Z(xo) + s Z(Xs,) Z(Xo) Z(Xs,) Z(Xo) °
i=1 s=1
AP\ h [
= i iE Z(X) Z(Xo) Z(Xj) Z(Xo)
i=1 j=1
XX h i
+2 i s E Z(X) Z(Xo) Z(Xs) Z(Xo)
i=1 s=1
h i
E Z(X) Z(Xo) Z(Xs,) Z(Xo)
PSP h i
+ st E Z(Xs;) Z(Xo) Z(Xy) Z(Xo)
s=1 t=1 h i
Eh Z(Xs;)  Z(X0) Z(X,) Z(Xo)
|
E Z(Xs,) Z(Xo) Z(Xt;) Z(Xo)
h i
+E Z(Xs,) Z(X0) Z(Xt,) Z(Xo)
XX DA
= i jC(Xi Xj)+2 i s C(Xi Xsl) C(Xi XSZ)
i=1 j=1 i=1 s=1
PSEDS
+ s t C(X51 th) C(Xsl th) C(st Xt1)+ C(st th)
s=1 t=1
X xS
2 iC(Xi Xo) 2 s C(Xs; Xo) C(Xs, Xo) + C(0)
i=1 s=1

We now have to nd the N weights ; and S weights ¢ minimizing V ar[Z?(xo) Z(Xo)],
still with the method of Lagrange multipliers. Thus we consider the same function :

! #
, hS X | |
Q= Var[Z"(Xo) Z(xo)]+2 | if (%) f(Xo)
1=0 i=1
inwhich2 =2 ,(Xq),! =0;:::;L, areL+1 additional unknowns, the Lagrange multipliers,

and determine the unconstrained minimum o€ by equating the partial derivatives ofQ to



2.2 The Kriging under Boundary Conditions System 23

zero. The simpli ed notationsC; = C(x; x;) and f{ = f'(x;) are used,8i;] .

@Q Xy xS hS
= <=2 [ Cj +2 s[Cis, Cis,]+2 fl 2Cip)=0 8i=1:::::N
@; =1 s=1 1=0
@ X
@Q: 2 i [Cisl CiSz] +2 t [Csltl CSltz CSztl + CSztz]
S i=1 “ t=1
+2 i[fe, fo] 2[Csio Cs0l=0 8s=1:::::S
1=0
X X
@Q_, ifl+2 s[fe, f&] 2fy=0 8l=0;L:::;L
@ i=1 s=1

This leads to the following set oN + S+ L +1 linear equations withN + S+ L +1 unknowns :

& w ¥ x |
i G + s[Cis; Cis,] + 1 fi = Cio 8i=1:::::N
ji=1 s=1 1=0
x
i [Cisl CiSz] + t [Csltl Csltz CSztl + CSztz]
i=1 t=1
x 2.9)
+ 1[fs, fs,]1=[Csi0  Csol 8=1:;::::S
1=0
Xy x
: if o+ s[fe, fi, =fg 8l=0;:::;L

i=1 s=1

In matrix notations, the kriging system (2.9) is of the following structure :

0 10 1 0 _ 1
Cj Ci, GCi, |f; i Cio
CjS 1 CSltl Csltz f sll C510
t =
stz CSztl + CSztz fslg CSgo
a @) .
B8t o . f)

With the same simpli ed notations as in Universal Kriging and the ones added below. The
gradient points have their own two-digit notation : the rst one indicates the number of
the gradient point while the second indicates the dummy point, and thus can only take the
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value 1 or 2.

0
Cj31 stz = E‘D : .
C(x1 Xs1) C(x1 Xsz2) i1 C(xn  Xs1) C(Xn  Xs2)

1
C(X1 Xi1) C(x1 X12) it C(Xn  X11) C(Xn  X12)

Citl Citz = t(CjS;L CjSz)

Csltlo Csltz C52t1 + CSztz =

C(x11 X11) C(Xu1 X12) i C(Xs:1 Xi1) C(Xs1 Xi12)
C(X12 X11)+ C(X12 X12) ::i: C(Xs2 Xi1)+ C(Xs2 X12)
C(X11 Xs1) C(xi1 Xs2) it C(Xs:1 Xsi) C(Xs1 Xs2)
C(Xx12 Xs1)+ C(X12 Xs2) i1 C(Xs2 Xs1)+ C(Xs2 Xs2)
Oflll fi, o0 f4 fslzl
f | f [ %} : : X f | f [ f | f |
S1 S2 . . t1 t2 ( S1 52)
fn fh o0 fs fs
0O 1 0

1
1 C(X11 Xo) C(X12 Xo)
t = %g Csio Cs0= E@ :
s C(Xs1 Xo) C(Xs2 Xo)

The Kriging under Boundary Conditions variance is :

kec = E[Z7°(x0) Z(x0)? (2.10)
X x X |
= C(0) i C(X;  Xop) s C(Xs;, Xo) C(Xs, Xo) 11 (Xo)
i=1 s=1 1=0
Finally, it has to be noticed that the matrix becomes singular in the following case :
9i;j ands; Z(Xi) = Z(Xs,) and Z(x;) = Z(Xs,) (2.11)

As a result, we have to be careful that the dummy points don't overlap some data points.

2.3 Code Implementation

To implement this new type of kriging, | used the GSLIB open source code, developed in
Stanford University, and documented inDeutsch and Journel(1998). This code is popular
both among researchers and professionals, and it is particularly used in Waterloo Hydrogeo-
logic softwares. The code implementation can be divided in several units. The algorithms
won't be detailed in this section, but they are provided in the appendixes. This section starts
with a common kriging issue before presenting the main algorithms introduced.

2.3.1 Kriging Neighborhood

The kriging theory is always derived as if all théN data points were used in the estimation ;
this is the so-called global neighborhood case. In practich, may be too large to allow
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computation and a moving neighborhood has to be used, including only a subset of the
data for the estimation of each grid node (see gurg 2.2). Formally, this does not change
anything for a grid node taken in isolation : the content of the sampled set of points is just
di erent. However, it may alter the relationships between estimates at di erent grid nodes
and introduce spurious discontinuities.

Figure 2.2: Example of selecting a subset of points with a search radigs

In the case of the GSLIB algorithm, the kriging system not only uses the moving neigh-
borhood method but also limits the number of points allowed in the kriging system. This was
done to decrease the computational cost (this algorithm was written in the 80's and released
in 1992, when computers were a lot less e cient) while selecting the closest points for each
estimation. Though, the combination of these two limits proved to introduce discontinuities
in the contour maps, or even to create singular matrices if the number of prescribed ux
points was too important. Worse, it can strongly decrease the in uence of the boundary
conditions by a signi cant margin. To get rid of this issue, the algorithm has been modi ed
to allow global neighborhood. All the examples presented in sectipn 2.4 have been thus made
in the global neighborhood case.

2.3.2 Adding the Boundary Conditions Data

There are two input les in GSLIB : the rst one describes all the parameters the main
algorithm needs and the second one provides the coordinates of the data points and the values
of the studied regionalized variable, the hydraulic head in our case. The method chosen to
introduce the boundary conditions data is to discretize the boundary lines into points. The
user will input the coordinates and the head value for each point that is a boundary segment
end. However, the program has to know if a point is a boundary segment end or not. And in
the former case, it also has to know if it is a prescribed head or a prescribed ux condition.
In order to solve this issue, a new input parameter has been created, named kod . This kod
is set :

to O for the measured data points,
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to a positive integer value for a prescribed head segment end,

to a negative integer value for a prescribed ux segment end.

Points that are both ends of the same segment have the same kod. More generally, if a
boundary is represented by a broken line, a point will be placed at each direction shift, and

all these shift points should have the same kod, as they are part of the same boundary.
Otherwise, two points representing two di erent boundary lines should have a di erent kod.

With these added points, we now have all the needed data for the Kriging under Boundary
Conditions process, but we still don't havereally our discretized boundaries. In order to
provide these, a simple algorithm will read the input data, detect the boundary points (the
ones whose kod is nod) and create several points between the two ends of the segment by
linearly interpolating the coordinates (and the head value for a prescribed head segment).
We have to notice here that, for this subroutine to work properly, the two ends of a boundary
segment, or two consecutive shift points of a broken line, have to follow one another in the
list of input data points. The data set now consists of both the real data points and the
points representing the discretized boundary lines.

Finally, another algorithm scans the data set again, selects the prescribed ux points,
and adds the dummy points in order for them to make a segment perpendicular to the
boundary line they are representing. For a de ned boundary, this is done using the previous
and the following boundary points to compute the local slope of the boundary and setting
the slope of the dummy points segment to make it perpendicular to the boundary (cf. Fig.
2.1). For the segment ends, the local slope is computed using the end point itself and its
closest neighbor in the segment.

To be honest, this subroutine doesn't really add dummy points. Otherwise we would have
to delete the point used to create its dummies and be careful that both dummy points are
always selected when choosing the data points included in the kriging neighborhood. It's
easier to just add two parametersldx and ddy for each point of the data array.ddx and ddy
will be set to O for each non prescribed ux data point, and to verify for a pointA and its
dummiesA; and A, :

X(A1) = X(A)  ddx(A) X(A2) = X(A) + ddx(A)
y(A1) = y(A) ddy(A) Y(A2) = y(A) + ddy(A)

Dummy points are actually computed on the y when lling the kriging matrices.

2.3.3 Discretization Parameters

The two algorithms mentioned in the previous subsection both require a key parameter
that has still not been de ned : the spacing between two points of a discretized boundary line
for one, and the spacing between the dummy points for the other. Nothing in the Kriging
under Boundary Conditions theory indicates which values these parameters should be set to.
However, we can easily deduce the following conditions for the rst parameter :

The more boundary points, the more precisely the boundaries will be de ned and the
better they will be honored.
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The more boundary points, the less real data points relatively taken into account.
This is a problem if our measured data can be trusted more than the position of our
boundaries.

The more boundary points, the more computing time !

In fact, the number of data points taken into account in a kriging neighborhood is bounded
(by a user de ned value though) to limit the computing time. And we need. +1 (L being

the number of drift terms) real head values to solve the kriging system. This issue was
addressed by allowing kriging with a global neighborhood, but it shows that we can't add
as many boundary points as we want if we choose to use a moving neighborhood. Thus, we
need to nd a good compromise to have enough boundary points to reproduce faithfully the
boundary conditions, while still having su cient real data points to solve the kriging system.
The following solution has nally been chosen :

if dist 2csiz; spacin= dI—ZSt

dist
if dist 20csiz; in= ——
[ is csiz; spacin 50"
elsespacin = csiz.

With dist being the boudary segment lengthgsiz the distance between 2 consecutive nodes
of tke kriging grid, and spacin the distance between two consecutive points of a discretized
boundary segment. So we have chosen to base our discretization on the kriging grid, with a
lower limit of 3 points and an upper limit of 21 points to represent a discretized segment.

The spacing between two dummy points is even harder to set. One could imagine that
it represents the extension of the prescribed ux inuence as, the longer the distance be-
tween the dummy points, the further the boundary condition is honored. However, practice
can hardly check if this assumption is true, as no major di erence has been detected when
changing this parameter. It has nally been set to2ciz, thus it is also based on the kriging
grid.

2.3.4 Singularity Conditions

It was already mentioned that we have to avoid dummy points overlapping some data
points (cf. equation (2.11)). More precisely, the matrix becomes singular if both points of
a dummy couple overlap head data points. A subroutine that scans the data array to check
this has been created. If such a case occurs, we have chosen to remove the dummy points
couple to protect the measured data.

2.3.5 Constant Flux Conditions

2.3.5.1 Expression of the Constant Flux

The variable data input for prescribed ux boundary points is not the hydraulic head of
the point ; it is the di erence between the hydraulic heads of the dummy points. When there
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is no ow, the input value is pretty obvious, we have to set it toO : no dierence in the
hydraulic head between two points implies no ow between these points ! However, when
the prescribed ux is a non nil constant, the input data is indeed the di erence h between
the hydraulic heads of the dummy points, i.e. a length valug.]. And yet we usually input
a ux as a volumic ow rate [L3:T 1]. To provide a simple tool that any hydrogeologist can
use, we have to transform this length value into a ow rate. We have from the di usivity
equation (2.2), assuming a ow along thex axis, a boundary perpendicular to the ow and
subsequently the dummy points segment along the axis too (that case will be generalized
in subsubsectior] 2.3.5]2 below) :

d?2h _ Q.

dx2 T
Where Q, is the ow rate per unit length [L%T ] and T the transmissivity. We can twice
integrate this equation between the two dummy points separated by the distante

Z,2 Z,Z
| Idz—hdx2 = | I%dxz
0o o dx? o o T
h(x=1) h(x=0) = %n oF
_ QPP
h = T

We can also compute the volumic ow rateQ, by integrating the ow rate per unit length
QLony:
YA L
Q. dy
0

QuL

Qv

With L being the length of the boundary ance the thickness of the aquifer. We then have
for h:

h= QTVL'Z (2.12)

So, in order to be able to input his constant ux data as a global volumic ow rateQ,, for all

the boundary segment, the user also has to input a mean value for the transmissivity The

length of the boundaryL and the distance between the dummy point$ are already known
by the algorithm.

2.3.5.2 Constant Flux and Orthogonality

The subsubsectiorf 2.3.5]1 above explained how to prescribe a constant ux boundary
condition if the ow is orthogonal to the boundary. In fact, the segment of dummy points
being perpendicular to the boundary, we will always input the ux component orthogonal to
the boundary. Fortunately, that is also what hydrogeologists usually do. However, if the ow
crossing the boundary is indeed not perpendicular to the boundary, there exists a colinear
ux that would be nil for a ow perpendicular to the boundary. Unfortunately, the Kriging
under Boundary Conditions system knows nothing about the colinear ux. So, we have to
also specify this condition. This will be done by adding a second couple of dummy points,
colinear to the boundary this time. And, as we have just explained, we want this colinear
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ux to be nil for a ow perpendicular to the boundary. So the variable data associated to
this couple of dummy points will in such a case be set @ as for any other no ow boundary
point. However, constant ux boundary lines are now represented by twice as many points
as they were before this correction.

2.3.5.3 Flux Sign

Finally, there is one issue left : the sign of the constant ux. As we can put some constant
ux boundaries inside the study area, it was not possible to set the sign as usual, i.e. positive
for an out ow, and negative for an in ow. Instead, the sign of the ow will be linked to the
x andy axes :

1. If the boundary isn't colinear to the x axis :

A positive sign will induce a ow going towards the increasing.
A negative sign will induce a ow going towards the decreasing.

2. If the boundary is colinear to thex axis :

A positive sign will induce a ow going towards the increasing.
A negative sign will induce a ow going towards the decreasing.

That last issue on constant ux conditions also brings one nal comment : these conditions
cannot be used to represent a well. They do not allow water to be put in or out the aquifer
except along external boundaries. Within the aquifer, they can only force an hydraulic head
di erence, which can be used to represent a known local gradient trend, whose origin can be
a local change of the transmissivity for example.

2.3.6 Cubic Variogram

The GSLIB algorithm allows to choose a variogram model between all the usual models
described in sectiori 1.2]3, but one : the cubic variogram. This variogram is de ned as
following :

8
< r
c 7 -
(h) =, a
c if r a
The cubic variogram is traditionally used for di erentiable variables because of its nil deriva-
tive at the origin. That explains why it is commonly used for the hydraulic head variogram,

its steeper slope than the Gaussian variogram also representing better the head spatial vari-
ability. Consequently, it has been added to the variogram choice in the GSLIB program.

2.3.7 Filling the Kriging under Boundary Conditions Matrix

To conclude this section, | have to mention that the main task of implementing the Kriging
under Boundary Conditions process in the GSLIB algorithm was arguably to properly I
the new kriging matrix. There is no special di culty in this task but to fully understand the
structure of the GSLIB subroutine. The nal algorithm is provided in Appendix A.
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2.4 Application of Kriging under Boundary Conditions

This section illustrates the di erent improvements in the contour maps provided by the
Kriging under Boundary Conditions method. The examples are pictured by a square map.
By convention, as these examples are ctive, we will assume that the top of the map is the
north. The graphical user interface (GUI) to implement Kriging under Boundary Conditions
in GW Contour wasn't done yet when this thesis was written. So the contour maps have been
produced with Surfer, using the output kriged grid and the Nearest Neighbor interpolation
method to compute the kriging map from the kriged grid.

2.4.1 Comparison between Universal Kriging and Kriging under
Boundary Conditions

The example detailed below consists of a study area®0m  500m, whose boundary
conditions are :

Prescribed headch = 0 m on the southern border,
Prescribed headch = 50 m on the northwestern corner,
No ow boundary on both the eastern and northern border.

This system has been modeled witNisual Mod ow 4.1 The output hydraulic head map
is presented in gure [2.3). 12 data points have been selected on this modeled map. These

Figure 2.3: Visual Mod ow modeled map. First example.

12 head values and the prescribed head in the top left corner will be the basis of our kriging
example. They are identi ed in gure (2.4).

More information available on http://www.waterloohydrogeologic.com/software/visual_mod ow/visual_
mod ow_ov.htm


http://www.waterloohydrogeologic.com/software/visual_modflow/visual_modflow_ov.htm
http://www.waterloohydrogeologic.com/software/visual_modflow/visual_modflow_ov.htm
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Figure 2.4: Diagram outlining the boundary conditions and thd 2 data points selected. First
example.

First, Universal Kriging has been applied to the set ol3 points (the northwestern pre-
scribed headh = 50 m has been added as it is not strictly a boundary). The following
parameters have been applied :

Distance betweer2 grid nodes= 10 m,
Constant neighborhood,
Linear drift in x and y only considered,

Cubic variogram, with a sill of 1, a range of710m and a nugget e ect of0:01

Figure[2.5 shows that the boundary conditions are not honored with the Universal Kriging,
be it the prescribed head or the no ow limits.

A rst step is to introduce the southern prescribed head boundary. The output result is
presented in gure[2.6. It shows that the head values are indeed set @on the southern
border of the area. It already improves the map when we compare this one with both the
Universal Kriging and the Visual Mod ow ones.

The next step is to introduce the full boundary conditions, i.e. adding the no ow limits.
The new contour map is shown in gurdg 2J7. It is almost identical to the Mod ow model
map ( gure R.3), unlike the Universal Kriging map ( gure [2.5). The improvement is really
noteworthy. Still, one could argue that the contour lines are not exactly perpendicular to the
no ow limits, especially in the northeastern zone. This is explained by the fact that there
is a boundary point in the top right corner, a point whose dummy segment slope is de ned
by its two neighbors. However, it happens that one of these neighbors belongs to the eastern
boundary while the other belongs to the northern boundary. Obviously, the dummy segment
won't be perpendicular to any of the lines, but will be the bisector of the angle between the
two boundary segments. The resulting condition can explain why the contour lines are less
perpendicular in this zone.
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Figure 2.6: Kriging with the prescribed head

Figure 2.5: Universal Kriging contour map. condition map

Figure 2.7: Kriging under Boundary Conditions map. First example.
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2.4.2 Unde ned boundaries

Another feature that has to be mentioned is that Kriging under Boundary Conditions
doesn't require all the boundaries of the study area to be de ned. Both Finite Dierence
and Finite Element Modeling programs assume that all the unde ned boundaries are no ow
limits. Kriging under Boundary Conditions provides a degree of freedom here, compared to
the discretized solving of the partial di erential equation. The following example illustrates
this.

Figure[2.8 presents another set of boundary conditions applied to the same study area
and the new set of hydraulic head values modeled wiNisual Mod ow.

Figure[2.9 presents the output map computed wittVisual Mod ow.

Figure[2.10 presents the Kriging under Boundary Conditions map.

S L

Figure 2.8: Diagram outlining the boundary conditions and thel2 data points selected.
Second example.

The di erence between the two maps is obvious in the northern zone : whilésual Mod ow
makes the contour lines perpendicular to the upper limit, Kriging under Boundary Conditions
doesn't. The only boundary conditions honored are the ones de ned by the user. This can
be useful when the area to be studied has an arbitrary limit (e.g. a country border, here, the
norhern limit), for which no hydrogeological conditions could be set.

2.4.3 Constant Flux Boundaries

The goal of this subsection is to highlight the issue presented in subsectjon 2.3.5.2, i.e.
the fact that the kriging system doesn't know anything about the colinear component of the
ux, if not directly speci ed. To illustrate this, the same example as described in guré 2]4
has been used, except that the northern no ow boundary has been replaced by a constant
ux boundary. The hydraulic head dierence between the two dummy points has been

respectively setto h =5m (c.f. gure .11, left map) and h = 5m (c.f. gure P.11]]
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Figure 2.9: Visual Mod ow modeled map.

Second example. Figure 2.10: Kriging under Boundary Con-

ditions map. Second example.
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right map). The left map thus illustrates an out ow ( ow going towards the increasingy, cf.
2.3.5.3), and the right map an in ow (ow going towards the decreasing).

2.4.4 River and Inside Constant Flux

A frequently asked question during my work was to know if Kriging under Boundary
Conditions allows to put some boundaries inside the study area. The answer to this question
is provided in this subsection, and in subsectidn 2.4.5. To illustrate the river and the inside
constant ux cases, a very simple example has been created. Its boundary conditions are :

Prescribed headch = 50 m on the northern boundary,h = 0 m on the southern one,
No ow boundary on the eastern and western limits,

River, i.e. prescribed head between the point§250; 250)and (250; 0), with a head
decrasing fromh =15m to h=0m or,

Constant ux on a line between the points(200; 200)and (300; 200) with a local head
gradient of h= 20m

Figure 2.12: River conditioning the ow. Figure 2.13: Inside constant ux condition.
The results are presented in gure§ 2.12 ar[d 2/13 and are as expected :

The hydraulic head is set to the river level along its stream, thus radically changing
the shape of the whole contour map.

