A. Connell, L. Doucet, D. Fortin, A. Hettinger, J. Lamontagne et al., Prepared for Agnico Eagle Mines Ltd, Technical Report on the Mineral Resources and Mineral Reserves, Meadowbank gold Project, vol.30, 2008.

, Meadowbank project exploration compilation and best targets in the mine area, 2012.

M. Bau, B. W. Alexander, R. Zr, . Hf, and T. Ta, U) in adjacent magnetite and chert bands and in reference standards FeR-3 and FeR-4 from the Temagami iron-formation, Canada, and the redox level of the Neoarchean ocean, vol.174, pp.337-346, 2009.

M. Bau and P. Dulski, Distribution of Y and rare-earth elements in the Penge and Kuruman Iron Formations, Transvaal Supergroup, South Africa, vol.79, pp.37-55, 1996.

A. Bekker, J. F. Slack, N. Planavsky, B. Krapez, A. Hofmann et al., Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic and biospheric processes, Economic Geology, issue.105, pp.467-508, 2010.

J. Biczok, P. Hollings, P. Klipfel, L. Heaman, R. Maas et al., Geochronology of the North Caribou greenstone belt, Superior Province Canada: Implications for tectonic history and gold mineralization at the Musselwhite mine, 2012.

, Precambrian Research, pp.209-230

W. Bleeker, The Slave Craton: Geological and Metallogenic Evolution, Goodfellow, p.4, 2006.

, Mineral Resources of Canada: A Synthesis of Major Deposit-types

, Metallogeny, the Evolution of Geological Provinces, and Exploration Methods", Geological Survey of Canada

R. Bolhar, M. J. Van-kranendonk, and B. S. Kamber, A trace element study of sideritejasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara craton-Formation from hydrothermal fluids and shallow seawater, Precambrian Research, vol.137, pp.93-114, 2005.

E. H. Borai, M. A. Eid, and H. F. Aly, Determination of REEs distribution in monazite and xenotime minerals by iron chromatography and ICP-AES, Anal Bional Chemical, vol.372, pp.537-541, 2002.

S. Castonguay, V. Janvier, P. Mercier-langevin, B. Dubé, V. Mcnicoll et al., Recognizing optimum banded-iron formation-hosted gold environments in ancient, deformed and metamorphosed terranes: Preliminary results from the Meadowbank deposit, 2012.

A. Danielson, P. Moeller, and P. Dulski, The europium anomalies in banded iron formations and the thermal history of the oceanic crust, Chemical Geology, pp.89-100, 1992.

W. J. Davis and E. Zaleski, Geochronological investigations of the Woodburn Lake group, Western Churchill province, Northwest Territories: Preliminary results; Radiogenic Age and Isotopic Studies: Report 11; in Current Research 1998-F, Geological Survey of Canada Research, pp.89-97, 1998.

R. J. Goldfarb, T. Baker, B. Dubé, D. I. Groves, C. J. Hart et al., , 2005.

R. J. Goldfarb, D. I. Groves, and S. Gardoll, Distribution, character and genesis of gold deposits in metamorphic terranes, Ore Geology Reviews, vol.18, pp.1-75, 2001.

A. M. Goodwin, Archean iron-formations and tectonic basins of the Canadian Shield, 1973.

, Economic Geology, v, vol.68, pp.915-933

B. Gourcerol, P. C. Thurston, D. J. Kontak, and O. Côté-mantha, Interpretations and implications of preliminary LA ICP-MS analysis of chert for the origin of geochemical signatures in banded iron formations (BIFs) from the Meadowbank gold deposit, Western Churchill Province, 2014.

J. S. Hanor and K. C. Duchac, Isovolumetric silicification of early Archean komatiites, 1990.

, geochemical mass balances and constraints on origin, Journal of Geology, vol.98, pp.863-877

J. R. Henderson and M. N. Henderson, Geology of the Whitehills-Tehek Lakes area, District of Keewatin, 1994.

, Geological Survey of Canada

J. R. Henderson, M. N. Henderson, L. L. Pryer, and R. G. Cresswell, Geology of the Whitehills-Tehek area, District of Keewatin: An Archean supracrustal belt with ironformation hosted gold mineralization in the central Churchill province, Current Research, pp.149-156, 1991.

R. B. Hrabi, W. A. Barclay, D. Fleming, and R. B. Alexander, Structural evolution of the Woodburn Lake group in the area of the Meadowbank gold deposit, Nunavut; in Current 6 Research, Geological Survey of Canada, vol.27, 2003.

H. L. James, Sedimentary facies iron-formation; Economic Geology, vol.49, pp.235-293, 1954.

B. S. Kamber, Archean mafic-ultramafic volcanic landmasses and their effect on oceanatmosphere chemistry, Chemical Geology, vol.274, pp.19-28, 2010.

B. S. Kamber and G. E. Webb, Transition metal abundances in microbial carbonate: a pilot study based on in-situ LA-ICP-MS analysis, Geobiology, issue.5, pp.375-389, 2007.

B. S. Kamber, A. Greig, and K. D. Collerson, A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Geochimica et Cosmochimica Acta, vol.69, pp.1041-1058, 2005.

B. S. Kamber, R. Bolhar, and G. E. Webb, Geochemistry of late Archean stromatolites from Zimbabwe: evidence for microbial life in restricted epicontinental seas, vol.132, pp.379-399, 2004.

C. Klein, Some Precambrian banded iron-formation (BIFs) from around the world: Their age, geologic settings, mineralogy, metamorphism, geochemistry, and origin, American Mineralogist, vol.90, pp.1473-1499, 2005.