The high gradient zone due to the constant ux could be interpreted as a low transmis-
sivity zone. The head di erence h was purposedly set to a high value, and we can see
that it forces the kriging system to consider that there is a very high head hill north of
the ux constraint, in order to honor both the prescribed ux and the prescribed head
conditions.
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2.4.5 Screen E ect

One case of inside boundary condition has not been mentioned yet : the no ow boundary
one. To illustrate it, the same example as the one used for an inside constant ux has been
created (see subsectioh 2.4.4). The only dierence is obviously that the hydraulic head
dierence his setto0. The output map is presented in gurel 2.14.

Figure 2.14: No ow boundary inside the study area.

The result is not at all what was expected and doesn't seem to follow the no ow condition
as the contour lines don't look perpendicular to the inside boundary. The result surprisingly
looks as if we have a higher transmissivity zone at the boundary location, as the hydraulic
gradient is low there. However, further examination of this location shows that the no ow
condition is indeed respected : if we draw the appropriate contour lines, we can see that
they brie y become perpendicular to the boundary at its location. The perturbation of the
hydraulic head map is minimal though.

This result makes us question the true nature of such a no ow condition in the middle of
the study area. Thus, this example was modeled Misual Mod ow. The result is presented
in gure .15 It clearly shows that the water doesn't cross the no ow boundary, and is
forced to by-pass it, thus creating a discontinuity in the hydraulic head at the location of the
boundary. This is what we can call the screen e ect, something that kriging cannot re ect,
as it assumes that the hydraulic head is a continuous variable.

However, this issue can be solved by considering the boundary as a screen indeed, when
kriging. That means that for every estimation node, the kriging neighborhood will be limited
to the data points that are not behind the screen. An algorithm was implemented to select
only the data points that are on the same side of the screen as the estimation point. Basically,
it's a classic convex hull problem, and we just have to check if the segment between the data
point and the estimation node crosses the screen segment or not. This is well explained by
Erickson| (2002)F} The kriged map with the screen e ect is presented in gur¢ 2.16.

2http://compgeom.cs.uiuc.edu/~je e/teaching/373/notes/x05-convexhull.pdfand . . .x06-sweepline.pdf
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Figure 2.15: Visual Mod ow modeled map. Screen e ect.

Figure 2.16: Representation of the screen e ect.
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It does re ect the screen e ect as expected. However, the result is still quite di erent
from the one computed withVisual Mod ow (see gure[2.15). In fact, the cones on each side
of the screen illustrate the lack of data for these points : the only head values selected in the
kriging system here are the ones from the constant heads that are on the same side of the
screen. And these constant head boundaries have one single value along the boundary. Thus
the estimation in these cones can only take the value of these constant head@sn below the
screen, andb0m above it.

To have a proper map of this study area, four head data points taken from théisual
Mod ow modeling were therefore added on each side of the screen. The result is shown in
gure P.17. It still doesn't look exactly like the Visual Mod ow map of gure 2.15. The
result does look similar to the one computed for a low-transmissivity zone with the Wall
package ofVisual Mod ow, that can create a thin low-transmissivity zone between two grid

cells (see gurd 2.18).

Figure 2.18: Visual Mod ow modeled map.

Figure 2.17: Screen e ect with added data Wall package.

points.

In order to prove that the added data points did not entirely solve the problem, the map
presented in gure[2.19 shows the results with the added data points but without the screen
e ect.

And nally, the oblong no ow zone betweenx =200 and x = 300, y = 200 andy = 210
modeled with Visual Mod ow in gure 2.15 was introduced in Kriging under Boundary
Conditions, with four no ow segments. The result is presented in gur¢ 2.20. The result
looks similar to gure[2.15. The only issue here is that the contouring algorithm preserves the
continuity of the head, and thus the contour lines drawn cross the no ow zone. We would
have to make them invisible in the no ow box to actually see the real result of Kriging
under Boundary Conditions.
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Figure 2.19: No ow boundary inside the study area, with added data points but without
the screen e ect.

Figure 2.20: No ow box inside the study area.
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2.5 Conclusion

Kriging under Boundary Conditions proved to be an e cient tool to take into account
Dirichlet and Neumann conditions, without adding more requirements to compute the kriging
system but adding the boundaries themselves. However, one has to be aware that it does
not solve other types of boundary conditions than the Dirichlet and the Neumann ones. In
particular, a well cannot be taken into account with this method.



Chapter 3

(Co-)Kriging with Multivariate
Structural Analysis

Chapter 2 showed that kriging can take into account some usual boundary conditions
used to solve the di usivity equation (2.2). However, can we consider that all our estimates
are verifying the same partial di erential equation as the data ? Obviously not. The di u-
sivity equation depends on several variables (transmissiviily, total dischargeQ and storage
coe cient S), and our Kriging under Boundary Conditions only uses the head data to com-
pute its estimates. This chapter explains how a multivariate structural analysis can help the
estimate to try and better verify the same partial di erential equation as the data, both for
kriging and cokriging. The guiding idea and some of the results used are based on a Ph.D.
thesis by Dong (1990). However, the chapter starts with some generalized de nitions of
what was explained in subsectiop 1.1.4. These de nitions are needed to explain the theory
in this chapter.

3.1 Further Geostatistical De nitions

3.1.1 Intrinsic Random Function of order k (IRF- k)

A random function Z(x) is intrinsic of order k if for any allowable measure 2 | the
random function : X
Z (x)= i Z(Xi + X) (3.1)
i
is second-order stationary irx 2 R" and has a zero mean. This is equivalent to :
(
EZ () =0 (3.2)
EZXZ () =Ky x) 8Ky2R" 2
An IRF-k is simply a random function with stationary increments of ordek. The usual
intrinsic model described in subsectiof 1.1.4.3 correspondsko= 0. Clearly, an IRF-K is
also an IRF{k + 1) and of any higher order, since y+1 k-

The condition that increments of orderk have a zero mean is introduced for a simpler
presentation and does not restrict generality. If these increments are stationary, their mean is
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necessarily a polynomial of degree+ 1 at most (c.f. Matheron (1973)), which is eliminated
by regardingZ(x) as an IRF{k +1).

As usual with random functions, it will be assumed thaZ (x) is continuous in the mean
square sense, to extend the theory from the spacg of discrete measures to the spadd
of measures with compact supports.

3.1.2 Generalized Covariance

Subsection[ .14 explained that the correlation structure of an SRF (or IRF- 1)) is
de ned by its ordinary covariance functionC(h) and the correlation structure of an IRF
(or IRF-0) is de ned by its variogram (h). In the same manner, when the stationarity
assumptions are limited to generalized increments of ordér (IRF-k)), what characterizes
the correlation structure ofz(x) is a function called generalized covariance, denoted Ky(h).

For an IRF-k Z and any pair of measures, 2 |, the generalized covariance function
K (h) of Z, de ned on R" is de ned by :

X X
Ez()z() = i K@y xi) (3.3)

i j
If =, we then have :

X X
EZ() = i Ky o x) (2 k) (3.4)
i

K (h) is a symmetric function and is used just as an ordinary covariance functidd(h) and
we also have the following property :

Theorem 1. Any continuous IRF-k has a continuous generalized covariangée(h). K (h) is

unique as an equivalence class, in the sense that any other generalized covariance is of the
form K (h) + Q(h), whereQ(h) is an even polynomial of degregk or less.

A useful result is the relation between the ordinary covariance of Z and its generalized
covarianceK (seeDong (1990) andChiles and Del ner| (1999)) :

xXP xXP
xy)= Ky x)+ amf'ca+  a)f'(y) (3.5)

=1 =1
With :
f! a monomial of degree 1,
p the number of monomials,

a, some continuous functions.



3.2 Kriging the Head using Transmissivity Knowledge 43

3.2 Kiriging the Head using Transmissivity Knowledge

3.2.1 Hydrogeologic Context

In Chapter 2, we have considered the di usivity equation[(2]1) in the cas® was nil and
T was constant over the study area. We will now consider that the transmissivify and the
headh depend on the 1D ow directionx, while the discharge is still assumed nil. We can
then write :

div(T gradh) = 0 (3.6)
@ _@h _
ex 'ex °
@Teh, . eh _ |
@x@x @%
% = %%1%2 with %:: J = hydraulic gradient
h LogT
% - @D égx ) (3.7)

The strong restriction of the result [3.7) has to be remembered : this equation assumes that
the ow is unidimensional and that the hydraulic gradient is a constant on the study area.

3.2.2 The Stochastic Equation Z=Y

Equation (3.7) can be more generally written Z = Y, and not only applied to hy-
drogeology. This equation is named the Poisson equation and represents the dependency
between the studied variablez the hydraulic head h in our case and a given source

term Y J M

of Log(T).

, I.e the constant hydraulic gradient multiplied by the derivative onx

We can notice that we could have also considered solving equatiZ.Z)u = g which

is also a Poisson equation. In that case, thé source term would have beeE‘_— and we could

Q

have solved the Poisson equation h = T with the assumption that T is constant in the

study area. Thus, we would have had the variogram of the total discharg@ de ning the
variogram of h. However, in this thesis, the emphasis has been put on linkingwith the
transmissivity variations.

To consider solving this equation with a geostatistical method, we have rst to assume
that Y and Z are random functions ofR", with n = 2 in our case, and that Z = Y is
therefore considered as a stochastic equation. The rst question that then arises is that
of the existence of a stochastic model compatible with this equatioatheron (1971a) has
stated the following theroem :

Theorem 2. If Y is a continuous IRFk of R", there exists a unique twice di erentiable
IRF-(k + 2p) Z satisfying the di erential equation PZ =Y, which implies that :
If Y is a continuous SRF (i.e. IRF{ 1)) of R", there exists a unique twice di erentiable
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IRF-1 Z satisfying the di erential equation Z =Y and :
If Y is a continuous IRK 2) of R", there exists a unique twice dierentiable IRFO Z
satisfying the di erential equation Z =Y.

3.2.3 Covariance Model

From this, we can derive the relationship between the generalized covariancesZoénd
of Y. To keep things simple, let us consider only the case wheYeis a zero-mean SRF (it
is still possible to come down to this case and add a polynomial of degreevith constant
coe cients to the usual solution of Z). Let x = (Xq;:::;%X,) andy = (y1;:::;Yn) be two
points of R". Denoting by C(h) the stationary covariance ofY, we get :

XX @z(x) @Z(y)
s OF O

With Z being twice di erentiable, its nonstationary covariance (x;y) is di erentiable four
times, and therefore :

Cly x)=EY(X)Y() =E Z(x) Z(y) =E

xXoxo @ @
i=1 j=1 &
where  is the Laplacian operator applied with respect toc. Combining equations [(3.5)
and (3.8), we get :
x y (xy)= « yK(@y x)= 2K(h) withh=y x

The covarianceC of Y and the generalized covariancK of Z, with Z and Y linked by the
equation Z =Y are thus related by the equation :

2K (h) = C(h) (3.9)
Theorem[2 then tells us that,Y being an SRF,Z will be an IRF-1.

EZX)Zy) = x y (xY) (3.8)

However, the equatlon) we want to solve is more of the formz = — W|th Z being
the hydraulic head andY beingLog(T). To study this equation knowing gcl%e result |(3.! -) of

Z =Y, we will use a variableX de ned by Z = %X(there is no real physical explanation
for this variable).

@X (@) S @ @Y

We then have @x = @ which implies that @x( X)= @x This is the derivative
on x of the equation X =Y, inwhich Y is an SRF (or IRF{ 1)) with a covarianceCy (h)

and X is an IRF-1 with a generalized covarianc& so that we have, as in equation (3]9) :
2K (h) = Cy(h) (3.10)

Z, the derivative of X on X, is then an IRF-O and the relation betweenK and the
variogram y of the hydraulic headZ is :

>—J2@

n(h) = (h) (3.11)

@B

With h, being the rst coordinate of the vectorh(hy; hy). We can notice that the variogram
of the variable Z is not isotropic and depends on the angle between the vectoand the ow
direction.
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3.2.4 Covariance Choice and Code Implementation

Dong (1990) computed the variograms of the hydraulic headh integrated from | oq(T)
of Log(T) for several usual variogram models iR, R? and R®.

The calculations were made using several common variogram modelslfog(T). We have
chosen to restrict ourselves to the spherical model as it is usually the one chosenLfog(T).
The corresponding model foH is thereford]| :

8
% cal , 8.5 8 ¢ ) 8 8 3 :
— —h>+ — + —h, + —
T g gha+ =gha + G 2 chat oohg if h, 1
3 c& 32, 3 4 , 4 6 :
— —+ ——+ = + —
" 16 75 35h2 5"°g(ha) dxa 5h2  35nh4 tha 1
(3.12)
With :

¢ being the sill of the variogram ofLog(T),

a being its range,

h
ha = a
dx, being the rst coordinate of h, in the Cartesian coordinate system in which the
axis is de ned by the direction of the hydraulic gradient.

In the GSLIB algorithm, the covariance model associated to the variogram de ned in
(8.12) has been coded. To simplify the input for the user, instead of asking the sill of the

max

variogram, the program asks to input the ratio——, and the sill c of the head variogram is
then computed assuming : "

T, P
Log —= = 4 Var(LogT)
Tmin

1 Troex
Var(LogT) = — L —_—
c = J?*Var(LogT)

J2 Trax

= — L 3.13

3.2.5 Application

The same example as the one used in subsectjon 3.4.1 has been computed, taking into
account the full boundary conditions. The output map is presented in gur¢ 3]1.

1If one manages to get his hand on Anne Dong's Ph.D thesis, p239, he might be surprised to nd that
there is noh3 behind the term % This is indeed a typo in Dong's thesis, as a constant term in a spherical
based variogram is not correct and theh3 term is needed to ensure the continuity of the rst derivative of

(h).
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Figure 3.1: Kriging under Boundary Conditions with of h computed from of Log(T).

There are no real improvements yet over the map presented in gufe 2.7, except that the
no ow boundary conditions are a bit better honored in the northeastern corner. However,
using the Log(T) integrated variogram was not supposed to drastically improve the Kriging
under Boundary Conditions. It is more a step towards full cokriging betweeln and Log(T).

3.3 Cokriging Head and Log Transmissivity

3.3.1 Cross-covariance

Before describing the cokriging system, let us complete the multivariate structural analysis
of our study area. Thanks to sectiof 3|2, we have linked the head variogram with theg(T)
one. To compute the kriging system, we also have to know the cross-covariance between

and Log(T) (see subsectioh 3.3.2).

First, we have to notice thatE Z(x) Y(y) doesn't necessarily exist. We have proved in
subsection 3.23 thatZ is an IRF-0 when Y is an SRF. The productZ(x) Y (y) then has
an hybrid status. We will make the hypothesis that we are in the good case and that
E Z(x) Y(y) exists. This is a common assumption for the hydraulic head.

As for the covariance in subsection 3.2.3, we have for the cross-covariance :

@ K
EZX)Y(y) =J & (X;y) (3.14)
For the spherical model ié\Rz, we havé]:
1 1 1 .
@ K 3 c(X1 Y1) 5 éha+ Ehg if hy 1
——(Xjy) = A
' 10h2 2

2SeeDong| (1990), p243
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With the same notations as for equation[(3.12) and;, y; being the rst coordinates of the
points x and y in the Cartesian coordinate system in which the rst axisx is de ned by the
direction of the hydraulic gradient.

3.3.2 The Cokriging System

As the kriging process has already been detailed twice in previous chapters, the demon-
stration is shortened as much as possible here. Basically, the process is almost identical to the
one used for Kriging under Boundary Conditions, except that we have here a true secondary
variable with cross-covariance terms and its own covariance terms, instead of the di erences
between head covariances we had in Kriging under Boundary Conditions. The system de-
scribed is the Cokriging with a Trend (or Universal Cokriging) system, and it estimates the
hydraulic head based on head and transmissivity data.

Z stands for the hydraulic headh and Y representsLog(T) whereT is the transmissivity.
Z is de ned as in previous chapters (see equations (1122) arfd (1.23)), this time using the
anistropic variogram  (h), and Y (y) = my + Ry (y) where the meanmy is a constant and
the covariance of Y is isotropic.

3.3.2.1 Linearity Constraint

, A x
Z(Xp)= ot i Z(Xi) + s Y (Xs)
i=1 s=1
3.3.2.2 Authorization Constraint
, X X
Z(Xo) Z(Xo) = ot im(xi)  m(Xo) + i R(xi)  R(Xo)
| i=1 {Z } i=1
non random terms
x>
+ s Ry (Xs)
s=1

Thus the authorization constraint is once again :

o+ im(xj) m(xp)=0 (3.16)
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3.3.2.3 Unbiasedness Constraint

" E[Z (o) Z(Xogl =0
X X
E ot WA sYs Zo =0
i=1 s=1
X
ot im(xj) m(xe) = 0
i=1
" #
hS X x
0+ a |f|I f(l) + sMy = 0
1=0 i=1 s=1
Thisis true if =0 and :
X x
8l=0:::::L; fl=fy and  8my; <=0 (3.17)
i=1 s=1

The authorization constraint isde factomet. Once again, we havé°(x) = 1, and the weights
i add up to 1 whereas the weights ; add up to zero.

3.3.2.4 Optimality Constraint

As for Universal Kriging, we have to minimizeV ar[Z?(xo) Z(Xo)]. However, in this
case, the covariance of the hydraulic head represented hereys not strictly de ned. We
have to use its anisotropic variogram. The result presented in subsectjon 1]1.5 can be written
in variogram terms :

h i
E Z(xi) Z(Xo) Z(x)) Z(xo) =+ ot jo With = (X Xx)
. XX X 6 XX @ K
Var[Z7(xo) Z(x0)] = it st stt2 i sJ @(Xiixs)
i=1 j=1 s=1 t=1 i=1 s=1
X x @ K
+2 . 2 J ——(Xo; X
- 0 o S @ ( 0 S)

As for Kriging under Boundary Conditions, we obtain the derivatives respectively on;, s
and | to compute the kriging system ofN + S+ L +1 linear equations withN + S+ L +1

unké'\owns:
b\ X3 S
j ij+ SJ@—K(Xi;XS)+ |fi|: i0 8|:1,,N
j=1 s=1 @ 1=0
X @ K S @ K
~ iJ@(Xth)"' B t tt o= & (Xo; Xs) 8s=1;:113S (3.18)
= f) 8l=0;:::;L
Pl
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In matrix notations, the kriging system (3.18) is of the following structure, with the usual

notations :

i J & (xisx) | f

0 1 0
The Universal Cokriging variance will then be :
X x @ K S

2 _ )
UCoK — i i0 sJ & (Xo0; Xs) 1 fo
i=1 s=1

3.3.3 The Cokriging under Boundary Conditions System

10 1 0 1
0 ,- -
J 8 (X Xs) st 01 t G- (Xo; Xs)
fj' 0 00 |
@, @
0

(3.19)

The Cokriging under Boundary Conditions system can easily be obtained by combining
the Kriging under Boundary Conditions system([(2.9) and the Cokriging systen (3.[18). Only

its matrix is represented there.

Je(xix) [ £ [0t 0 !
GE(x ux) | !
0
18L(x 5ix) | T,
st O 1 t
0 0|0 |E
0 0 1 010

The Cokriging under Boundary Conditions variance will then be :

, _ X X X @ K
UCOKBC — i iot 10 20 sJ & ——(Xo; Xs)
i=1 =1 s=1

1
+
(Xo; Xs)
fo
0
fo  (3.20)
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3.4 Inverse Problem

Solving the partial di erential equation div(T gradh) = 0 is called solving the direct
problem, as the estimated variable i$, the main variable of the partial di erential equation.
Consequently, the inverse problem is estimating, knowing h under zero discharge conditions
(virgin state of the aquifer). In practice, it is a very common problem in hydrogeology that
often has to be solved before modeling with di erent discharge conditions (e.g. wells).

To create a groundwater model, one has to enter the parameters of the partial di erential
equation, including the transmissivity. However, transmissivity data are scarce, while the
hydraulic head is usually better known, because it only requires piezometer logging while
estimating the transmissivity requires a heavier pumping test. Therefore solving the inverse
problem gives us a better knowledge af before modeling. This is critical as the better the
transmissivity input, the easier it will be to obtain a good calibration when modeling, since
it is easier to optimize parameters if they are closer from their real value since the beginning.
A geostatistical approach makes it possible to take account of the joint spatial variability of
h and T, thereby to restrict the space of possible equations and, in the end, to express the
set of solutions as a family of conditional simulations. However, no one has really applied
so far Anne Dong's results to use cokriging with a multivariate structural analysis based on
Log(T) for a practical problem.

3.4.1 The Inverse Problem Kriging System

The cokriging system for estimating the transmissivity is almost the same as the one used
to compute the head (cf. equation[(3.18)). In fact, the kriging matrix is identical to the one
used for the direct problem. The variables, the data sets and the variographic parameters
are the same. Only the estimated variable changes and so only the second term is indeed
di erent. Thus the right-hand side matrices for Cokriging and Cokriging under Boundary

Conditions will respectively be :
1

0
0
E J _(XI ) XO)

J _(X| ’ XO)
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And the cokriging variances without and with boundary conditions will respectively be :

X x
dcokm = (0) iJ@—K(Xi;XO) s 0 0 (3.21)
i=1 @ s=1
X K X K K
LZJCOKBC w = (0 . iJ%(Xi;XO) . J @@ (X 1;%X0) J @@ (X ,;%o)
x
s sO 0 (3.22)
s=1

3.4.2 The Bias in Lognormal Kriging

In this chapter, we have studied two hydrogeologic variables considered as RFs : the
hydraulic head h and the logarithm of the transmissivity Log(T), but we never questioned
the idea of applying kriging to the logarithm of a parameter. In fact, the variations o are
highly nonlinear. So it would not be wise to use the linear estimators of kriging on itself.

On the other hand, the logarithm of T can be considered as a Gaussian RF and thus be a
good candidate for kriging. That had to be cleared.

However, when we solve the inverse problem, we want an estimatelofnot Log(T). Is it
possible to just compute the exponential of th&og(T) estimate to obtain the T estimate ?
In fact not, there is a correction factor to apply when computing the transmissivity esti-
mate. Matheron already mentioned this when he rst described krigingMatheron (1963)),
and revisited the concepts of so-called lognormal krigindM@atheron (1974)). For Ordinary
Cokriging?, the estimate will be for a RFZ = Log(Y) :

$ (Xo)

Z7(Xo) = exp Y7(xo) + > 0

(3.23)

o being the Lagrange multiplier forY present in the kriging system.

However,Roth| (1998) believes that this estimator is still biased, and that we can't really
get rid of the bias as long as we don't perform Simple Cokriging. In this thesis, we will
present a map ofLog(T), thus avoiding this biasedness issue.

3.5 Application

This section details the application of solving either the direct, either the inverse problem,
using the results and the system described in sectigns|3.3 34.

3.5.1 Code Implementation

GSLIB has a cokriging program, but it only does Simple or Ordinary Cokriging. The
rst task was to add the drift terms to compute the Universal Kriging system, using the

3The previously described system is called Universal Cokriging, but, in fact, we only take into account
the drift for h, not for Log(T), whose mean is unknown but assumed constant.
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kriging algorithm. Then, the boundary conditions were added as in the matrix presented in
subsection 3.3J3, and the cross-covariance model introduced in subsedfion B.3.1 was coded.
Finally, the right-hand term of the kriging system used to solve the inverse proble has been
implemented, and a new input parameter allows to choose which variable the user wants to
estimate.

3.5.2 Results

What di erentiates our study from classic cokriging is the fact that we take account of

- . . h LogT) . o .
the partial di erential equation @ =J @ gx ) in our multivariate structural analysis.

So the improvement will lie in the covariance and cross-covariance functions computed in
sectiong 3.2.4 an@l 3.3/1. Let us have a closer look on these functions. Fifjure 3.2 shows their
representation for an exponential covariance afog(T).

Figure 3.2: Exponential covarianceCy of Y = Log(T), variogram  of head perturbation
and cross-covariance of (x) and (x + h) (x) in the two-dimensional case, for an
unidirectional ow in an in nite aquifer, from Chiles and Del ner (1999), p.620.

In fact, the kriged estimate is a linear combination of weights that are functions of these
covariances, translated to be centered at the estimated points. We have written that the
product of the hydraulic gradientJ and the rangea of the Log(T) variogram is involved
linearly in the cross-covariance[(3.14) and as a square in the head variogrgm (B.12). This
means that in a cokriging approach for estimating the hydraulic head, the weights dwog(T)
data will be proportional to Ja, while when estimating the transmissivity, the weights on head
data will be inversely proportional toJa. Knowledge of this parameter is therefore essential,
as it will determine by how much the head map will be distorted.a alone represents the
range of the distortion.

Figures[3.3[ 3.4 andl 3|5 present the representations of the covariancéad(T) and both,
the variogram of h and the cross-covariance betweebog(T) and h computed from this
covariance. The ow is assumed parallel to the North-South axis.
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Figure 3.3: 2D representation ofC Log(T) Figure 3.4: 2D representation of (h) cen-
centered on the point(25; 25) tered on the point (25; 25)

Figure 3.5: 2D representation of the cross-covariance betwdssg(T) and h centered at point
(25; 25)

The antisymmetry of the cross-covariance (3.14) when computing the function around the
central point has to be denoted. We can use it to make the following statements, assuming
there is a low transmissivity zone :

There is necessarily a point downstream that will be below this hydraulic head plane
de ned by the regional gradientJ,

And there is a point upstream that will be above this plane.

This leads to the conclusion that there is a higher hydraulic gradient at the location of the
low transmissivity point.
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The opposite statement can also be made if we assume there is a high transmissivity zone.
We would then have a smaller hydraulic gradient at the location of the high transmissivity
point.

Similarly, for the inverse problem, if we have, for example, a point whose head value is
below the plane representing the regional hydraulic gradient, we can then conclude that the
transmissivity values will be below the mean value upstram, and above it downstream. The
opposite statement can be made for a head value below the regional plane. Figuré 3.6 sums
up these statements.

Figure 3.6: Summary of the in uence of the cross-covariance anti-symmetry drand Log(T)
estimates, by Jean-Pierre Delhomme.

A rst example, with the same study area as usual, a constant head = 50 m on the
northern boundary andh = 0 m on the southern one and a low transmissivity point in the
middle of the area is mapped in gurg 3]7. A parameter that has to be noticed here is
the range of the covariance oLog(T). It is set to 70m in this example, as the boundary
conditions must be beyond the range okog(T) data points.

The second example displayed in gurg 3.8 presents an inverse problem. The study area
and the parameters are the same as for the rst example, except that instead of a low-
transmissivity data point, we have two head data points in the middle of the area : one
above the regional hydraulic gradient planex = 250; y = 251; h = 26), and the other below
it (x =250; y=249; h=24).
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Figure 3.7: Cokriging with one low transmis- Figure 3.8: Inverse problem :Log;o(T) map
sivity point in the middle of the study area. cokriged fromh and Log(T) data.

Finally, another interesting gure is gure B.9. It presents the dierence between the
hydraulic head cokriged in gure[3.F and the hydraulic head of the case in which there is
no low-transmissivity data point and thus only the regional hydraulic gradient oD:1 m=m
applies. This gure has some interesting similarities with gurd 38 This emphasizes the
fact that it is the cross-covariance function which disrupts the hydraulic head map when we

insert a low-tansmissivity point.

Figure 3.9: Di erence between the hydraulic head maps with and without the low-transmis-
sivity data point.

“Note that the hydraulic gradient is from East to West in gure 3.5 Jand from North to South in gure

B9
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3.5.3 Conclusion

There is still some testing to be done in order to have a stable cokriging algorithm using
this multivariate spatial analysis, but one can easily understand the potential that lies there,
as shown in the very rst example. This method could be used to solve both the direct and

the inverse problem of the partial di erential equation @h =J @Log T).

@% @x




Conclusion

The goal of this thesis was to make kriging respect some conditions of the partial di er-
ential equations that dictate the groundwater ow in hydrogeology. We have concluded in
Chapter 2 that Kriging under Boundary Conditions allows us to take into account the Dirich-
let and the Neumann boundary conditions. Kriging under Boundary Conditions proved to be
robust enough to be easily used by a hydrogeologist. Consequently, it should be implemented
soon inGW Contour. It seems a perfect tool to improve the results computed by this program
that basically interpolates the hydraulic head, the hydraulic conductivity and the porosity
and then uses these data to solve the Darcy equation on each node of the interpolation grid,
in order to produce a velocity vector map and particle tracking.

@h @Log T)

Chapter 3 focused on making use of the partial di erential equation—?( =J ax

in a multivariate spatial analysis cokriging approach, to take into account the transmissivity
data and the fact that its structure is deeply linked to the hydraulic head structure. This

is a more generalized problem than Kriging under Boundary Conditions, as the important
hydrogeologic parameter that transmissivity is, is not considered constant anymore and is
indeed used to evaluate the hydraulic head surface. This promising last minute research
needs further work and testing, but the rst results look very promising and the fact that it
can also solve the inverse problem makes it even more interesting.
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Appendix A

GSLIB Code : Main Algorithm

program main

@ N o N i 0 s s i 0 s s i e e 0 s A A 0 s s e 0 o 0 s e o 0 0 R B L T D0 2 )

O0O0000O0O0000O0

%
Copyright (C) 1996, The Board of Trustees of the Leland Stanford %
Junior University. All rights reserved. %

%
The programs in GSLIB are distributed in the hope that they will be %
useful , but WITHOUT ANY WARRANTY. No author or distributor accepts %
responsibility to anyone for the consequences of using them or for %
whether they serve any particular purpose or work at all, unless he %
says so in writing. Everyone is granted permission to copy, modify %
and redistribute the programs in GSLIB, but only under the condition %
that this notice and the above copyright notice remain intact. %

%

@ e s s s s s T A A s e T T T )

OO0OO0O0O0O00O00000O0O0

CoKriging of a 3 D Rectangular Grid

This program estimates the value of a "primary" variable with primary
and secondary data. The program could be modified to jointly predict
primary and secondary data.

USE DFLIB
use dfwin
include ‘'coktbc.inc'
HARACIER (1) key [ 'A" ]
Read the Parameter File and the Data:
call readparm
Call coktbc to krige the grid:

call coktbc

Finished:
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write ( ,9998) VERSION

9998 format (/' COKIBC Version: ',f5.3, ' Finished'/)
stop
end

subroutine readparm

c
c
c Initialization and Read Parameters
C
c
¢ The input parameters and data are read, some quick error checking is
¢ performed, and the statistics of all the variables being considered
c are written to standard output.
C
C
c
c
USE DFLIB
include ‘'coktbc.inc'
parameter (Mv=20)
real var (MV) ,av(WV), ss (MV)
integer ivrl (MV),nn(WV) ,whatest
character datafl 500,outfl 500,dbgfl 500,secfl 500,str 500
logical testfl ,linmod, posdef
integer 4 surflong ,npars, stat
double precision surfdbl
HARACTER (1) key [/ ‘A" [/
¢ SURFER output file
C
C
¢ |I/O units:
c
lin =1
lout = 2
ldbg = 3
c
¢ Note VERSION number:

(9]

write ( ,9999) VERSION
9999 format (/' COKIBC Version: ',f5.3/)

Get the name of the parameter file try the default name if no input:

write( , ) 'Which parameter file do you want to use?’
read ( ,'(a40)") str
npars=iargc ()
if (npars.ge.l) then
call getarg(1l,str)

OO0 000

else
call fileopen(str)
endif
write ( , ) 'FILE OPENED ', str

if (str(1:1).eq."' ')str='coktbc.par '
inquire (file =str, exist=testfl)
if (.not.testfl) then



c
¢ Find
C

1

C

write ( , ) 'ERROR the parameter file does not exist ,'

write (, ) ' check for the file and try again
write ( , )
if (str(1:20).eq."'coktbc.par ') then
write ( , ) creating a blank parameter file '

call makepar
write ( , )
end if
stop
endif
open (lin, file =str, status ='OLD")

Start of Parameters:

read (lin,'(a4)', end=98) str(1:4)
if (str(1:4).ne.'STAR') go to 1

¢ Read Input Parameters:

C

+

read (lin,'(a)"', err =98) datafl
call chknam(datafl ,40)

write ( , ) ' data file = ', datafl
read (lin, ,err=98) nvr
write ( , ) ' number of variables = ', nvr

if (nvr.gt.MAXVAR) stop 'nvr is too big modify .inc file '
if (nvr.gt.2) stop 'can not use more than 1 secondary variable'

read (lin, ,err=98) whatest
write ( , ) ' estimated variable: O=head, 1=transmissivity ',
whatest

if (whatest.It.0.or.whatest.gt.1) stop ' Est. variable =0 ou 1. '

read (lin, ,err=98) ixl,iyl,izl  ikod, (ivrl(i),i=1,nvr)

write ( , ) ' columns = ",ixl iyl ,izl ,ikod ,(ivrl(i),i=1,nvr)

read (lin, ,err=98) tmin,tmax

write (, ) ' trimming limits = ', tmin,tmax

read (lin, ,err=98) icolloc

write ( , ) ' co located cokriging flag = ",icolloc

if (icolloc.eq.1) then
write ( , )
write ( , )' The co located cokriging flag does not work."
write ( , )' Modify the search and ndmaxs for co located."
write ( , )' The original intent was for the program to '
write ( , )' establish the variograms using a Markov model.'
write ( , )' You can do that outside the program .'
write ( , )
write ( , )' Note: the collocated cokriging file is not used'
write ( , )
stop

end if

read (lin, '(a)', err =98) secfl
call chknam(secfl ,40)
write ( , ) ' collocated cokriging file = ', secfl
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read (lin, ,err=98) iclcol
write ( , ) ' column for covariate = ',iclcol

read (lin, ,err=98) idhg
write ( , ) ' debug level = ',idbg

read (lin, '(a)"', err =98) dbgfl

call chknam(dbgfl ,40)

write ( , ) ' debug file = ',dbgfl

write ( , )

write ( , ) ' Some input parameters are now echoedto debug file '
write ( , )

open(ldbg, file=dbgfl , status=UNKNOWN)

read (lin,'(a)"', err =98) outfl
call chknam(outfl ,40)

write ( , ) ' output file = ', outfl

read (lin, ,err=98) nx,xmn, Xxsiz

write (, ) ' nx, Xxmn, Xsiz = ',nx,xmn, xsiz

read (lin, ,err=98) ny,ymn,ysiz

write ( , ) ' ny, ymn, ysiz = ',ny,ymn,ysiz

read (lin, ,err=98) nz,zmn, zsiz

write ( , ) ' nz, zmn, zsiz = ',nz,zmn, zsiz

read (lin, ,err=98) nxdis, nydis,nzdis

write ( , ) ' nxdis,nydis,nzdis = ',nxdis,nydis, nzdis

if ((nxdis nydis nzdis).gt.MAXDIS) then
write ( , ) 'ERROR COKIBC: Too many discretization points

write ( , ) ' Increase MAXDIS or lower n[xy]dis"
stop

endif

read (lin, ,err=98) nborhood

write ( , ) ' constant or moving neighborhood: ',nborhood

if (nborhood.It.0.or.nborhood.gt.1) stop ' Neighborhood = 0 ou 1.

read (lin, ,err=98) ndmin,ndmaxp,ndmaxg, ndmaxs

write (, ) ' ndmin,ndmaxp,ndmaxg,ndmaxs = ',ndmin,ndmaxp,ndmaxg,
ndmaxs

read (lin, ,err=98) radiusp,radiusl , radius2

write ( , ) ' primary search radii = ',radiusp ,radiusl  radius2

if (radiusp. It .EPSLON) stop ‘radius must be greater than zero'
radsqdp = radiusp radiusp

sanispl = radiusl / radiusp

sanisp2 = radius2 / radiusp

read (lin, ,err=98) radiuss ,radiusl ,hradius2

write ( , ) ' secondary search radii = ',radiuss ,radiusl ,hradius2

if (radiuss.|t.EPSLON) stop 'radius must be greater than zero'
radsgqds = radiuss radiuss
sanissl radiusl / radiuss
saniss?2 radius2 / radiuss

read (lin, ,err=98) sangl,sang2,sang3
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o

(9]

C

3

write ( , ) ' search anisotropy angles = ',sangl,sang2,sang3

read (lin, ,err=98) ktype
write ( , ) ' kriging type = ', ktype

if (ktype.It.0.or.ktype.gt.2) stop ' ERROR: invalid kriging type '

read (lin, ,err=98) (idrif(i),i=1,9)

write ( , ) ' drift terms = ', (idrif(i),i=1,9)

read (lin, ,err=98) (vmean(i),i=1,nvr)

write ( , ) ' variable means = ',(vmean(i),i=1,nvr)
read (lin, ,err=98) Tmean

write ( , ) ' Tmean: ',Tmean

read (lin, ,err=98) gradh,angh
write ( , ) ' gradh,angh: ',gradh,angh

Read Output File option

Read whether user wants to interpolate log of values for each variable

read (lin, ) noutfile
str="'
read (lin , '(A500)', B\D =4) str

read (lin, ) logoptl,logopt2

if (logoptl.It.0.or.logoptl.gt.1l) stop ' Log option
if (logopt2.1t.0.0or.logopt2.gt.1) stop ' Log option
write ( , )

0 ou 1.
0O ou 1.

Read whether user wants to bound results within a max and a min

+

Now,

read (lin, ) nrestmin, restmin
read (lin, ) nrestmax,restmax
if (nrestmin.ne.0.and.nrestmax.ne.0.and.restmin.gt.restmax) stop

' Restmin < Restmax !
initialize nst value to 1 to flag all missing variograms:
do i=1,nvr
do j=1,nvr
ind =i + (j 1) MAXVAR
nst(ind) = 1
end do
end do

Read as many variograms as are in the parameter file:

read (lin, ,end=4,err=98) i,]j
if (i.gt.MAXVAR. or.j.gt.MAXVAR) then

write ( , ) ' Variogram specified for variable beyond MAXVAR

stop
end if
ind =1 + (j 1) MAXVAR
read (lin, ,err=98) nst(ind),c0(ind)
write (ldbg,103) i,j,nst(ind),c0(ind)
istart = 1 + (ind 1) MAXNST
do i=1,nst(ind)
index = istart + i 1
read (lin, ,err=98) it(index),cc(index),angl(index),
ang2(index),ang3(index)
read (lin, ,err=98) aa(index),aal,aa2
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C

c Fill

C

103

104
105
106
107
108
109
110
111

anisl(index)
anis2(index)

aal / max(aa(index),EPSLON)
aa2 / max(aa(index) ,EPSLON)

if (it(index).eq.4.and.ktype.eq.0)
stop 'No Power model with SK'
end do
write (ldbg,104) (it(istart+i 1), i=1,nst(ind))
write (ldbg,105) (aa(istart+i 1), i=1,nst(ind))
write (ldbg,106) (cc(istart+i 1), i=1,nst(ind))
write (ldbg,107) (angl(istart+i 1), i=1,nst(ind))
write (ldbg,108) (ang2(istart+i 1), i=1,nst(ind))
write (ldbg,109) (ang3(istart+i 1), i=1,nst(ind))
write (ldbg,110) (anisl(istart+i 1),i=1,nst(ind))
write (ldbg,111) (anis2(istart+i 1),i=1,nst(ind))
format (/,' USER input variogram for variables ',i2,' and
' number of structures=',i2,"' nugget effect=',f12.4)
format ( types of structures: ',10i2)
format ( aa values: ',10f12 .4)
format ( cc values: ',10f12 .4)
format (' angl values: ',10f12 .4)
format (' ang2 values: ',10f12.4)
format (' ang3 values: ',10f12 .4)
format ( anisl values: ',10f12 .4)
format (' anis2 values: ',10f12 .4)
go to 3
close (lin)
write ( , )

in cross variograms j=i

do i=1,nvr
do j=1,nvr
indl =i + (j 1) MAXVAR
ind2 = j + (i 1) MAXVAR
if (nst(ind1l).eq. 1l.and.nst(ind2).eq. 1) then
write ( , ) ' Need variogram between variables
stop
end if
if (nst(indl1).eq. 1) then
nst(indl) = nst(ind2)
c0(indl) = c0(ind2)
istartl =1+ (indl 1) MAXNST
istart2 =1+ (ind2 1) MAXNST
do ist=1,nst(indl)
index2 = istart2 + ist 1
index1 = istartl + ist 1
it(indexl) = it(index2)
cc(indexl) = cc(index2)
aa(indexl) = aa(index2)
angl(indexl) = angl(index2)
ang2(indexl) = ang2(index2)
ang3(index1l) = ang3(index2)
anisl(indexl) = anisl(index2)
anis2(index1l) = anis2(index2)
end do
else if (nst(ind2).eq. 1) then
nst(ind2) = nst(indl)
c0(ind2) = c0(ind1)
istartl =1+ (indl 1) MAXNST

|1i21/5

if they have not been explicitly entered:
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C

istart2 =1+ (ind2

do ist=1,nst(ind2)
index2 =
index1 =
it(index2)

cc(index2)
aa(index2)
angl(index2)
ang2(index2)
ang3(index2)
anisl(index2)
anis2(index2)

end do
end if
end do
end do

1) MAXNST
istart2 + ist 1
istartl + ist 1

it(indexl)
cc(indexl)
aa(index1)
angl(index1)
ang2(indexl)
ang3(index1)
anisl(index1l)
anis2(index1)

¢ Rescale the "Tmax/Tmin" parameter to make it equal to the sill

C

c
¢ Has
c

+ + + + + + +

if (nvr.eq.2.0r.it(1).eq.7) then

do i=1MXVARG MAXNST
if (cc(i).gt.0) then
cc(i) = (0.25 LOG(cc(i))) 2
else if (cc(i).It.0) then
write ( , ) ' Warning: nil or negative sill defined
endif
end do
end if
the linear model of coregionalization been used?
linmod = .true.
do i=1,nvr
do j=1,nvr
indl = i + (J 1) MAXVAR
do i2=1,nvr
do j2=1,nvr
ind2 = i2 + (j2 1) MAXVAR
if (nst(indl).ne.nst(ind2)) linmod = .false.
istartl =1 + (indl 1) MAXNST
istart2 = 1 + (ind2 1) MAXNST
do ist=1,nst(indl)
index2 = istart2 + ist 1
index1l = istartl + ist 1
if (it(index1).ne.it(index2).or.
abs(aa(indexl) aa(index2)).gt.EPSLON. or.
abs(angl(indexl) angl(index2)).gt.EPSLON. or.
abs(ang2(index1) ang2(index2)).gt.EPSLON. or.
abs(ang3(index1) ang3(index2)).gt.EPSLON. or.
abs(anisl(index1) anisl(index2)).gt.EPSLON. or.
abs(anis2(index1) anis2(index2)). gt.EPSLON)
linmod = .false.
end do
end do
end do
end do
end do

if (linmod) then
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c
¢ Yes, the linear model of coregionalization has been used, now check
c to ensure positive definiteness:
c
posdef = .true.
do i=1,nvr

do j=1,nvr
if (i.ne.j) then
= i+(i 1) MAXVAR
ji =+ 1) MAXVAR
ij = i+(j 1) MAXVAR
ji = j+(i 1) MAXVAR
istartii 1+ (ii 1) MAXNST
istartjj 1+ (jj 1) MAXNST
istartij 1+ (ij 1) MAXNST
istartji 1+ (ji 1) MAXNST

c
c First check the nugget effects:
c
if (cO(ii).le.0.0.0r.c0(jj).le.0.0.o0r.
+ (cO(ii) cO(jj)).It.(cO(ij) «cO(ji)) ) then
posdef = . false.
write (ldbg,120) i,]
endif
do ist=1,nst(ii)
indexii
indexjj

istartii + ist
istartjj + ist
indexij istartij + ist
indexji istartji + ist 1
if (cc(indexii).le.0.0.0or.cc(indexjj).le.0.0.or.
+ (cc(indexii) cc(indexjj)).It.
+ (cc(indexij) cc(indexji)) ) then
posdef = .false.
write (ldbg,121) ist,i,]j
endif

=

end do
end if
end do
end do
120 format (/,'Positive definiteness violation on nugget effects '
+ ,/," between ',i2,' and ',i2)
121 format (/,'Positive definiteness violation on structure ',i2
+ /," between ',i2,"' and ',i2)

The model is not positive definite:

if (.not.posdef) then

write( , )

write( , ) ' The linear model of coregionalization is NOT'
write( , ) positive definite! This could lead to singular
write( , ) matrices and unestimated points.’

write( , )

write( , ) ' Do you want to proceed? (y/n)'

read ( ,'(a)') str
if(str(1:1).ne.'y'.and.str(1:1).ne.'Y") stop
end if

else

OO0 0000000000000
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endif

write ( ) ' Do you want to proceed? (y/n)’
read ( ,'(a)') str
if(str(l1:1).ne.'y'.and.str(1:1).ne.'Y') stop

¢ No linear model of coregionalization:

c

C write( , )

c write( , ) ' A linear model of coregionalization has NOT'

C write( , ) ' been used!! This could lead to many singular'
c write( , ) matrices and unestimated points.'

C write ( )

c

C

c

¢ Open Surfer files
if (str.ne.'') then

else

endif

if (noutfile.eq.1) then
open (21, file =str , status ='unknown"')
write (21,'(a4)"') 'DSAA'
write (21, ) nx,ny
write (21, ) xmn,xmn+(nx 1) XSiz
write (21, ) ymn,ymn+(ny 1) ysiz
endif
if (noutfile.eq.2) then
open (21, file =str, form ='binary ', status ='new"')
write (21) 'DSBB'
write (21) INT2(nx),INT2(ny)
write (21) dble(xmn),dble (xmn+(nx 1) xsiz),dble(ymn),
dble (ymn+(ny 1) ysiz)
endif

if (noutfile.eq.1l) then
call fopensurf(str)
open (21, file =str , status ='unknown"')
write (21,'(a4)"') 'DSAA'
write (21, ) nx,ny
write (21, ) xmn,xmn+(nx 1) XxSiz
write (21, ) ymn,ymn+(ny 1) ysiz
endif
if (noutfile.eq.2) then
call fopensurf(str)
open (21, file =str, form ='binary ', status ='new"')
write (21) 'DSBB'
write (21) INT2(nx),INT2(ny)
write (21) dble(xmn),dble(xmn+(nx 1) xsiz),dble(ymn),
dble (ymn+(ny 1) ysiz)
endif
if (noutfile.eq.3) then
call fopensurf(str)

open (21, file =str, form ='binary ', status ='unknown"')
surflong = 1112691524
write (21) surflong
surflong = 4

write (21) surflong
surflong = 1

write (21) surflong
surflong = 1145655879
write (21) surflong
surflong = 72

write (21) surflong
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surflong = ny

write (21) surflong

surflong =

write (21) surflong

write (21) dble(xmn),dble (ymn),dble(xsiz),dble(ysiz)

endif
C
¢ Perform some quick error checking:
c
if (ndmin .le.0) stop ' NDMIN too small’
if (ndmaxp.gt.MAXSAM) stop ' NDMAXP too large'’
if (ndmaxg.gt.MAXSAM) stop ' NDMAXG too large'
if (ndmaxs.gt.MAXSAM) stop ' NDMAXS too large'
if ((ndmaxs/2).le.nvr.and.ktype.eq.2) then
write ( ,100) nvr,ndmaxs
100 format ('WARNING: with traditional ordinary cokriging the ',
+ /,'sum of the weights applied to EACH secondary data '
+ /,"is zero. With ndmaxs set low and nvr large the'
+ /,'secondary data will not contribute to the estimate')
endif
c
¢ Check to make sure the data file exists, then either read in the
c data or write an error message and stop:
c

inquire (file =datafl, exist=testfl)
if (.not.testfl) then
write ( , ) 'ERROR data file ',datafl,' does not exist !’

stop
endif
c
¢ The data file exists so open the file and read in the header
¢ information. Initialize the storage that will be used to summarize
¢ the data found in the file:
C
open(lin, file =datafl , status ='OLD")
read (lin,'(a)', err =99) str
read (lin, ,err=99) nvari
do i=1,nvari
read (lin,'()", err=99)
end do
do i=1,nvr
nn(i) =0
av(i) = 0.0
ss(i) = 0.0
end do
c
¢ Some tests on column numbers:
C
if (ixI.gt.nvari.or.iyl.gt.nvari.or.izl.gt.nvari.or.
+ ikod.gt.nvari.or.ivrl (1).gt.nvari) then
write ( , ) 'There are only ',nvari,' columns in input data'
write ( , ) ' vyour specification is out of range'
stop
end if
c
¢ Read all the data until the end of the file:

nd =0
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7 read (lin, ,end=9,err=99) (var(j),j=1,nvari)

nd =nd +1
if (nd.gt.MAXDAT) then
write ( , ) ' ERROR: Exceeded available memory for data
stop
end if
c
c Store data values (all secondary data must be transformed such that
c their mean is the same as the primary variable (if the first type of
¢ ordinary kriging is being used)):
c
vr(nd) = var(ivrl (1))
if (vr(nd).ge.tmin.and.vr(nd). It.tmax) then
nn(l) =nn(l1) + 1
av(l) = av(1l) + vr(nd)
ss(1) = ss(1) + vr(nd) vr(nd)
endif
if (logoptl.eq.1l) then
if (vr(nd).gt.0.0) then
vr(nd) = log(vr(nd))
else
vr(nd) = 9999999
write ( , )' Logarithmic Interpolation cannot be used for ',
+ 'values <=0: is this value a no data flag?'
endif
end if
if (nvr.ge.2) then
secl(nd) = var(ivrl(2))
if (secl(nd).ge.tmin.and.secl(nd). It.tmax) then
nn(2) = nn(2) +1
av(2) = av(2) + secl(nd)
ss(2) = ss(2) + secl(nd) secl(nd)
endif
if (logopt2.eq.l) then
if (secl(nd).gt.0.0) then
secl(nd) = log(secl(nd))
else
secl(nd) = 9999999
write ( , )' Logarithmic Interpolation cannot be used for
+ 'values <=0: is this value a no data flag?'
endif
end if
end if
c
c Assign the coordinate location of this data:
c
if (ixl.le.0) then
x(nd) = xmn
else
x(nd) = var(ixl)
endif
if (iyl.le.0) then
y(nd) = ymn
else
y(nd) = var(iyl)
endif

if (izl.le.0) then
z(nd) = zmn
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else
z(nd) = var(izl)
endif
if (ikod.le.0) then
kod(nd) = 0
else
kod(nd) = var(ikod)
endif
go to 7
9 close (lin)
C
¢ Compute the averages and variances as an error check for the user:
c
do i=1,nvr
av(i) = av(i) / max( real (nn(i)),1.0)
ss(i) =(ss(i) / max( real (nn(i)),1.0)) av(i) av(i)
write ( , ) 'COKTBC Variable ',i,' in data file : ',ivrl(i)
write (, ) Number = ',nn(i)
write ( , ) ' Average = ',av(i)
write ( , ) Variance = ',ss(i)
end do
C
¢ Create arrays for no flow screen segments
c
call scrarr(nd,x,y,kod,vr,nsc)
call screens(nd,x,y,kod,vr,nsc,xsl,ysl,6xs2,ys2)
write (113, ) 'Nb screen segments', nsc
write (113, ) ' i xsl ysl XS2 ys2'
do i=1,nsc
write (113,'(i14,4f10.2)") i,xs1(i),ys1(i),xs2(i),ys2(i)
enddo
c
¢ Add points along boundary lines
C
write (114, ) 'Nb points', nd
csiz = (xsiz + ysiz) |/ 2.
call bdarr(nd,x,y,kod, csiz ,newnd)
nd = newnd
write (114, ) 'New nb points', nd
write (114, ) ' i X y z ',
+ 'vr secl kod"'
call bdpts(nd,x,y,z,vr,secl , kod, csiz)
do i=1,nd
write (114,'(i4,5f10.2,i8)") i,x(i),y(i),z(i),vr(i),secl(i),
+ kod (i)
enddo
c
¢ Apply the correction factor for the constant flux data : Q > Delta h
C
call fluxcorr(nd,x,y,vr,kod, csiz ,Tmean)
c

(9]

Add 2 fictive x & y coordinates along prescribed flux boundary lines

call ficcoord(nd,x,y,kod, csiz ,ddx,ddy)

write (115, ) ' i X y vr
+ 'secl kod ddx ddy’

do i=1,nd

write (115,'(i4,4f10.2,i8,2f10.2)") i ,x(i),y(i),vr(i),secl(i),
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+ kod(i),ddx(i),ddy(i)
enddo
c
¢ Check For duplicate points
C
call remdup(nd,x,y,z,vr,secl h kod,ddx,ddy, newnd)
write ( , ) nd,newnd
write ( , )'Duplicate X,Y Pairs removed =',nd newnd
if (newnd.It.nd) nd = newnd
write (1151, ) ' i X y vr ',
+ 'secl kod ddx ddy'
do i=1,nd
write (1151,'(i4,4f10.2,i8,2f10.2)") i,x(i),y(i),vr(i),secl(i),
+ kod(i),ddx(i),ddy(i)
enddo
C
¢ Open output files and write headers:
C

open (lout, file =outfl , status =UNKNOWN')
write (lout,101) str
101 format ('COKTBC with:',a40,/,'2"',/," 'estimate',/,
+ ‘estimation variance ')
write (ldbg,102) str
102 format (/, 'DEBUGGING COKTBC with: ', a40)

return
c
¢ Error in an Input File Somewhere:
c

98 stop 'ERROR in parameter file !’
99 stop 'ERROR in data file !’
end

subroutine coktbc

CoKriging of a 3 D Rectangular Grid

This subroutine estimates point or block values of one variable by
ordinary cokriging using up to MAXVAR variables.

Original: A.J. Desbarats 1984
Head/Log(T) + BC Cokriging Add On: J.P. Delhomme & P. Le Cointe 2006

OO0OO0O0O0O0O0O0O00O000OO00O0

include 'coktbc.inc'
parameter (PMX=999.)

real distp (MAXSAM) , dists (MAXSAM)

real 8 cbb

real (4), allocatable :: krigout(:)

integer nump (MAXSAM) , nums (MAXSAM) , vars (MAXSAM) , whatest
real 8 rottemp , binkval

integer 4 dataid, datalen

logical fircon

data fircon/.true./
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integer (4) :: nalloc
nalloc = nx ny

allocate (krigout(nalloc))
datamax = 1.0e 39
datamin = 1.0e29

C
c Set up the search and covariance rotation matrices:
c
covmax = c0(1)
do is=1,nst(1)
call setrot(angl(is),ang2(is),ang3(is),anisl(is),anis2(is),
+ is ,MAXROT, rotmat)
if (it(is).eq.4) then
covmax = covmax + PMX
else if (it(is).eq.7) then
ct = cc(is) (gradh aa(is) /1 4.) 2
covmax = covmax + 20. ct
else if (it(is).eq.8) then
covmax = covmax + cc(is) gradh
else
covmax = covmax + cc(is)
endif
end do
isrot = MAXNST + 1
if (whatest.eq.0) then
call setrot(sangl,sang2,sang3,sanispl,h sanisp2,isrot ,MAXROT,
+ rotmat)
else
call setrot(sangl,sang2,sang3,sanissl b saniss2 ,isrot ,MAXROT,
+ rotmat)
endif
c

¢ Finish computing the rescaling factor and stop if unacceptable:
C
if (radsqdp.It.1.0) then
resc = 2.0 radiusp / max(covmax,0.0001)

else
resc =(4.0 radsqdp)/ max(covmax,0.0001)
endif
if (resc.le.0.0) then
write ( , ) 'ERROR KT3D: The rescaling value is wrong ',resc
write ( , ) ' Maximum covariance: ',covmax
write ( , ) ' search radius: ' radiusp
stop
endif
resc = 1.0 / resc
c
¢ Set up for super block searching:
C

nsec = nvr 1
write ( , ) 'Setting up super block search strategy'
call setsupr(nx,xmn, xsiz ,ny,ymn,ysiz ,nz,zmn, zsiz ,nd,x,y, z,

+ vr,ddx,ddy,tmp, nsec, secl ,MAXSBX,MAXSBY,MAXSBZ, nisb ,
+ NXSuUp ,XmMNsup, Xsizsup ,nysup ,ymnsup, ysizsup ,nzsup,
+ zmnsup, zsizsup)

write (116, ) ' i X y z "
+ 'vr secl ddx ddy’

do i=1,(nd)
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O 000

OO0 000

(9]

O 000

write (116,'(i4,7f10.2)") i,x(i),y(i),z(i),vr(i),secl(i),

+ ddx(i),ddy(i)

enddo

call picksup(nxsup,Xxsizsup ,nysup,ysizsup,nzsup, zsizsup ,
+ isrot ,MAXROT, rotmat ,radsqdp, nsbtosr ,ixsbtosr,
+ iysbtosr ,izsbtosr)

Compute the number of drift terms, if SK is being considered
then we will set all the drift terms off and mdt to 0):

mdt = 1
do i=1,9
if (ktype.eq.0.or.ktype.eq.1) idrif(i) =0
if (idrif(i).It.0.or.idrif(i).gt.1) then
write (, ) 'ERROR KT3D: invalid drift term',idrif(i)
stop
endif
mdt = mdt + idrif (i)
end do
if (ktype.eq.0) mdt = 0
if (ktype.eq.1) mdt =0

Set up the discretization points per block. Figure out how many
are needed, the spacing, and fill the xdb, ydb and zdb arrays with
the offsets relative to the block center (this only gets done once):

ndb = nxdis nydis nzdis

xdis = xsiz [/ max( real (nxdis),1.0)
ydis = ysiz |/ max( real (nydis),1.0)
zdis = zsiz [/ max(real (nzdis),1.0)
xloc = 0.5 (xsiz+xdis)

i 0
do ix =1,nxdis
xloc = xloc + xdis
yloc = 0.5 (ysiz+ydis)
do iy=1,nydis
yloc = yloc + ydis
zloc = 0.5 (zsiz+zdis)
do iz=1,nzdis
zloc = zloc + zdis

i = i+l
xdb(i) = xloc + 0.5 xsiz
ydb(i) = yloc + 0.5 ysiz
zdb(i) = zloc + 0.5 zsiz
end do
end do

end do
Initialize accumulators:
uk

vk
nk

.0
.0

I mnn
[eNeoNe)

Calculate Block Covariance for head and eventually for transmissivity.
Check for point kriging.

call cova3(xdb(1),ydb(1),zdb(1),xdb(1),ydb(1),zdb(1),1,nst,MAXNST,
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+ c0,it,cc,aa,gradh,angh,1 ,MAXROT, rotmat ,cmax, cova)
unbias = dble(cova)
if (whatest.ne.0) call cova3(xdb(1l),ydb(1),zdb(1),xdb(1),ydb(1),
+ zdb(1),4,nst ,MAXNST, cO, it ,cc,aa, gradh,
+ angh,1 ,MAXROT, rotmat ,cmax, cova)
if (ndb.le.1) then
cbb = cova
else
cbb = 0.0
do i=1,ndb
do j=1,ndb
if (whatest.eq.0) then
call cova3(xdb(i),ydb(i),zdb(i),xdb(j),ydb(j),
+ zdb(j),1,nst ,MAXNST, cO,it,cc,aa,gradh,
+ angh,1 ,MAXROT, rotmat ,cmax, cova)
else
call cova3(xdb(i),ydb(i),zdb(i),xdb(j),ydb(j),
+ zdb(j),4,nst ,MAXNST, cO, it ,cc,aa,gradh,
+ angh,1 ,MAXROT, rotmat ,cmax, cova)
endif
if (i.eq.j) cova = cova c0(1)
cbb = cbb + cova
end do
end do
cbb = cbb/ real (ndb ndb)
endif
write (ldbg, ) 'Block average covariance ',chb
C
¢ Mean values of the drift functions:
c
do i=1,9
bv(i) = 0.0
end do
xloc = 0.5 (xsiz+xdis)
[ =0
do i=1,ndb
bv(1l) = bv(1l) + xdb(i)
bv(2) = bv(2) + ydb(i)
bv(3) = bv(3) + zdb(i)
bv(4) = bv(4) + xdb(i) xdb(i)
bv(5) = bv(5) + ydb(i) vydb(i)
bv(6) = bv(6) + zdb(i) zdb(i)
bv(7) = bv(7) + xdb(i) ydb(i)
bv(8) = bv(8) + xdb(i) zdb(i)
bv(9) = bv(9) + ydb(i) zdb(i)
end do
do i=1,9
bv(i) = (bv(i) / real (ndb)) resc
end do
c

¢ MAIN LOOP OVER ALL THE BLOCKS IN THE GRID:

C

ncells =0

do 4 iz=1,nz

zloc = zmn + (iz 1) zsiz
do 4 iy=1,ny

yloc = ymn + (iy 1) ysiz
do 4 ix=1,nx



79

(9]

(9]

(9]

(9]

C

xloc = xmn + (ix 1) xsiz

Find the nearest head data samples:

+ + + +

call

srchsupr(xloc ,yloc, zloc ,radsqdp,isrot ,MAXROT, rotmat , nsbtosr ,
ixsbtosr ,iysbtosr ,izsbtosr ,noct,nd,x,y,z,ddx,ddy,
tmp, nisb , nxsup ,xmnsup, xsizsup , nysup ,ymnsup, ysizsup ,
nzsup,zmnsup, zsizsup ,nsc,xsl,ysl, xs2,ys2,nclose,
close ,infoct)

Load the nearest head data in xa,ya,za,vra,ddxa,ddya:

np =0
na =20
do i=1,nclose

if (np.eqg.ndmaxp.and.nborhood.ne.0) go to 32
ind = int( close(i)+0.5)
if ((vr(ind).ge.tmin).and.(vr(ind). It.tmax).

and.(np.It.ndmaxp.or.nborhood.eq.0)) then
np=np +1
na=na+1
xa(na) = x(ind) xloc + 0.5 xsiz
ya(na) = y(ind) yloc + 0.5 ysiz
za(na) = z(ind) zloc + 0.5 zsiz
vra(na) = vr(ind)
ddxa(na) = 0.0
ddya(na) = 0.0
iva(na) =1
end if
end do

Test number of data samples found:

Test

999

+ + + +

if (np.It.ndmin) then

est = UNEST
estv = UNEST
go to 4

end if

if there are enough data samples to estimate all drift terms:

if (np.ge.l.and.np.le.mdt) then

if (fircon) then
write (ldbg,999)

fircon = .false.
end if
est = UNEST
estv = UNEST
go to 4

end if
format (' Encountered a location where there were too fewdata ',/,

to estimate all of the drift terms but there would be',/,
' enough data for OK or SK. KT3D currently leaves ',/,
' these locations unestimated.',/,
' This message is only written once the first time."',/)

¢ Find the nearest "gradient" samples:
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c
call srchsupr2(xloc,yloc,zloc ,radsqdp,isrot ,MAXROT, rotmat,
+ nsbtosr ,ixsbtosr ,iysbtosr ,izsbtosr ,noct,nd,x,y,z,
+ ddx,ddy,tmp, nisb , nxsup ,Xxmnsup, Xxsizsup , nysup,
+ ymnsup, ysizsup ,nzsup ,zmnsup, zsizsup ,nsc,xsl,ysl,
+ xs2 ,ys2 ,nclose2 ,close2 ,infoct2)
C
c Load the nearest "gradient" data in xa,ya,za,vra,ddxa,ddya:
c
ng =0
do i=1,nclose2
if (ng.eq.ndmaxg.and.nborhood.ne.0)go to 32
ind = int(close2(i)+0.5)
if ((vr(ind).ge.tmin).and.(vr(ind). It.tmax).
+ and.(ng.It.ndmaxg.or.nborhood.eq.0)) then
ng =ng +1
na=na+1
xa(na) = x(ind) xloc + 0.5 xsiz
ya(na) = y(ind) yloc + 0.5 ysiz
za(na) = z(ind) zloc + 0.5 zsiz
vra(na) = vr(ind)
ddxa(na) = ddx(ind)
ddya(na) = ddy(ind)
iva(na) =1
if (vr(ind).ne.0) then
ng =ng +1
na=na+1
xa(na) = x(ind) xloc + 0.5 xsiz
ya(na) = y(ind) yloc + 0.5 ysiz
za(na) = z(ind) zloc + 0.5 zsiz
vra(na) =0
ddxa(na) = ddy(ind)
ddya(na) = ddx(ind)
iva(na) =1
end if
end if
end do
C
¢ Find the nearest samples:
c
call srchsupr3(xloc,yloc,zloc ,radsqdp,isrot ,MAXROT, rotmat, nsbtosr,
+ ixsbtosr ,iysbtosr ,izsbtosr ,noct,nd,x,y,z,tmp, nisb ,
+ NXsup ,XmMNsup, Xsizsup ,nysup ,ymnsup, ysizsup , nzsup,
+ zmnsup, zsizsup ,nclose3 ,close3 ,infoct3)
c

(9]

Load secondary data until maximum is met:

do i=1,nclose3
if (ns.eqg.ndmaxs.and.nborhood.ne.0)go to 32
ind = int(close3(i)+0.5)
if ((secl(ind).ge.tmin).and.(secl(ind).It.tmax).
+ and.(nvr.ge.2).and.(ns.It.ndmaxs.or.nborhood.eq.0)) then
ns =ns +1
na =na+ 1

xa(na) = x(ind) xloc + 0.5 xsiz
ya(na) = y(ind) yloc + 0.5 ysiz
za(na) = z(ind) zloc + 0.5 zsiz
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o

(9]

32

+

+

vra(na) = secl(ind)
ivar =2
if (ktype.ne.2)
vra(na) = vra(na) vmean(ivar) + vmean(1)
ddxa(na) = 0.0
ddya(na) = 0.0
iva(na) =2
end if
end do
continue
write (119, ) i X y z ",
‘vr ddx ddy'
do i=1,na
write (119,'(i4,6f10.2)") i,xa(i),ya(i),za(i),vra(i)

enddo

ddxa(i),ddya(i)

Solve the Kriging System:

Set

if (ktype.eq.0) neq = na
if (ktype.eq.1) neq = na + 1
if (ktype.eq.2) neq = na + mdt + nvr 1
if ((neq na).gt.na.or.na.lt.ndmin) then
write (lout,100) UNEST,UNEST
go to 4
end if
up kriging matrices:
do i=1,neq neq
a(i) = 0.0
end do
do i=1,neq
r(i) = 0.0
end do
do j=1,na
do i=1,]j
ind = iva(i) + (iva(j) 1) MAXVAR

if ((i.gt.np).and.(i.le.nptng).and.(j.gt.np).

and.(j.le.nptng)) then

xil = xa(i) ddxa(i)

Xi2 = xa(i) + ddxa(i)

yil = ya(i) ddya(i)

yi2 = ya(i) + ddya(i)

Xjl = xa(j) ddxa(j)

Xj2 = xa(j) + ddxa(j)

yjl = vya(j) ddya(]j)

yj2 = ya(j) + ddya(j)

call cova3(xil,yil,za(i),xjl,yjl,za(j),ind,
nst ,MAXNST, cO, it ,cc,aa,gradh,angh,1,
MAXROT, rotmat ,cmax, covl)

call cova3(xi2,yi2,za(i),xjl,yjl,za(j),ind,
nst ,MAXNST, cO, it ,cc,aa,gradh,angh,1,
MAXROT, rotmat ,cmax, cov2)

call cova3(xil,yil,za(i),xj2,yj2,za(j),ind,
nst ,MAXNST, cO, it ,cc,aa, gradh,angh,1,
MAXROT, rotmat ,cmax, cov3)

call cova3(xi2,yi2,za(i),xj2,yj2,za(j),ind,
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end

XX

yy

zz
C

else

else

end if
a(neq (i 1)+j)
a(neq (j 1)+i)

do

xa(])
ya(j)
za(j)

nst ,MAXNST, cO, it ,cc,aa,gradh,angh,1,

MAXROT, rotmat ,cmax, cov4)
cova = (covl cov2) (cov3 cov4)

if ((i.le.np.and.j.gt.np.and.j.le.nptng).or.

(i.gt.np.and.i.le.nptng.and.j.gt.np+ng))

Xjl = xa(j) ddxa(j)
Xj2 = xa(j) + ddxa(j)
yil = vya(j) ddya(j)
yj2 = ya(j) + ddya(j)

call cova3(xa(i),ya(i),za(i),xjl,yjl,za(j),
ind , nst ,MAXNST, cO, it ,cc,aa, gradh,
angh,1 ,MAXROT, rotmat ,cmax, covl)
call cova3(xa(i),ya(i),za(i),xj2,yj2,za(j),
ind , nst ,MAXNST, cO, it ,cc,aa,gradh,
angh,1 ,MAXROT, rotmat ,cmax, cov2)
cova = covl cov2

call cova3(xa(i),ya(i),za(i),xa(j),ya(j),
za(j),ind,nst ,MAXNST, cO,it,cc,aa,

gradh,angh,1 ,MAXROT, rotmat ,cmax, cova)

dble (cova)
dble (cova)

¢ Right hand side covariance if est. variable = head:

C

if (whatest.eq.0) then

iv

=1

ind = iv + (iva(j) 1) MAXVAR
if (ndb.le.1) then
if ((j.le.np).or.(j.gt.nptng)) then

else

call cova3(xx,yy,zz,xdb(1),ydb(1),zdb(1),ind,

nst ,MAXNST, cO, it ,cc,aa,gradh,angh,1,

MAXROT, rotmat ,cmax, cova)

cb = cova
else
Xil = XX ddxa(j)
Xi2 = xx + ddxa(j)
yil =yy  ddya(j)
yi2 =yy + ddya(j)
call cova3(xil,yil,zz,xdb(1),ydb(1),zdb(1),ind,
nst ,MAXNST, c0, it ,cc,aa,gradh,angh,1,
MAXROT, rotmat ,cmax, chl)
call cova3(xi2,yi2,zz,xdb(1),ydb(1),zdb(1),ind,
nst ,MAXNST, cO, it ,cc,aa,gradh,angh,1,
MAXROT, rotmat ,cmax, cb2)
cb = cb1 ch2
end if
cb =0.0
do j1=1,ndb

if ((j.le.np).or.(j.gt.np+tng)) then
call cova3(xx,yy,zz,xdb(jl),ydb(jl),
zdb(j1),ind, nst ,MAXNST, cO, it ,cc,aa,

then
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end do

gradh ,angh,1 ,MAXROT, rotmat , cmax, cova)

else
Xil = XX ddxa(j)
Xi2 = xx + ddxa(j)
yil =yy  ddya(j)
yi2 =yy + ddya(j)

call cova3(xil,yil,zz,xdb(1),ydb(1),
zdb(1),ind, nst ,MAXNST, cO, it ,cc,aa,
gradh ,angh,1 ,MAXROT, rotmat ,cmax, covl)
call cova3(xi2,yi2,zz,xdb(1),ydb(1),
zdb(1),ind, nst ,MAXNST, cO, it ,cc,aa,
gradh ,angh,1 ,MAXROT, rotmat ,cmax, cov2)
cova = covl cov2
end if
dx = xx xdb(j1)
dy =yy ydb(jl)
dz = zz zdb(j1)
if ((dx dx+dy dy+dz dz).It.EPSLON) then
cb = cb + cova cO(ind)
else
cb = cb + cova
end if

cb = cb / real (ndb)

= dble (cb)

¢ Right hand side covariance if est. variable = transmittivity:

endif
r(j)
c
C
else
iv =

2

ind = iv + (iva(j) 1) MAXVAR
if (ndb.le.1) then

else

if ((j.

else

end if

cb =

do jl1=

le.np).or.(j.gt.nptng)) then

call cova3(xdb(1),ydb(1),zdb(1),xx,yy,zz,ind,
nst ,MAXNST, cO, it ,cc,aa,gradh,angh,1,
MAXROT, rotmat ,cmax, cova)

cb = cova

xil = xx ddxa(j)
Xi2 = xx + ddxa(j)
yil =yy  ddya(j)
yi2z =yy + ddya(j)

call cova3(xdb(1),ydb(1),zdb(1),xil1,yil,zz,ind,
nst ,MAXNST, cO, it ,cc,aa, gradh,angh,1,
MAXROT, rotmat ,cmax, cbl)

call cova3(xdb(1),ydb(1),zdb(1),xi2,yi2,zz,ind,
nst ,MAXNST, c0, it ,cc,aa,gradh,angh,1,
MAXROT, rotmat ,cmax, cb2)

cb = cbl cb2

0.0
1,ndb
if ((j.le.np).or.(j.gt.np+tng)) then
call cova3(xdb(jl),ydb(j1),zdb(j1),
XX,YY,zz ,ind,nst ,MAXNST, cO, it ,cc,aa,
gradh ,angh,1 ,MAXROT, rotmat ,cmax, cova)
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else
Xil = xx ddxa(j)
Xi2 = xx + ddxa(j)
yil =yy  ddya(j)
yi2 =yy + ddya(j)
call cova3(xdb(1),ydb(1),zdb(1),xil,
+ yil,zz ,ind, nst ,MAXNST, cO,it,cc,aa,
+ gradh ,angh,1 ,MAXROT, rotmat ,cmax, covl)
call cova3(xdb(1),ydb(1),zdb(1),xi2,
+ yi2 ,zz,ind,nst ,MAXNST, c0O, it ,cc,aa,
+ gradh ,angh,1 ,MAXROT, rotmat ,cmax, cov2)
cova = covl cov2
end if
dx = xx xdb(j1)
dy =yy ydb(jl)

dz = zz zdb(j1)
if ((dx dx+tdy dy+dz dz).It.EPSLON) then
cb = cb + cova cO0(ind)

else
cb = cb + cova
end if
end do
cb = cb / real (ndb)
endif
r(j) = dble(cbh)
end if
end do
C
c Set up for either simple or ordinary cokriging:
c
if (ktype.eq.1l) then
do i=1,na
a(neq (i 1+na+l) = dble(unbias)
a(neq nati) = dble(unbias)
end do
else if (ktype.eq.2) then
do i=1,mdt
lim = na + i
do k=1,np
a(neq (lim 1)+k) = dble(unbias)
a(neq (k 1)+lim) = dble(unbias)
end do
if (whatest.eq.0) r(lim) = dble(unbias)
end do
do j=1,(nvr 1)
lim2 = na + mdt + |
do k=(np+ng),na
a(neq (lim2 21)+k) = dble(unbias)
a(neq (k 1)+lim2) = dble(unbias)
end do
if (whatest.ne.0) r(lim2) = dble(unbias)
end do
endif
C
¢ Add the additional unbiasedness constraints:
c

if (ktype.eq.2) then
im=na+ 1
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c
c First drift term (linear in "x"):
c
if (idrif(1).eq.1) then
im=im+1
do k=1,np
a(neq (im 1)+k) = dble(xa(k) resc)
a(neq (k 1)+im) = dble(xa(k) resc)
end do
do k=(np+1),(np+ng)
xkl = xa(k) ddxa(k)
xk2 = xa(k) + ddxa(k)
a(neq (im 1)+k) = dble((xkl xk2) resc)
a(neq (k 1)+im) = dble((xkl xk2) resc)
end do
if (whatest.eq.0) r(im) = dble(bv(1))
endif
c
c Second drift term (linear in "y"):
c
if (idrif(2).eq.1) then
im=im+1
do k=1,np
a(neq (im 1)+k) = dble(ya(k) resc)
a(neq (k 1)+im) = dble(ya(k) resc)
end do
do k=(np+1),(np+ng)
yk1l = ya(k) ddya (k)
yk2 = ya(k) + ddya(k)
a(neq (im 21)+k) = dble((ykl yk2) resc)
a(neq (k 1+im) = dble((ykl yk2) resc)
end do
if (whatest.eq.0) r(im) = dble(bv(2))
endif
c
¢ Third drift term (linear in "z"):
C
if (idrif(3).eq.1) then
im=im+1
do k=1,np
a(neq (im 21)+k) = dble(za(k) resc)
a(neq (k 1)+im) = dble(za(k) resc)
end do
if (whatest.eq.0) r(im) = dble(bv(3))
endif
c
¢ Fourth drift term (quadratic in "x"):
C
if (idrif(4).eq.1) then
im=im+1
do k=1,np

dble (xa(k) xa(k) resc)
dble (xa(k) xa(k) resc)

a(neq (im 1)+k)
a(neq (k 1)+im)
end do
do k=(np+1),(np+ng)
xk1l = xa(k) ddxa (k)
xk2 = xa(k) + ddxa(k)
a(neq (im 1)+k) = dble ((xkl xk1 xk2 xk2)

resc)
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a(neq (k 1)+im) = dble((xk1 xkl1 xk2 xk2) resc)
end do
if (whatest.eq.0) r(im) = dble(bv(4))

endif
c
¢ Fifth drift term (quadratic in "y"):
c
if (idrif(5).eq.1) then
im=im+1
do k=1,np
a(neq (im 1)+k) = dble(ya(k) vya(k) resc)
a(neq (k 1)+im) = dble(ya(k) vya(k) resc)
end do
do k=(np+1),(np+ng)
ykl = ya(k) ddya(k)
yk2 = ya(k) + ddya(k)
a(neq (im 1)+k) = dble((ykl ykl yk2 yk2) resc)
a(neq (k 1)+im) = dble((ykl vykl yk2 yk2) resc)
end do
if (whatest.eq.0) r(im) = dble(bv(5))
endif
c
¢ Sixth drift term (quadratic in "z"):
c
if (idrif(6).eq.1) then
im=im+1
do k=1,np
a(neq (im 1)+k) = dble(za(k) za(k) resc)
a(neq (k 1)+im) = dble(za(k) za(k) resc)
end do
if (whatest.eq.0) r(im) = dble(bv(6))
endif
c
¢ Seventh drift term (quadratic in "xy"):
c
if (idrif(7).eq.1) then
im=im+1
do k=1,np
a(neq (im 1)+k) = dble(xa(k) vya(k) resc)
a(neq (k 1)+im) = dble(xa(k) vya(k) resc)
end do
do k=(np+1),(np+ng)
xkl = xa(k) ddxa (k)
xk2 = xa(k) + ddxa(k)
yk1 = ya(k) ddya(k)
yk2 = ya(k) + ddya(k)
a(neq (im 1)+k) = dble ((xkl1 ykl xk2 yk2) resc)
a(neq (k 1)+im) = dble((xkl ykl1l xk2 yk2) resc)
end do
if (whatest.eq.0) r(im) = dble(bv (7))
endif
c
¢ Eighth drift term (quadratic in "xz"):
c
if (idrif(8).eq.1) then
im=im+1
do k=1,np

a(neq (im 1)+k) = dble(xa(k) za(k) resc)
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a(neq (k 1)+im) = dble(xa(k) za(k) resc)
end do
do k=(np+1),(np+ng)
xkl = xa(k) ddxa (k)
xk2 = xa(k) + ddxa(k)
a(neq (im 1)+k) = dble((xk1 xk2) za(k) resc)
a(neq (k 1)+im) = dble ((xkl1 xk2) za(k) resc)
end do
if (whatest.eq.0) r(im) = dble(bv(8))

endif
C
¢ Ninth drift term (quadratic in "yz"):
c
if (idrif(9).eq.1) then
im=im+1
do k=1,np
a(neq (im 1)+k) = dble(ya(k) za(k) resc)
a(neq (k 1)+im) = dble(ya(k) za(k) resc)
end do
do k=(np+1),(np+ng)
ykl = ya(k) ddya (k)
yk2 = ya(k) + ddya(k)
a(neq (im 1)+k) = dble((ykl1 yk2) za(k) resc)
a(neq (k 1)+im) = dble((ykl yk2) za(k) resc)
end do
if (whatest.eq.0) r(im) = dble(bv(9))
endif
end if
c
¢ Copy the right hand side to compute the kriging variance later:
c
do k=1,neq
rr(k) = r(k)
end do
c
¢ Write out the kriging Matrix if Seriously Debugging:
C
if (idbg.ge.3) then
write (ldbg, ) '
write (ldbg, )
write (ldbg, )
write (ldbg, ) 'Estimating node index : ',ix,iy,iz
is =1 neq
do i=1,neq
is =1+ (i 1) neq
ie = is + neq 1
write (Idbg,103) i,r(i),(a(j),j=is,ie)
103 format (' r(',i3,") =",f7r.4," a= ',9(10f7.4))
end do
endif
c
¢ Solve the kriging system:
c
call ktsol(neq,1,1,a,r,s,ising ,MAXEQ)
C
c Write a warning if the matrix is singular:
c

if (ising.ne.0) then
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write (ldbg, ) 'WARNING COKTBC: singular matrix'

write (ldbg, ) for block ',ix ,iy,iz
write (lout,100) UNEST,UNEST
go to 4
endif
C
¢ Write the kriging weights and data if requested:
c
if (idbg.ge.2) then
write (ldbg, )
write (ldbg, ) 'BOX : ',ix,iy,iz,' at ',xloc,yloc,zloc
write (117,'(2f12.2)"') xloc,yloc
write (ldbg, ) '
if (ktype.eq.1) then
write (ldbg, ) ' Lagrange multiplier: ',s(na+1)
else if (ktype.ge.2) then
write (Idbg, ) ' Lagrange multiplier: ',s(na+1)
write (ldbg, ) ' Lagrange multiplier: ',s(natmdt+1)
endif
write (ldbg, ) ' np, ng, ns and na : ', np, ng, nNs, na
write (ldbg, ) ' BOX EST: x, y, z, vr, ddx, ddy, wt '
do i=1,na
write (ldbg,'(6f9.2,f12.3)") xa(i),ya(i),za(i),vra(i),
+ ddxa(i),ddya(i),s(i)
end do
endif
C
¢ Compute the estimate and the kriging variance:
C
sumw = 0.0
ook = 0.0
ookv = cbb
do i=1,neq
if (i.le.na) then
ookv = ookv real (s(i)) rr(i)
sumw = sumw + real (s(i))
ook = ook + real (s(i)) vra(i)
else
ookv = ookv real (s(i)) rr(i)
endif
end do
c
¢ Add mean if SK:
C
ook = ook + (1.0 sumw) vmean(1)
c
¢ Write results:
C
ncells = ncells + 1
C if ((whatest.eq.0).and.(logoptl.eq.1)) ook = exp(ook + 0.5 ookv
C + s(na+1))
c if ((whatest.eq.1l).and.(logopt2.eq.1)) ook = exp(ook + 0.5 ookv
c + s (na+tmdt+1))

if ((whatest.eq.0).and.(logoptl.eq.1l)) ook = ook / log(10.)
if ((whatest.eq.1l).and.(logopt2.eq.1)) ook = ook / log(10.)
if (ook.gt.restmax.and.nrestmax.ne.0) ook = restmax

if (ook.It.restmin.and.nrestmin.ne.0) ook = restmin
krigout(ncells) = ook



if (ook.gt.datamax) datamax = ook
if (ook.It.datamin) datamin = ook
if (whatest.eq.0) then
write (lout,100) ook, ookv
else
write (lout,1000) ook, ookv
endif
100 format (f12.4,1x,f12.4)
1000 format (f21.13,1x,f12.4)

c
¢ Accumulate statistics of kriged blocks:
c
nk = nk + 1
uk = uk + ook
vk = vk + ook o0k
if (idbg.ge.3) write (Idbg, ) ' estimate, variance ',ook,ookv
c
¢ END OF MAIN LOOP OVER ALL THE BLOCKS:
c
4 continue
c
c I/O Files Format Issues
c

if (noutfile.eq.1) then
write (21, ) datamin,datamax
if (datamin.[t.0.01) then
write (21,322)(krigout(iii),iii=1,ncells)
else
write (21,323)(krigout(iii),iii=1,ncells)
endif
else if (noutfile.eq.2) then
write (21) dble(datamin), dble(datamax)
write (21)(krigout(iii),iii=1,ncells)
else if (noutfile.eq.3) then
write (21) dble(datamin),dble (datamax)
rottemp = 0.0
blnkval = 1.70141e38
dataid = 1096040772
datalen = nx ny 8
write (21)rottemp, blnkval ,dataid , datalen
write (21)(dble(krigout(iii)),iii=1,ncells)
end if
322 format (<NXel8.7)
323 format (<NXf18.5)
deallocate (krigout)
c
¢ Write statistics of kriged values:
C
if (nk.gt.0.and.idbg.gt.0) then
vk = (vk uk uk/real (nk))/ real (nk)
uk = uk/ real (nk)

write (ldbg, )

write (ldbg, ) 'Estimated ',nk,' blocks
write (ldbg, ) ' average ',uk

write (ldbg, ) ' wvariance ',vk

write ( , )

write ( , ) "Estimated ',nk,' blocks
write ( , ) ' average ',uk
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O0O0O0O0O0000O0

write ( , ) ' wvariance ',vk
endif
return
end

subroutine makepar

Write a Parameter File
lun = 99
open (lun, file ='coktbc.par', status =UNKNOVWN')
write (lun,10)
10 format (' Parameters for COKTBC',/,
+ ' II/I/I
+ 'START OF PARAMETERS: ')

write (lun,11)

11 format ('somedata. dat ,
+ ' file with data')
write (lun,12)

12 format ('2 ",
+ ' number of variables primary+other")
write (lun,122)

122 format ('O ',
+ ' estimated variable : O=head, l=transmittivity ')
write (lun,13)

13 format ('1 2 0 3 4 5 '

+ ' columns for X,Y,Z and variables ')
write (lun,14)
14 format (' 9e+6 le+29 ",
+ ' trimming limits ")

write (lun,15)

15 format ('O ',
+ ' co located cokriging? (0=no, l=yes)"')
write (lun,16)

16 format ('somedata.dat ',
+ ' file with gridded covariate ')
write (lun,17)

17 format ('4 ',
+ ' column for covariate ')
write (lun,18)

18 format ('3 ',
+ ' debugging level: 0,1,2,3")
write (lun,19)

19 format ('coktbc.dbg ",
+ ' file for debugging output')
write (lun,20)

20 format ('coktbc.out ',
+ ' file for output’)
write (lun,21)

21 format ('51 0.0 10.0 ',
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+ ' nx,xmn, xsiz ")
write (lun,22)
22  format ('51 0.0 10.0 ',
+ " ny,ymn,ysiz")
write (lun,23)
23  format ('1 0.5 1.0 ",

+ ' nz,zmn, zsiz ")
write (lun,24)
24  format ('1 1 1 ",
+ " X, Yy, and z block discretization')

write (lun,241)

241 format ('O "
+ ' O=constant or 1=moving neighborhood")
write (lun,25)

25 format ('1 50 50 50 ',
+ " min primary ,max primary ,max all sec')
write (lun,26)

26 format ('710.0 710.0 0.0 ',
+ ' maximum search radii: primary"')
write (lun,27)

27 format ('710.0 710.0 0.0 ',
+ ' maximum search radii: all secondary"')
write (lun,28)

28 format (' 0.0 0.0 0.0 ',
+ ' angles for search ellipsoid ')
write (lun,29)

29 format ('2 "
+ " kriging type (0=SK, 1=OK, 2=OK trad)")
write (lun,291)

291 format ('1 1 0000000 ',
+ "odrift: X,y,z,XX,yy,zz,Xy,xz,zy")
write (lun,30)

30 format ('0.00 0.00 0.00 0.00 ',
+ ' mean(i),i=1,nvar")
write (lun,301)

301 format ('1 ',
+ ' mean of transmissivity ')
write (lun,302)

302 format ('0.1 270.0 ',
+ ' head gradient, gradient angle with X axis"')
write (lun,303)

303 format ('1 ',

+ " grid file type ')
write (lun,304)
304 format ('O 1 "
+ ' use_log interpolation flag"')

write (lun,305)
305 format ('O 0 ",
+ ' Restrict_Min_Value, Value_Min")
write (lun,306)
306 format ('O 0 ",

+ Restrict_Max_Value, Value_Max')
write (lun,31)
31 format ('1 1 ",
+ ' semivariogram for "i" and "j"")

write (lun,32)
32 format ('1 0.01 ',
+ ' nst, nugget effect"')
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write (lun,33)

33 format ('7 100.0 0.0 0.0 0.0 ",
+ ' it,cc,angl,ang2,ang3")
write (lun,34)

34 format (' 710.0 710.0 1.0 i
+ ' a_hmax, a_hmin, a_vert")
write (lun,35)

35 format ('1 2 "
+ ' semivariogram for "i" and "j"")
write (lun,36)

36 format ('1 0.0 "
+ ' nst, nugget effect')
write (lun,37)

37 format ('8 1.0 0.0 0.0 0.0 ',
+ ' it ,cc,angl,ang2,ang3")
write (lun,38)

38 format (' 710.0 710.0 1.0 ',
+ ' a_hmax, a_hmin, a_vert"')
write (lun,43)

43  format ('2 2 ",
+ ' semivariogram for "i" and "j"")
write (lun,44)

44  format ('l 10.0 ',
+ ' nst, nugget effect"')
write (lun,45)

45  format ('1 1.0 0.0 0.0 0.0 ",
+ ' it,cc,angl,ang2,ang3")
write (lun,46)

46  format (' 710.0 710.0 1.0 ',
+ ' a _hmax, a _hmin, a_vert"')
close (lun)
return

end



Appendix B

GSLIB Code : Other subroutines

B.1 Include le COKTBC.inc

@ e e s s T s s T I A T T T T T )

O00000000O00O0

%
Copyright (C) 1996, The Board of Trustees of the Leland Stanford %
Junior University. All rights reserved. %

%
The programs in GSLIB are distributed in the hope that they will be %
useful , but WITHOUT ANY WARRANTY. No author or distributor accepts %
responsibility to anyone for the consequences of using them or for %
whether they serve any particular purpose or work at all, unless he %
says so in writing. Everyone is granted permission to copy, modify %
and redistribute the programs in GSLIB, but only under the condition %
that this notice and the above copyright notice remain intact. %

%

@ N i o s s s 0 0 s e 0 0 s e e 0 s s i A A 0 s s i e o s s 0 R L o Ao A R B L A 2o o A )

OO0OO0OO0OO0OO0O0O0O000O00O0000000000O0

Ordinary CoKriging of a 3 D Rectangular Grid

The following Parameters control static dimensioning within coktbc:

MAXSBX maximum super block nodes in X

MAXSBY maximum super block nodes in Y

MAXSBZ maximum super block nodes in Z

MAXDAT maximum number of data points

MAXVAR maximum number of variables (including primary!)
MAXSAM maximum number of data points

MAXCOK maximum number of data points in kriging system
MAXDIS maximum number of discretization points per block
MAXNST maximum number of nested structures

User Adjustable Parameters:

parameter (MAXSBX = 21, MAXSBY = 21, MAXSBZ = 11,
+ MAXDAT =250000, MAXVAR = 2, MAXSAM = 1000,
+ MAXDIS = 64, MAXNST = 4, MAXDT = 9)
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c
¢ Fixed Parameters:
c
parameter (UNEST= 999.0,EPSLON=0.000001 ,MXVARGIMAXVAR MAXVAR,
+ MAXCOK=(MAXSAM  MAXVAR) ,MAXROTEMAXNST+1,
+ MAXSBIMAXSBX MAXSBY MAXSBZ,
+ MAXEQ=(VAXSAM  MAXVARIVAXVARIMAXDT) ,VERSION=1.000)
c
c Static Array Dimensioning:
c
integer nst(MXVARG), it (MXVARG  MAXNST) , iva (MAXCOK) , nisb (MAXSB) ,
+ ixsbtosr(8 MAXSB),iysbtosr(8 MAXSB),izsbtosr(8 MAXSB),
+ idrif (MAXDT) , kod (MAXDAT)
real X (MAXDAT) , y (MAXDAT) , z (MAXDAT) , vr (MAXDAT) , sec 1 (MAXDAT) ,
+ ddx (MAXDAT) , ddy (MAXDAT) , tmp (MAXDAT) , close (MAXDAT) ,
+ close2 (MAXDAT), close 3 (MAXDAT) , bv (9) , xa (MAXCOK) ,
+ ya (MAXCOK) , za (MAXCOK) , vra (MAXCOK) , ddxa (MAXCCOK)
+ ddya (MAXCOK) , xdb (MAXDIS) , ydb (MAXDIS) , zdb (MAXDIS) ,
+ vmean (MAXVAR) , c0 (MXVARG) , cc (MXWWARG  MAXNST) ,
+ aa (MXVARG MAXNST) ,angl (MXVARG MAXNST),ang2 (MXVARG MAXNST),
+ ang3 (MXVARG MAXNST), anis1l (MXVARG MAXNST),
+ anis2 (MXVARG MAXNST) , xs1 (MAXDAT) , ys1 (MAXDAT) , xs2 (MAXDAT) ,
+ ys2 (MAXDAT)
real 8 r(MAXEQ), rr (MAXEQ),s (MAXEQ) ,a(MAXEQ  MAXEQ),unbias,
+ rotmat (MAXROT, 3 , 3)
c
¢ The data and other input variables:
C
common /datcom/ nd,x,y,z,vr,secl  kod,ddx,ddy,ktype,nvr,whatest,
+ vmean, tmin ,tmax, nx,ny,nz,xmn,ymn,zmn, Xsiz ,ysiz ,
+ zsiz ,idbg,ldbg,lout ,newnd, nsc,xsl,ysl,xs2,ys2,
+ csiz ,noutfile ,logoptl ,logopt2 ,nrestmin,
+ nrestmax , restmin , restmax ,Tmean
c
¢ Kriging parameters:
c
common /krigcm/ ndmin,ndmaxp, ndmaxg, ndmaxs, radiusp ,radiuss , noct,
+ nxdis , nydis , nzdis , idrif ,nborhood
(o
c Variogram Parameters:
c
common /vargdt/ nst,it,c0,cc,aa,angl,ang2,ang3,anisl,6 anis2,
+ gradh ,angh
C
c Search variables and data for kriging:
c
common /srccom/ sangl,sang2,sang3, sanispl,h sanisp2,isrot,sanissl,
+ saniss2 ,radsqdp,radsqds ,na,np,ng,ns,xa,ya,za,vra,
+ ddxa,ddya,iva,hxas,yas,zas,vras ,hxdb,ydb,zdb,hndb,bv
C
c Kriging systems (double precision arrays):
c

common /krgsys/ r,rr,s,a,unbias, rotmat
B.2 Subroutine bdarr

subroutine bdarr(n,x,y,kod, csiz ,newn)
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I Computes the number of points to add to determine the size of the

I data array.
integer n, addpts, newn, i
integer kod(n)
real x(n),y(n)
real csiz, dist

addpts = 0
newn = n
do 111, i =1,n 1
if ((kod(i).ne.0).and.(kod(i).eq.kod(i+1))) then
dist = sqgrt((x(i) x(i+1)) 2+(y(i) y(i+1))
if (dist.It.(2. csiz)) then
addpts =1
else if (dist.gt.(20. csiz)) then
addpts = 19

else if (mod(dist,csiz).ne.0) then
addpts = int(dist/csiz)

else
addpts = int(dist/csiz) 1
endif
newn = newn + addpts
endif
111 continue
return
end

B.3 Subroutine bdpts

subroutine bdpts(n,x,y,z,vr,ve, kod, csiz)
I Detects the boundary points and add other points along

2)

the boundary

I lines to smoother the interpolation. Essential for Constraint Flux.

I 2D subroutine.
integer n, addpts, i, j, k
integer kod(n)

real csiz, dist, slope, spacin, step, stepz, stepvr, stepve

real x(n),y(n),z(n),vr(n),ve(n)

addpts = 0
i =1
112 if ((kod(i).ne.0).and.(kod(i).eq.kod(i+1))) then
dist = sqrt((x(i) x(i+1)) 2+(y(i) y(i+1))
if (dist.It.(2. <csiz)) then
addpts = 1

spacin = dist / 2.

else if (dist.gt.(20. csiz)) then
addpts = 19
spacin = dist / 20.

else if (mod(dist,csiz).ne.0) then

addpts = int(dist/csiz)

spacin = csiz
else

addpts = int(dist/csiz) 1

spacin = csiz
endif
stepz = spacin/dist (z(i+l) z(i))
stepvr = spacin/dist (vr(i+1l) wvr(i))
stepve = spacin/dist (ve(i+l) ve(i))

it (x(i).ne.x(i+1)) then

2)
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slope = (y(i+1) y(i))/(x(i+1) x(i))
step = spacin/sqrt(l+slope 2)
else
step =0
endif
do 113, k = n,i+l+addpts, 1
x (k) = x(k addpts)
y(k) =y(k addpts)
z(k) = z(k addpts)
vr(k) = vr(k addpts)
ve(k) = ve(k addpts)
kod(k) = kod(k addpts)
113 continue
do 114, j = 1,addpts
if (x(i).It.x(i+l+addpts)) then
x(i+j) = x(i) + ] step
else
x(i+j) = x(i) j step
endif
if (y(i).It.y(i+l+addpts)) then
if (x(i).ne.x(i+l+addpts)) then
y(i+j) =y(i) +j step slope
else
y(itj) = y(i) +j spacin
endif
else
if (x(i).ne.x(i+l+addpts)) then
y(i+j) = y(i) j step slope
else
y(i+j) =y(i) j spacin
endif
endif
z(i+j) = z(i) + ] stepz
vr(i+j) = vr(i) + j stepvr
ve(i+j) = ve(i) + j stepve
kod(i+j) = kod(i)
114 continue
i =i+ 1+ addpts
else
=i+ 1
endif
if (i.ge.n) then
go to 115
endif
go to 112
115 continue
return
end

B.4 Subroutine CCW

integer function

COW(x1,y1,x2,y2,x3,y3)

I Check if the 3 points are in Counter Clock Wise order.

real
(((y3 y1) (x2
oW =1
else if

if

x1,yl,x2,y2,x3,y3

x1)).0t.((y2 yl) (x3 x1))) then

(((y3 yl) (x2 x1)).eq.((y2 yl) (x3 x1))) then
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aaw =0
else
aw= 1
endif
return
end

B.5 Subroutine CHKNAM

subroutine chknam(str,len)

C
C
C Check for a Valid File Name
c
c
¢ This subroutine takes the character string "str" of length "len" and
c removes all leading blanks and blanks out all characters after the
c first blank found in the string (leading blanks are removed first).
c
c
C
C
parameter (MAXLEN=132)
character str(MAXLEN) 1
c
¢ Remove leading blanks:
C
do i=1,len 1
if (str(i).ne." ') then
if (i.eq.1) go to 1
do j=1,len i+l
k =j + i 1
str(j) = str(k)
end do
do j=len,len i+2, 1
str(j) =
end do
go to 1
end if
end do
1 continue
C

¢ Find first blank and blank out the remaining characters:
C
do i=1l,len 1
if (str(i).eq." ") then
do j=i+1,len

str(j) ="'
end do
go to 2
end if
end do
2 continue
c
¢ Return with modified file name:
C

return
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end
B.6 Subroutine COVA3

subroutine cova3(x1l,yl,zl1l,x2,y2,z2,ivarg,nst ,MAXNST,cO,it,cc,aa,
+ gradh ,angh, irot ,MAXROT, rotmat ,cmax, cova)

Covariance Between Two Points

This subroutine calculated the covariance associated with a variogram
model specified by a nugget effect and nested varigoram structures.
The anisotropy definition can be different for each nested structure.

INPUT VARIABLES:

x1,yl,z1 coordinates of first point

X2,y2,22 coordinates of second point

nst(ivarg) number of nested structures (maximum of 4)

ivarg variogram number (set to 1 unless doing cokriging
or indicator kriging)

MAXNST size of variogram parameter arrays

cO(ivarg) isotropic nugget constant

it(i) type of each nested structure:

1. spherical model of range a;
2. exponential model of parameter a;
i.e. practical range is 3a
3. gaussian model of parameter a;
i.e. practical range is a sqrt(3)
4. power model of power a (a must be gt. 0 and

It. 2). if linear model, a=1,c=slope.
5. hole effect model
cc(i) multiplicative factor of each nested structure.
(sill c0) for spherical, exponential ,and gaussian
slope for linear model.
aa(i) parameter "a" of each nested structure.
gradh value of the hydraulic head gradient (for it = 7)
angh angle between the direction of the hydraulic head
gradient and the X axis (for it = 7)
irot index of the rotation matrix for the first nested

structure (the second nested structure will use
irot+1, the third irot+2, and so on)

MAXROT size of rotation matrix arrays

rotmat rotation matrices

OUTPUT VARIABLES:

cmax maximum covariance
cova covariance between (x1,yl,z1) and (x2,y2,z2)

OO0 OO0 O0000O000000000000000000000000000000000000000OO0O0O0

EXTERNAL REFERENCES: sqdist computes anisotropic squared distance
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c rotmat computes rotation matrix for distance

parameter (P1=3.14159265,PMX=999. ,EPSLON=1.e 10)

integer nst( ),it( )

real c0( ),cc( ),aa( ),gradh,angh,hr,dxa,ct,hl, hrl
real 8 rotmat (MAXROT, 3 ,3) ,hsqd, sqdist

C
c Calculate the maximum covariance value (used for zero distances and
c for power model covariance):
c
istart = 1 + (ivarg 1) MAXNST
cmax = cO(ivarg)
do is=1,nst(ivarg)
ist = istart + is 1
if (it(ist).eq.4) then
cmax = cmax + PMX
else if (it(ist).eq.7) then
ct = cc(ist) (gradh aa(ist) / 4.) 2
cmax = cmax + 20. ct
else if (it(ist).eq.8) then
cmax = cc(ist) gradh aa(ist) 2
else
cmax = cmax + cc(ist)
endif
end do
c
¢ Check for "zero" distance, return with cmax if so:
C
hsqd = sqdist(x1,yl1,z1,x2,y2,z2,irot ,MAXROT, rotmat)
if (real (hsqd). It .EPSLON) then
cova = cmax
return
endif
c
c Loop over all the structures:
c
cova = 0.0
do is=1,nst(ivarg)
ist = istart + is 1
c
¢ Compute the appropriate distance:
c
if (ist.ne.1) then
ir =min((irot+is 1) ,MAXROT)
hsqd=sqdist(x1,yl,z1,x2,y2,z2,ir ,MAXROT, rotmat)
end if
h = real (dsqrt(hsqd))
c
¢ Spherical Variogram Model?
c
if (it(ist).eq.1) then
hr = h/aa(ist)
if (hr.It.1.) cova=cova+cc(ist) (1. hr (1.5 .5 hr hr))
C
¢ Exponential Variogram Model?

else if (it(ist).eq.2) then
cova = cova + cc(ist) exp( 3.0 h/faa(ist))
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(¢

o

Gaussian Variogram Model?

else if (it(ist).eq.3) then
cova = cova + cc(ist) exp( (3.0 h/aa(ist))
+ (3.0 h/aa(ist)))

Power Variogram Model?

else if (it(ist).eq.4) then
cova = cova + cmax cc(ist) (h aaf(ist))

Hole Effect Model?

else if (it(ist).eq.5) then
d = 10.0 aa(ist)
cova = cova + cc(ist) exp( 3.0 h/d) cos(h/aa(ist) PI)
cova = cova + cc(ist) cos(h/aa(ist) PI)

Cubic Variogram Model?

else if (it(ist).eq.6) then
hr = h/aa(ist)
if (hr.1t.1.) then
cova = cova + cc(ist) (1. 7. hr 2
+ + 35./4. hr 3 7.12. hr 5+ 3./4. hr 7)
endif

Transmissivity Linked Spherical Variogram Model?

else if (it(ist).eq.7) then

hr = h/aa(ist)

hl = COS(2. PI/360. angh) (x1 x2)
+ + SIN(2. PI1/360. angh) (yl y2)

dxa = hl/aa(ist)

ct = cc(ist) (gradh aa(ist) / 4.) 2

if (hr.le.1.) then

cova = cova + cmax ct (hr 2 8./15. hr 3

+ + 8./175. hr 5 +(2. 8./5. hr +8./35. hr 3)
+ dxa 2)

else

cova = cova + cmax ct (32./75. +3./(35. hr 2)
+ +4./5. LOG(hr) +(4./(5. hr 2) 6./(35. hr 4))
+ dxa 2)

endif

¢ Log(T) h Cross variogram Model?

else if (it(ist).eq.8) then
hl = COS(2. PI1/360. angh) (x1 x2)
+ + SIN(2. PI/360. angh) (yl1 y2)
hr = h [ aa(ist)
if (hr.It.1.) then
cova = cova + cmax gradh cc(ist) hl1 (0.5 0.5 hr
+ +0.1 hr 3)
else
cova = cova + cmax gradh cc(ist) h1/(10. hr 2)
endif
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endif
end do
C
¢ Finished:
C
return
end

B.7 Subroutine ccoord

subroutine ficcoord(n,x,y,kod, csiz ,ddx,ddy)
I Create 2 fictive x & y coordinates for each prescribed flux BC point
I to improve the interpolation 2D subroutine.
integer n, nx, ny, i, j
integer kod(n)
real xsiz, ysiz, xbig, ybig, perp, spacin, step
real x(n), y(n), ddx(n), ddy(n)
spacin = csiz

ddx = 0.0
ddy = 0.0
do 116, i = 2,n 1

if ((kod(i).It.0).and.(kod(i 1).eq.kod(i)).and.
(kod(i).eq.kod(i+1))) then
if (y(i+l).ne.y(i 1)) then

perp = (x(i+l) x(i 1)/(y(i+l) y(i 1))
step = spacin/sqrt(l+perp 2)
ddx(i) = step
ddy(i) = step perp
else
ddy(i) = spacin
endif

else if ((kod(i).It.0).and.(kod(i 1).ne.kod(i)).and.
(kod(i).eq.kod(i+1))) then
if (y(i+1).ne.y(i)) then

perp = (x(i+1) x(i))/(y(i+1) y(i))
step = spacin/sqrt(l+perp 2)
ddx(i) = step
ddy(i) = step perp

else
ddy(i) = spacin

endif

else if ((kod(i).It.0).and.(kod(i 1).eq.kod(i)).and.
(kod(i).ne.kod(i+1))) then
if (y(i).ne.y(i 1)) then

perp = (x(i) x(i 1))/(y(i) y(i 1))
step = spacin/sqrt(l+perp 2)
ddx(i) = step
ddy(i) = step perp

else
ddy(i) = spacin

endif

endif

if ((kod(1).It.0).and.(kod(2).eq.kod(1))) then
if (y(2).ne.y(1)) then
perp = (x(2) x(1))/(y(2) vy(1))
step = spacin/sqrt(1+perp 2)
ddx(1) = step
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ddy (1) = step perp
else
ddy(1) = spacin
endif
endif

if ((kod(n).It.0).and.(kod(n 1).eq.kod(n))) then
if (y(n).ne.y(n 1)) then

perp = (x(n) x(n 1))/(y(n) y(n 1))
step = spacin/sqrt(l+perp 2)
ddx(n) = step
ddy(n) = step perp
else
ddy(n) = spacin
endif
endif
116 continue
return

end
B.8 Subroutine uxcoor

subroutine fluxcorr(n,x,y,vr,kod, csiz ,Tmean)
I Detects the constant flux points and apply the correction factor to
I convert the volumic flow rate to the hydraulic head difference>
integer n, i, j, k
integer kod(n)
real csiz, Tmean, dist
real x(n), y(n), vr(n)
do 117, i=1,n 1
do 118, j=2,n
if (i.ne.1.and.j.ne.n) then
if (kod(i).It.0.and.kod(i 1).ne.kod(i).and.vr(i).ne.0.and.&
& kod(j).eq.kod(i).and.kod(j+1).ne.kod(j)) then
dist = sqrt((x(i) x(j)) 2+(y(i) y()) 2)
do 119, k=i, ]
vr(k) = vr(k) (2 csiz) 2/(Tmean dist)
119 continue
endif
else if (i.eq.l.and.j.ne.n) then
if (kod(1).1t.0.and.vr(1).ne.0.and.kod(j).eq.kod(1).and.&
& kod(j+1).ne.kod(j)) then
dist = sqrt((x(1) x(j)) 2+(y(1) vy(@)) 2)
do 120, k=1,j
vr(k) = vr(k) (2 csiz) 2/(Tmean dist)
120 continue
endif
else if (i.ne.l1.and.j.eq.n) then
if (kod(i).It.0.and.kod(i 1).ne.kod(i).and.vr(i).ne.0.and.&
& kod(n).eq.kod(i)) then
dist = sqrt((x(i) x(n)) 2+(y(i) y(n)) 2)
do 121, k=i,n
vr(k) = vr(k) (2 csiz) 2/(Tmean dist)
121 continue
endif
else
if (kod(1).1t.0.and.vr(1).ne.0.and.kod(n).eq.kod(1)) then

dist = sqrt((x(1) x(n)) 2+(y(1) y(n)) 2)
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122

118
117

do 122, k=1,n
vr(k) = vr(k) (2 csiz) 2/(Tmean dist)
continue
endif
end if

continue
continue

return
end

B.9 Subroutine GETINDX

subroutine getindx(n,min,siz ,loc ,index,inflag)

C
C
C Gets the coordinate index location of a point within a grid
c
c
C
cn number of "nodes" or "cells" in this coordinate direction
c min origin at the center of the first cell
c siz size of the cells
c loc location of the point being considered
c index output index within [1,n]
c inflag true if the location is actually in the grid (false otherwise
o e.g., if the location is outside then index will be set to
C nearest boundary
c
c
C
C
integer n,index
real min, siz ,loc
logical inflag
C
¢ Compute the index of "loc":
C
index = int( (loc min)/siz + 1.5 )
c
¢ Check to see if in or out:
C
if (index.It.1) then
index =1
inflag = .false.
else if (index.gt.n) then
index =n
inflag = .false.
else
inflag = .true.
end if
c

¢ Return to calling program:

C

return

end
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B.10 Subroutine getopen lename

Example of calling the Win32 API routine GetOpenFileName

This can be used from any application type, including Console
Make sure that comdlg32.lib is included in the list of libraries
to be searched.

GetSaveFileName is very similar.

I
!
!
!
!
!
!
I NOTE! You must have DVF 5.0B or later to compile this example!
!

subroutine fileopen (fname)

use dfwin

implicit none

I Declare structure used to pass and receive attributes
|

type (T_OPENFILENAME) ofn

I Declare filter specification. This is a concatenation of

I pairs of null terminated strings. The first string in each pair
I is the file type name, the second is a semicolonseparated list
I of file types for the given name. The list ends with a trailing
I null terminated empty string.

I

character () fname

character ( ),parameter :: filter_spec =&
"Parameter Files"C//" .par"Cl/l &
"Surfer Files"C//" .grd; .grd"C//""C

Declare string variable to return the file specification.

!

I Initialize with an initial filespec, if any null string
I otherwise

!

character 512 :: file_spec = ""C

integer status ,ilen

ofn%lStructSize = SIZEOF(ofn)
ofn%hwndOwner = NULL ! For non console applications,
! set this to the Hwnd of the
I Owner window. For QuickWin
! and Standard Graphics projects,
I use GETHWNDQQ(QWINSFRAMEWINDOW)
|
ofn%hinstance = NULL ! For Win32 applications, you
! can set this to the appropriate
I hlnstance
I
ofn%lpstrFilter = loc(filter_spec)
ofn%lpstrCustomFilter = NULL
ofn%nMaxCustFilter = 0
ofn%nFilterindex = 1 ! Specifies initial filter value
ofn%lpstrFile = loc(file_spec)
ofn%nMaxFile = sizeof(file_spec)
ofn%nMaxFileTitle = 0
ofn%lpstrinitialDir = NULL I Use Windows default directory
ofn%lpstrTitle = loc (""C)
ofn%Flags = OFN_PATHMUSTEXIST
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ofn%lpstrDefExt = loc ("par"C)
ofn%lpfnHook = NULL
ofn%lpTemplateName = NULL

I Call GetOpenFileName and check status
|
status = GetOpenFileName(ofn)
if (status .eq. 0) then
type ,'No file name specified"'
else
! Get length of file_spec by looking for trailing NUL
ilen = INDEX(file_spec ,CHAR(0))
type ,'Filespec is ',file_spec(l:ilen 1)
I Example of how to see if user said "Read Only"
|
if (JAND(ofn%flags ,OFN READONLY) /= 0) &
type ,'Readonly was requested’
end if
fnrame(1l:ilen 1) = file_spec(1l:ilen 1)
end subroutine fileopen

B.11 Subroutine getopen lesurf

Example of calling the Win32 API routine GetOpenFileName

This can be used from any application type, including Console
Make sure that comdIg32.lib is included in the list of libraries
to be searched.

GetSaveFileName is very similar.

I
!
!
!
I
!
I
I NOTE! You must have DVF 5.0B or later to compile this example!
!

subroutine fopensurf(fname)

use dfwin

implicit none

I Declare structure used to pass and receive attributes
|

type (T_OPENFILENAME) ofn

I Declare filter specification. This is a concatenation of

I pairs of null terminated strings. The first string in each pair
I is the file type name, the second is a semicolonseparated list
I of file types for the given name. The list ends with a trailing
I null terminated empty string.

I

character ( ) fname

character ( ),parameter :: filter_spec =&
"Surfer Files"C//" .grd"C/l &
"Surfer Files"C//" .grd; .grd"C//""C

Declare string variable to return the file specification.

!

I Initialize with an initial filespec, if any null string
I otherwise

!

character 512 :: file_spec = ""C

integer status ,ilen
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ofn%lStructSize = SIZEOF(ofn)

ofn%hwndOwner = NULL ! For non console applications,
! set this to the Hwnd of the
I Owner window. For QuickWin
! and Standard Graphics projects,
! use GETHWNDQQ(QWINSFRAMEWINDOW)
I

ofn%hinstance = NULL ! For Win32 applications, you

! can set this to the appropriate

! hinstance
|

ofn%lpstrFilter = loc(filter_spec)

ofn%lpstrCustomFilter = NULL

ofn%nMaxCustFilter = 0

ofn%nFilterIndex = 1 ! Specifies initial filter value

ofn%lpstrFile = loc(file_spec)

ofn%nMaxFile = sizeof(file_spec)

ofn%nMaxFileTitle = 0

ofn%lpstrinitialDir = NULL I Use Windows default directory

ofn%lpstrTitle = loc (""C)

ofn%Flags = OFN_PATHMUSTEXIST

ofn%lpstrDefExt = loc("grd"C)

ofn%lpfnHook = NULL

ofn%lpTemplateName = NULL

I Call GetOpenFileName and check status
|
status = GetOpenFileName(ofn)
if (status .eq. 0) then
type ,'No file name specified"'
else
! Get length of file_spec by looking for trailing NUL
ilen = INDEX(file_spec ,CHAR(0))
type ,'Filespec is ',file_spec(l:ilen 1)
I Example of how to see if user said "Read Only"
|
if (IAND(ofn%flags ,OFN READONLY) /= 0) &
type ,'Readonly was requested’
end if
fname (1l:ilen 1) = file_spec(1:ilen 1)
end subroutine fopensurf

B.12 Subroutine intersect

logical function intersect(x11,y11,x12,y12,x21,y21,x22,y22)
I Check if the 2 segments defined by their endpoints intersect.
real x11,yl11,x12,yl12,x21,y21,x22,y22
integer CCW
if (COW(x11,y11,x12,y12,x21,y21).eq.0) then
intersect= .false.
else if (COW(x11,yl11,x12,y12,x22,y22).eq.0) then
intersect= .false.
else if (CCOW(x11,y11,x21,y21,x22,y22).eq.0) then
intersect= .false.
else if (COW(x12,y12,x21,y21,x22,y22).eq.0) then
intersect= .false.
else if (COW(x11l,yl1l1,x21,y21,x22,y22).eq.CCW(x12,y12,x21,y21, &
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&

intersect

x22,y22)) then

= .false.

else if (COW(x11l,yl11,x12,y12,x21,y21).eq.CCW(x11,y11,x12,y12, &
Xx22,y22)) then

&

intersect

else

intersect

end if

return

end

= .false.

= .true.

B.13 Subroutine KTSOL

OO0 0000000000000 0000000O0000O0OO0OO0

o0

(9]

subroutine

Solution of a system of linear equations by gaussian elimination with
partial pivoting.

ktsol(n,ns,nv,a,b,x, ktilt ,maxeq)

Several right hand side matrices and several

variables are allowed.

NOTE: All

input matrices must be in double precision

INPUT/OUTPUT VARIABLES:

n
ns
nv
a(n n nv)
b(n ns nv)

x(n ns nv)
ktilt

tol

implicit real

Number of equations

Number of right hand side matrices

Number of variables.

left hand side matrices versus columnwise.
input right hand side matrices.

solution matrices.

indicator of singularity

0 everything is ok.

l1n.le.l

used in test for null pivot. depends on machine
precision and can also be set for the tolerance
of an ill defined kriging system.

8 (a h,0 2)

real 8 x(maxeq),a(maxeq maxeq),b(maxeq)

Make sure there are equations to solve:

if (n.le.1) then

kti

It

return

endif

Initialization:

tol
ktilt
ntn

0
0
n

1

.1le 10

n

k a null pivot appeared at the kth iteration.
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nml =n 1
c
¢ Triangulation is done variable by variable:
c
do iv=1,nv
C
¢ Indices of location in vectors a and b:
c
nva = ntn (iv 1)
nvb = n ns (iv 1)
C
¢ Gaussian elimination with partial pivoting:
c
do k=1,nml
kpl = k+1
C
¢ Indice of the diagonal element in the kth row:
C
kdiag = nva+(k 1) n+k
c
¢ Find the pivot interchange diagonal element/pivot:
C
npiv = kdiag
ipiv = k
il = kdiag
do i=kpl,n
il = i1+l
if (abs(a(il)).gt.abs(a(npiv))) then
npiv = il
ipiv =i
endif
end do
t = a(npiv)
a(npiv) = a(kdiag)
a(kdiag) =t
c
c Test for singularity:
C
if (abs(a(kdiag)).It.tol) then
ktilt=k
write ( , ) 'Singular Value, kdiag, ktilt=",
+ a(kdiag),kdiag, ktilt
return
endif
c
¢ Compute multipliers:
c
il = kdiag
do i=kpl,n
il = il+l
a(il) = a(il)/a(kdiag)
end do
c
¢ Interchange and eliminate column per column:
c
j1 = kdiag
j2 = npiv

do j=kpl,n
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il = jl+n
j2 = j2+n
t = a(j2)
a(j2) = a(j1)
a(j1) =t
il =j1
i2 = kdiag
do i=kpl,n
il = i1+l
i2 = i2+1
a(il) = a(il)+a(i2) a(j1)
end do
end do
c
¢ Interchange and modify the ns right hand matrices:
C
il = nvbtipiv
i2 = nvb+k
do i=1,ns
t = b(il)
b(il) = b(i2)
b(i2) =t
il =2
j2 = kdiag
do j=kpl,n
jl = j1+1
j2 = j2+1
b(j1) = b(j1)+b(i2) a(j2)
end do
il = il+n
i2 = i2+n
end do
end do
C
c Test for singularity for the last pivot:
c
kdiag = ntn iv
if (abs(a(kdiag)).It.tol) then
ktilt = n
return
endif
end do
C

¢ End of triangulation. Now, solve back variable per variable:

do iv=1,nv

C
¢ Indices of location in vectors a and b:
C

nva = ntn iv

nvbl = n ns (iv 1)+1

nvb2 = n ns iv
C
¢ Back substitution with the ns right hand matrices:
C

do il=1,ns

do k=1,nml

nmk = n k
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C
¢ Indice of the diagonal element of the (nk+1)th row and of
c the (n k+1)th element of the left hand side.
c
kdiag = nva (n+1) (k 1)
kb = nvb2 (il 1) n k+1
b(kb) = b(kb)/a(kdiag)
t = b(kb)
il = kb
i2 = kdiag
do i=1,nmk
i1l =ij1 1
i2 =i2 1
b(il) = b(il)+a(i2) t
end do
end do
kdiag = kdiag n 1
kb =kb 1
b(kb) = b(kb)/a(kdiag)
end do
c
¢ End of back substitution:
c
end do
C
¢ Restitution of the solution:
c
itot = n ns nv
do i=1,itot
x(i) = b(i)
end do
C
¢ Finished:
C
return
end

B.14 Subroutine PICKSUPR

subroutine picksup (nxsup, xsizsup ,nysup,ysizsup ,nzsup, zsizsup ,
+ irot ,MAXROT, rotmat ,radsqd , nsbtosr ,ixsbtosr,
+ iysbtosr ,izsbtosr)

Establish Which Super Blocks to Search

This subroutine establishes which super blocks must be searched given
that a point being estimated/simulated falls within a super block
centered at 0,0,0.

INPUT VARIABLES:

NnxXsup, xsizsup Definition of the X super block grid
nysup,ysizsup Definition of the Y super block grid

OO0OO0OO0O0O0O0O000O000O0O0O0O0
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nzsup, zsizsup Definition of the Z super block grid

irot index of the rotation matrix for searching
MAXROT size of rotation matrix arrays

rotmat rotation matrices

radsqd squared search radius

OUTPUT VARIABLES:

nsbtosr Number of super blocks to search

ixsbtosr X offsets for super blocks to search
iysbtosr Y offsets for super blocks to search
izsbtosr Z offsets for super blocks to search

EXTERNAL REFERENCES:

sqgdist Computes anisotropic squared distance

OO0OO0OO0O00000O00000O0000000000O0O0

real 8 rotmat(MAXROT,3,3),hsqd, sqdist,shortest
integer ixsbhtosr( ),iysbtosr( ),izsbtosr( )

c
¢ MAIN Loop over all possible super blocks:
c
nsbtosr = 0
do i= (nxsup 1),(nxsup 1)
do j= (nysup 1),(nysup 1)
do k= (nzsup 1),(nzsup 1)
xo = real (i) xsizsup
yo = real (j) ysizsup
zo = real (k) zsizsup
c
¢ Find the closest distance between the corners of the super blocks:
c
shortest = 1.0e21
do il= 11
do ji1= 11
do k1= 1,1
do i2= 1,1
do j2= 11
do k2= 1,1
if (il.ne.0.and.jl.ne.0.and.kl.ne.0.and.
+ i2.ne.0.and.j2.ne.0.and.k2.ne.0) then
xdis = real (i1 i2) 0.5 xsizsup + xo
ydis = real (j1 j2) 0.5 ysizsup + yo
zdis = real (k1 k2) 0.5 zsizsup + zo
hsqd = sqdist(0.0,0.0,0.0, xdis, ydis, zdis,
+ irot ,MAXROT, rotmat)
if (hsqd.It.shortest) shortest = hsqd
end if
end do
end do

end do
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end do
end do
end do
c
¢ Keep this super block if it is close enoutgh:
C
if (real (shortest).le.radsqgd) then
nsbtosr = nsbtosr + 1
ixsbtosr(nsbtosr) =
iysbtosr(nsbtosr) = j
izsbtosr(nsbtosr) = k
end if
end do
end do
end do
C
¢ Finished:
c
return
end

B.15 Subroutine remdup

subroutine remdup(n,x,y,z,vr,ve, kod,ddx,ddy, npts)
! Removes duplicate x,y pairs

real x(n),y(n),z(n),vr(n),ve(n),kod(n),ddx(n),ddy(n)

! write( , ) 'n =',n
npts = n
do 200 i =1,n 1

do 300 j = i+l,n
if (x(j).eq.x(i).and.y(j).eq.y(i)) then
if ((kod(i).ge.0.and.kod(j).ge.0).or.
(kod(i).le.0.and.kod(j).le.0)) then
do 500 k=j,n 1

x(k) = x(k+1)
y(k) = y(k+l)
z (k) = z(k+1)
vr(k) = vr(k+1)
ve(k) = ve(k+1)
kod (k) = kod(k+1)

ddx(k) = ddx(k+1)
ddy(k) = ddy(k+1)

500 continue
n=n 1
endif
end if
300 continue
200 continue
do 401 s = 1,n
do 201 i =1,n 1

do 301 j = i+l,n

xsl = x(s) ddx(s)
Xs2 = x(s) + ddx(s)
ysl =y(s) ddy(s)

ys2 = y(s) + ddy(s)
if (x(i).eq.xsl.and.y(i).eq.ysl.and.x(j).eq.xs2.and.
y(j).eq.ys2) then
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do 501 k=s,n 1

x(k) = x(k+1)
y(k) = y(k+l)
z(k) = z(k+1)
vr(k) = vr(k+1)
ve(k) = ve(k+1)
kod (k) = kod(k+1)

ddx (k) = ddx(k+1)
ddy (k) = ddy(k+1)

501 continue
n=n 1
endif

301 continue

201 continue

401 continue
ntemp = npts

npts = n

n = ntemp

! write( , )'npts =',npts
return
end

B.16 Subroutine scrarr

subroutine scrarr(n,x,y,kod,vr,nsc)
I Computes the size of the no flow segments arrays.
integer n, nsc, i
integer kod(n)
real x(n), y(n), vr(n)

nsc =0
do 117, i =1,n 1
if (kod(i).It.0.and.kod(i).eq.kod(i+1).and.vr(i).eq.0.and. &
& vr(i+1l).eq.0) then
nsc = nsc + 1
endif
117 continue
return
end

B.17 Subroutine screens

subroutine screens(n,x,y,kod,vr,nsc,xsl,ysl,6xs2,ys2)
I Fill arrays to keep in memory the end points of no flow segments.
integer n, nsc, i, j
integer kod(n)
real x(n), y(n), vr(n), xsl(nsc), ysl(nsc), xs2(nsc), ys2(nsc)

j=0
do 118, i =1,n 1
if (kod(i).It.0.and.kod(i).eq.kod(i+1).and.vr(i).eq.0.and. &
& vr(i+1l).eq.0) then

j=i+1
xs1(j) = x(i)
ysl(j) = y(i)
xs2(j) = x(i+1)
ys2(j) = y(i+1)
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endif

118 continue
return

end

B.18 Subroutine SETROT
subroutine setrot(angl,ang2,ang3,anisl,h anis2,ind ,MAXROT, rotmat)
Sets up an Anisotropic Rotation Matrix

Sets up the matrix to transform cartesian coordinates to coordinates
accounting for angles and anisotropy (see manual for a detailed
definition):

INPUT PARAMETERS:

angl Azimuth angle for principal direction

ang2 Dip angle for principal direction

ang3 Third rotation angle

anisl First anisotropy ratio

anis2 Second anisotropy ratio

ind matrix indicator to initialize

MAXROT maximum number of rotation matrices dimensioned
rotmat rotation matrices

NO EXTERNAL REFERENCES

OO0 O0O0000O00000O00O000000000000O0OO0

parameter (DEG2RAD=3.141592654/180.0,EPSLON=1.e 20)
real 8 rotmat (MAXROT, 3 ,3) ,afacl ,afac2,sina,sinb, sint,

+ cosa,cosb, cost

c
¢ Converts the input angles to three angles which make more
¢ mathematical sense:
c
c alpha angle between the major axis of anisotropy and the
C E W axis. Note: Counter clockwise is positive.
C beta angle between major axis and the horizontal plane.
C (The dip of the ellipsoid measured positive down)
C theta Angle of rotation of minor axis about the major axis
c of the ellipsoid.
c

if (angl.ge.0.0.and.angl.1t.270.0)then

alpha = (90.0 angl) DEG2RAD
else
alpha = (450.0 angl) DEG2RAD

endif

beta = 1.0 ang2 DEG2RAD

theta = ang3 DEG2RAD
c

c Get the required sines and cosines:
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c
sina = dble(sin(alpha))
sinb = dble(sin(beta))
sint = dble(sin(theta))
cosa = dble(cos(alpha))
cosb = dble(cos(beta))
cost = dble(cos(theta))

c

¢ Construct the rotation matrix in the required memory:

c
afacl = 1.0 / dble(max(anisl ,EPSLON))
afac2 = 1.0 / dble(max(anis2 ,EPSLON))
rotmat(ind,1,1) = (coshb cosa)
rotmat(ind,1,2) = (cosb sina)
rotmat(ind,1,3) = ( sinb)
rotmat(ind,2,1) = afacl ( cost sina + sint sinb cosa)
rotmat(ind ,2,2) = afacl (cost cosa + sint sinb sina)
rotmat(ind,2,3) = afacl ( sint cosb)
rotmat(ind,3,1) = afac2 (sint sina + cost sinb cosa)
rotmat(ind,3,2) = afac2 ( sint cosa + cost sinb sina)
rotmat(ind,3,3) = afac2 (cost cosb)

C

¢ Return to calling program:

c
return
end

B.19 Subroutine setsupr

subroutine setsupr(nx,xmn, xsiz ,ny,ymn,ysiz ,nz,zmn, zsiz ,nd,x,y,z, &
& vr,ddx,ddy,tmp, nsec, sec ,MAXSBX,MAXSBY, &
& MAXSBZ, nisb , nxsup ,xmnsup, Xsizsup , nysup ,ymnsup, &
& ysizsup ,nzsup,zmnsup, zsizsup)

Establish Super Block Search Limits and Sort Data

This subroutine sets up a 3D "super block" model and orders the data
by super block number. The limits of the super block is set to the
minimum and maximum limits of the grid; data outside are assigned to
the nearest edge block.

The idea is to establish a 3D block network that contains all the
relevant data. The data are then sorted by their index location in
the search network, i.e., the index location is given after knowing
the block index in each coordinate direction (ix,iy,iz):

ii = (iz 1) nxsup nysup + (iy 1) nxsup + ix
An array, the same size as the number of super blocks, is constructed
that contains the cumulative number of data in the model. With this
array it is easy to quickly check what data are located near any given
location.

INPUT VARIABLES:
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nx,xXxmn, Xsiz Definition of the X grid being considered
ny,ymn,ysiz Definition of the Y grid being considered
nz,zmn, zsiz Definition of the Z grid being considered
nd Number of data

x(nd) X coordinates of the data

y(nd) Y coordinates of the data

z(nd) Z coordinates of the data

vr(nd) Variable at each location.

ddx(nd) X difference for Kriging under BC

ddy(nd) Y difference for Kriging under BC

tmp(nd) Temporary storage to keep track of the super block

index associated to each data (uses the same
storage already allocated for the simulation)

nsec Number of secondary variables to carry with vr (max=1)
sec(nd) Secondary variable (if nsec = 1)
MAXSB[X,Y,Z] Maximum size of super block network

OUTPUT VARIABLES:

nisb () Array with cumulative number of data in each
super block.

nxsup ,xmnsup, xsizsup Definition of the X super block grid

nysup ,ymnsup,ysizsup Definition of the Y super block grid

nzsup,zmnsup, zsizsup Definition of the Z super block grid

EXTERNAL REFERENCES:

sortem Sorting routine to sort the data

real x(),y( ),z( ),vr( ),ddx( ),ddy( ).tmp( ),sec()
integer nisb( )
logical inflag

I Establish the number and size of the super blocks:

nxsup = min(nx,MAXSBX)

nysup = min(ny,MAXSBY)

nzsup = min(nz ,MAXSBZ)

xsizsup = real (nx) xsiz/real (nxsup)
ysizsup = real (ny) ysiz/real (nysup)
zsizsup = real (nz) zsiz/real (nzsup)
xmnsup = (xmn 0.5 xsiz)+0.5 xsizsup
ymnsup = (ymn 0.5 ysiz)+0.5 ysizsup
zmnsup = (zmn 0.5 zsiz)+0.5 zsizsup

I Initialize the extra super block array to zeros:

do i=1,nxsup nysup nzsup
nisb(i) =0
end do
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Loop over all the data assignhing the data to a super block and
accumulating how many data are in each super block:

do i=1,nd
call getindx (nxsup,xmnsup, xsizsup ,x(i),ix,inflag)
call getindx(nysup,ymnsup,ysizsup ,y(i),iy,inflag)
call getindx(nzsup,zmnsup, zsizsup ,z(i),iz ,inflag)
ii = ix + (iy 1) nxsup + (iz 1) nxsup nysup
tmp (i) = ii
nisb(ii) = nisb(ii) + 1

end do

Sort the data by ascending super block number:

nsort = 6 + nsec
call sortem(1,nd,tmp,nsort,x,y,z,vr,ddx,ddy, sec)

Set up array nisb with the starting address of the block data:
do i=1,(nxsup nysup nzsup 1)
nisb (i+1) = nisb (i) + nisb(i+1)
end do

Finished:

return
end

B.20 Subroutine SORTEM

OO0 O0OO0O000000O00O000000O000000000O0OO0

subroutine sortem¢(ib,ie ,a,iperm,b,c,d,e,f,g,h)

Quickersort Subroutine

This is a subroutine for sorting a real array in ascending order. This
is a Fortran translation of algorithm 271, quickersort, by R.S. Scowen
in collected algorithms of the ACM.

The method used is that of continually splitting the array into parts
such that all elements of one part are less than all elements of the
other, with a third part in the middle consisting of one element. An
element with value t is chosen arbitrarily (here we choose the middle
element). i and j give the lower and upper limits of the segment being
split. After the split a value g will have been found such that
a(qg)=t and a(l)<x=t<=a(m) for all i<=l<g<x=j. The program then

performs operations on the two segments (i,ql) and (q+1,j) as follows
The smaller segment is split and the position of the larger segment is
stored in the It and ut arrays. |If the segment to be split contains
two or fewer elements, it is sorted and another segment is obtained
from the It and ut arrays. When no more segments remain, the array

is completely sorted.

INPUT PARAMETERS:
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ib,ie start and end index of the array to be sorteda
a array, a portion of which has to be sorted.
iperm 0 no other array is permuted.

1 array b is permuted according to array a

2 arrays b,c are permuted.

3 arrays b,c,d are permuted.

4 arrays b,c,d,e are permuted.

5 arrays b,c,d,e,f are permuted.

6 arrays b,c,d,e,f,g are permuted.

7 arrays b,c,d,e,f,g,h are permuted.

>7 no other array is permuted.

b,c,d,e,f,g,h arrays to be permuted according to array a.
OUTPUT PARAMETERS:

a = the array, a portion of which has been sorted.

b,c,d,e,f,g,h =arrays permuted according to array a (see iperm)

NO EXTERNAL ROUTINES REQUIRED:

OO0OO0O0O0000O00O0000000000000O0O0

dimension a( ),b( ),c( ),d( ),e(),f( ),9( ),h()

c
¢ The dimensions for It and ut have to be at least log (base 2) n
C
integer It(64),ut(64),i,j,k,mp,q
C
c Initialize:
c
i = ie
m =1
[ = ib
iring = iperm+1
if (iperm.gt.7) iring=1
c

c If this segment has more than two elements we split it
c
10 if (j i 1) 100,90,15
c
c p is the position of an arbitrary element in the segment we choose the
¢ middle element. Under certain circumstances it may be advantageous
c to choose p at random.

C
15 p = (j+i)/2
ta = a(p)
a(p) = a(i)
go to (21,19,18,17,16,161,162,163),iring
163 th = h(p)
h(p) = h(i)
162 tg = g(p)
g(p) = g(i)
161 tf = f(p)
f(p) = f(i)
16 te = e(p)
e(p) = e(i)
17 td = d(p)
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d(p) = d(i)
18 tc = c(p)
c(p) = c(i)
19 tb = b(p)
b(p) = b(i)

21 continue
C

c Start at the beginning of the segment, search for k such that a(k)>t

C
J

i

= k+1

if (k.gt.q) go to 60
if (a(k).le.ta) go to 20

= X QO
1o

20

starting at the end of the segment.

O 000

30 continue
if (a(q).It.ta) go to 40
qg=9q 1
if (q.gt.k) go to 30
go to 50
c
c a(q) has now been found. we interchange a(q) and a(k)
c

40 xa = a(k)
a(k) = a(q)
a(q) = xa

go to (45,44,43,42,41,411,412,413),iring
413 xh = h(k)

h(k) = h(q)
h(g) = xh
412 xg = g(k)
g(k) = g(q)
g(q) = xg
411 xf = f(k)
f(k) = f(q)
f(q) = xf
41 xe = e(k)
e(k) = e(q)
e(q) = xe
42 xd = d(k)
d(k) = d(q)
d(q) = xd
43 XC = c(k)
c(k) = c(q)
c(q) = xc
44 xb = b(k)
b(k) = b(q)
b(q) = xb

45  continue
c
¢ Update g and search for another pair to interchange:

Such an element has now been found now search for a q such that a(qg)<t



120 B. GSLIB Code : Other subroutines

60 continue

c
¢ The upwards search has now met the downwards search:
c
a(i)=a(q)
a(g)=ta
go to (65,64,63,62,61,611,612,613),iring
613 h(i) = h(q)
h(q) = th
612 g(i) =g(a)
g(q) = tg
611 f(i) = f(q)
f(q) = tf
61 e(i) = e(q)
e(q) = te
62 d(i) = d(q)
d(q) = td
63 c(i) = c(a)
c(q) = tc
64 b(i) = b(q)
b(q) = tb
65 continue
C

¢ The segment is now divided in three parts: (i,q 1),(q),(qg+1,j)
c store the position of the largest segment in It and ut
c
if (2 q.le.i+j) go to 70
It(m) =
ut(m) = q 1
i =g+l
go to 80
70 [t(m) = g+1
ut(m) = |
j=q 1
c
¢ Update m and split the new smaller segment
C
80 m = nt+l
go to 10
c
¢ We arrive here if the segment has two elements we test to see if

c the segment is properly ordered if not, we perform an interchange
C
90 continue

if (a(i).le.a(j)) go to 100

xa=a (i)
a(i)=a(j)
a(j)=xa
go to (95,94,93,92,91,911,912,913),iring
913 xh = h(i)
h(i) = h(j)
h(j) = xh
912 xg =g(i)
g(i) =ga(j)
g(j) = xg
911 xf = f(i)
f(i) = (i)
f(j) = xf
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91 xe = e(i)
e(i) = e(j)
e(j) = xe
92 xd =d(i)
d(i) =d(j)
d(j) = xd
93 XC = c(i)
c(i) =c(j)
c(j) = xc
94 xb = b(i)
b(i) = b(j)
b(j) = xb

95 continue
c
c If It and ut contain more segments to be sorted repeat process:
C
100 m=m 1
if (m.le.0) go to 110
i = It(m)
j = ut(m)
go to 10
110 continue
return
end

B.21 Subroutine SQDIST

real 8 function sqdist(x1,y1,z1,x2,y2,2z2,ind ,MAXROT, rotmat)
Squared Anisotropic Distance Calculation Given Matrix Indicator

This routine calculates the anisotropic distance between two points
given the coordinates of each point and a definition of the
anisotropy.

INPUT VARIABLES:

x1l,yl,z1 Coordinates of first point

X2,y2,22 Coordinates of second point

ind The rotation matrix to use

MAXROT The maximum number of rotation matrices dimensioned
rotmat The rotation matrices

OUTPUT VARIABLES:

sqdist The squared distance accounting for the anisotropy
and the rotation of coordinates (if any).

NO EXTERNAL REFERENCES

OO0 OO0 0000O00O0000000000000000000O0
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real 8 rotmat(MAXROT,3,3),cont,dx,dy,dz
c
¢ Compute component distance vectors and the squared distance:
c

dx = dble(x1 x2)
dy = dble(yl y2)
dz = dble(z1 z2)
sqdist = 0.0
do i=1,3
cont = rotmat(ind,i,1) dx
+ + rotmat(ind,i,2) dy
+ + rotmat(ind,i,3) dz
sqdist = sqdist + cont cont
end do
return
end

B.22 Subroutine srchsupr

subroutine srchsupr(xloc,yloc, zloc ,radsqd, irot ,MAXROT, rotmat, &
nshtosr ,ixsbtosr ,iysbtosr ,izsbtosr ,noct,nd, &
X,Y,z,ddx,ddy,tmp, nisb ,nxsup ,xmnsup, xsizsup , &
nysup ,ymnsup, ysizsup ,nzsup,zmnsup, zsizsup , &
nsc,xsl,ysl,hxs2,ys2,ncloseclose,infoct)

Ro Ro Ro Ro

Search Within Super Block Search Limits

This subroutine searches through all the data that have been tagged in
the super block subroutine. The close data are passed back in the
index array "close". An octant search is allowed.

INPUT VARIABLES:

xloc ,yloc, zloc location of point being estimated/simulated
radsqd squared search radius

irot index of the rotation matrix for searching
MAXROT size of rotation matrix arrays

rotmat rotation matrices

nsbtosr Number of super blocks to search

ixsbtosr X offsets for super blocks to search

iysbtosr Y offsets for super blocks to search

izsbtosr Z offsets for super blocks to search

noct If >0 then data will be partitioned into octants
nd Number of data

x(nd) X coordinates of the data

y(nd) Y coordinates of the data

z(nd) Z coordinates of the data

ddx(nd) X difference for Kriging under BC

ddy(nd) Y difference for Kriging under BC

tmp(nd) Temporary storage to keep track of the squared

distance associated with each data
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! nisb () Array with cumulative number of data in each

! super block.

! nxsup ,xmnsup, xsizsup Definition of the X super block grid

! nysup,ymnsup,ysizsup Definition of the X super block grid

! nzsup,zmnsup, zsizsup Definition of the X super block grid

! nsc Number of "gradient" segments

! xsl(nsc) X coordinates of the 1st endpoint of a "gradient” segment
! xs2(nsc) Y coordinates of the 1st endpoint of a "gradient" segment
! ysl(nsc) X coordinates of the 2nd endpoint of a "gradient"” segment
! ys2(nsc) Y coordinates of the 2nd endpoint of a "gradient" segment
|

|

]

I OUTPUT VARIABLES:

|

! nclose Number of close data

! close () Index of close data

! infoct Number of informed octants (only computes if

! performing an octant search)

|

|

]

I EXTERNAL REFERENCES:

|

! sqdist Computes anisotropic squared distance

! sortem Sorts multiple arrays in ascending order

! intersect Checks if two segments are intersecting

|

|

|

|

real x(),y( ),z( ),ddx( ),ddy( ),tmp( ),close( )
real xs1( ),ys1l( ),xs2( ),ys2( )

real 8 rotmat(MAXROT,3,3),hsqd, sqdist

integer nsc

integer nisb( ),inoct(8)

integer ixsbhtosr( ),iysbtosr( ),izsbtosr( )

logical inflag, intersect

Determine the super block location of point being estimated:

call getindx(nxsup,xmnsup, xsizsup , xloc ,ix,inflag)
call getindx(nysup,ymnsup,ysizsup ,yloc,iy,inflag)
call getindx(nzsup,zmnsup, zsizsup , zloc ,iz ,inflag)

Loop over all the possible Super Blocks:

nclose = 0
do 1 isup=1,nshtosr

Is this super block within the grid system:

iXxsup = ix + ixshtosr(isup)

iysup = iy + iysbtosr(isup)

izsup = iz + izsbtosr(isup)

if (ixsup.le.0.or.ixsup.gt.nxsup.or. &
iysup.le.0.or.iysup.gt.nysup.or. &
izsup.le.0.or.izsup.gt.nzsup) go to 1

Ro Ro
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I Figure out how many samples in this super block:

ii = ixsup + (iysup 1) nxsup + (izsup 1) nxsup nysup
if (ii.eq.1) then
nums = nisb (ii)

i =0

else
nums = nisb(ii) nisb(ii 1)
i = nisb(ii 1)

endif

I Loop over all the data in this super block:

do 2 ii=1,nums
i=i+1

I Check if this is a "real" data point:
if ((ddx(i).ne.0.0).or.(ddy(i).ne.0.0)) go to 2
I Check squared distance:
hsqd = sqdist(xloc,yloc, zloc ,x(i),y(i),z(i),irot ,MAXROT,
rotmat)
if (real (hsqd).gt.radsqd) go to 2
I Check if this point is screened by "no flow" segments:
do k=1,nsc
if (intersect(xloc,yloc ,x(i),y(i),xs1(k),ysl(k), &
& xs2(k),ys2(k)).eq..true.) go to 2
end do
I Accept this sample:
nclose = nclose + 1
close(nclose) = real (i)
tmp(nclose) = real (hsqd)
2 continue
1 continue
I Sort the nearby samples by distance to point being estimated:
call sortem(1l,nclose ,tmp,1 close,c,d,e,f,g,h)
I If we aren't doing an octant search then just return:
if (noct.le.0) return
I PARTITION THE DATA INTO OCTANTS:
do i=1,8
inoct(i) =0

end do

I Now pick up the closest samples in each octant:
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nt = 8 noct

na =0

do j=1,nclose
i = int( close(j))
h = tmp(j)
dx = x(i) xloc
dy = y(i) yloc
dz = z(i) zloc
if (dz.1t.0.) go to 5
iq=4
if (dx.le.0.0 .and. dy.gt.0.0) ig=1
if (dx.gt.0.0 .and. dy.ge.0.0) ig=2
if (dx.1t.0.0 .and. dy.le.0.0) ig=3
go to 6

5 iq=8

if (dx.le.0.0 .and. dy.gt.0.0) ig=5

if (dx.gt.0.0 .and. dy.ge.0.0) iq=6

if (dx.1t.0.0 .and. dy.le.0.0) ig=7
6 continue

inoct(iq) = inoct(iq) + 1

I Keep this sample if the maximum has not been exceeded:

if (inoct(iq).le.noct) then
na =na+1

close (na) i
tmp(na) h
if (na.eq.nt) go to 7
endif
end do

I End of data selection. Compute number of informed octants and return:

]
7 nclose = na
infoct = 0
do i=1,8
if (inoct(i).gt.0) infoct = infoct + 1
end do
!
I Finished:
]
return
end

B.23 Subroutine srchsupr2

Di erence with srchsupr :
Instead of Check if this is a "real" data point: (...) :

I Check if this is a "gradient" data point:
!

if ((ddx(i).eq.0.0).and.(ddy(i).eq.0.0)) go to 2
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B.24 Subroutine SRCHSUPR3

Di erence with srchsupr :
No Check if this is a "real" data point: (...) .
No Check if this point is screened by "no ow" segments: (...).



Appendix C

GSLIB Code : Input Files

C.1 Example of a parameter le

Parameters for COKIBC

START OF PARAMETERS:
c:\Tests\K BC2. txt

1 \ number of variables primary+other
0 \ estimated variable : O=head, l=transmittivity
1 2 0 3 4 5 \ columns for X,Y,Z,kod and variables
9e+6 le+29 \ trimming limits
0 \co located cokriging? (0=no, 1l=yes)
\ file with gridded covariate
4 \ column for covariate
3 \debugging level: 0,1,2,3
coktbc .dbg
coktbc .out
51 0.0 10.0 \nx,xmn, xsiz
51 0.0 10.0 \ny,ymn, ysiz
1 0.5 1.0 \nz,zmn, zsiz
1 1 1 \x, y, and z block discretization
0 \O=constant or 1=moving neighborhood
1 50 50 50 \min primary ,max primary ,max grad ,max all sec
710 710 0 \maximum search radii: primary
710 710 0 \maximum search radii: all secondary
0 0 \angles for search ellipsoid
\kriging type (0=SK, 1=OK, 2=OK trad)
10000000 \drift: X,y,z,xXX,yy,zz ,Xy,Xz,zy
00 0.00 0.00 0.00 \mean(i),i=1,nvar

\mean of transmissivity
1 270.0 \head gradient, gradient angle with X axis
\grid file type
\Temp\tmp11B.tmp
1 \use_log interpolation flag
0 \Restrict_Min_Value, Value_Min
0 \Restrict_Max_Value, Value Max
1 \semivariogram for "i" and "j"
0.01 \ nst, nugget effect
1 0 0 0 \ it,cc,angl,ang2,ang3
710 1 \ a_hmax, a _hmin, a_vert

~NOoORPPOOOODOOPFRPRORPDNDO
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1 2 \semivariogram for "i" and "j"
1 0.0 \ nst, nugget effect

8 1 0 0 0 \ it,cc,angl,ang2,ang3

710 710 1 \  a hmax, a_hmin, a_vert
2 2 \semivariogram for "i" and "j"
1 0 \ nst, nugget effect

1 1 0 0 0 \ it,cc,angl,ang2,ang3

7

=
o
~
=
o
=

\ a _hmax, a hmin, a_vert
C.2 Example of a data le

Irregularly spaced 18 points

5

Column 1

Column 2

Column 3

Column 4

Column 5

395 25 0 2.07758 9999999
155 85 0 6.534819 9999999
315 145 O 8.481745 9999999
55 185 0 12.45673 9999999
415 215 O 10.37956 9999999
245 245 0 13.05593 9999999
375 305 O 13.10351 9999999
35 315 0 19.32508 9999999
195 375 O 18.22474 9999999
305 415 O 16.15247 9999999
455 455 0 14.53221 9999999
65 485 0 28.41367 9999999
0 500 O 50 9999999
0 0 1 0 9999999
500 O 1 0 9999999
500 0.1 1 0 9999999
500 500 1 O 9999999
0.1 500 1 O 9999999
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