J. A. Kerswill, Iron-formation-hosted gold deposits: a view from Nunavut with emphasis on "Lupin-like" deposits, 2000.

, Short Course on Geology and Mineral Deposits of Nunavut Territory, vol.10, 2000.

J. A. Kerswill, S. P. Goff, B. A. Kjarsgaard, G. A. Jenner, and L. Wilkinson, Highlights of 7 recent metallogenic investigations in western Churchill province, GeoCanada 2000 -The Millennium Geoscience Summit CD-ROM, 2000.

J. A. Kerswill, S. P. Goff, L. Wilkinson, G. A. Jenner, B. A. Kjarsgaard et al., An update on the metallogeny of the Woodburn Lake group, western Churchill province, Northwest Territories; In Current Research 1998-C, Geological Survey of Canada, pp.29-41, 1998.

M. G. Lawrence and B. S. Kamber, The behavior of the rare earth elements during estuarine mixing-revisited, 2005.

, Marine Chemistry, v, vol.100, pp.147-161

H. P. Longerich, S. E. Jackson, and D. Gunther, Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation, Journal of Analytical Atomic Spectrometry, issue.11, pp.899-904, 1996.

D. R. Lowe, Petrology and sedimentology of cherts and related silicified sedimentary rocks in the Swaziland Supergroup, vol.329, pp.83-114, 1999.

S. Pehrsson, L. Wilkinson, E. Zaleski, J. Kerswill, and R. B. Alexander, Structural geometry of the Meadowbank deposit area, Woodburn Lake group-implications for a major gold deposit in the western Churchill province, 2000.

S. J. Pehrsson, L. Wilkinson, and E. Zaleski, Geology of the Meadowbank gold deposit area, Nunavut; Geological Survey of Canada, Open File, vol.4269, 2004.

G. N. Phillips, D. I. Groves, and J. E. Martyn, An epigenetic origin for Archean banded iron-formation-hosted gold deposits, Economic Geology and the Bulletin of the Society of Economic Geologists, vol.79, pp.162-171, 1984.

N. Planavsky, A. Bekker, O. J. Rouxel, B. S. Kamber, A. W. Hofmann et al., Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition, Geochimica et Cosmochimica Acta, vol.74, 2010.

N. R. Posth, I. Kohler, E. D. Swanner, C. Schroder, E. Wellmann et al., Simulating Precambrian banded iron formation diagenesis, Chemical Geology, vol.8, p.p, 2013.

J. C. Roddick, J. R. Henderson, and H. J. Chapman, U-Pb ages from the Archean Whitehills-Tehek Lakes Supracrustal Bell, Radiogenic Age and Isotopic Studies, pp.31-40, 1992.

Y. Sano, K. Terada, and T. Fukuoka, High mass resolution ion microprobe analysis of rare earth element in silicate glass, apatite and zircon: lack of matrix dependency, Chemical Geology, vol.184, pp.217-230, 2002.

R. L. Sherlock, M. S. Pehrsson, A. V. Logan, R. B. Hrabi, and W. J. Davis, Geological Setting of the Meadowbank Gold Deposits, Woodburn Lake Group, Nunavut; Exploration and Mining Geology, vol.13, pp.67-107, 2004.

R. L. Sherlock, R. B. Alexander, R. March, and W. A. Barclay, Geologic setting of the 8, 2001.

B. W. Alexander, M. Bau, P. Andersson, and P. Dulski, Continentally-derived solutes in shallow Archean sea water; rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, Geochimica et Cosmochimica Acta, pp.378-394, 2008.

D. S. Alibo and Y. Nozaki, Rare earth elements in seawater: particle association, shalenormalization, and Ce oxidation, Geochimica et Cosmochimica Acta, vol.63, pp.363-372, 1999.

A. C. Allwood, B. S. Kamber, M. R. Walter, I. W. Burch, and I. Kanik, Trace element record depositional history of an Early Archean stromatolitic carbonate platform, Chemical Geology, vol.270, pp.148-163, 2010.

A. E. Armitage, R. S. James, and S. P. Goff, Gold mineralization in Archean banded iron formation, Third Portage Lake area, Northwest Territories, Canada; Exploration and Mining Geology, vol.5, pp.1-15, 1996.

L. B. Aspler and J. R. Chiarenzelli, Stratigraphy, sedimentology and physical volcanology of the Henik Group, central Ennadai-Rankin greenstone belt, Late Archean paleogeography of the Hearne Province and tectonic implications, 1996.

, Precambrian Research, v, vol.77, pp.59-89

S. J. Barnes, G. Heggie, and M. L. Fiorentini, Spatial variation in platinum group element concentrations in ore-bearing komatiite at the Long-Victor deposit, Kambalda Dome, Western Australia: enlarging the footprint of nickel sulfide orebodies, Economic Geology, vol.108, pp.913-933, 2013.

T. J. Barrett, P. W. Fralick, and I. Jarvis, Rare-earth-element geochemistry of some Archean iron formations north of Lake Superior, Canadian Journal of Earth Sciences, vol.25, pp.570-580, 1988.

M. Bau, Effects of syn-and post-depositional processes on the rare-earth element distribution in Precambrian iron-formations, 1993.

, European Journal of Mineralogy, issue.5, pp.257-267

M. Bau and P. Dulski, Distribution of Y and rare-earth elements in the Penge and Kuruman Iron Formations, Transvaal Supergroup, South Africa, vol.79, pp.37-55, 1996.

M. Bau and P. Dulski, Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behavior during near-vent mixing and for the Y/Ho ratio of the Proterozoic seawater, Chemical Geology, vol.155, pp.70-90, 1999.

M. Bau, Scavenging of dissolved yttrium and rare-earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect, Geochimica et Cosmochimica Acta, vol.63, issue.1, pp.67-77, 1999.

M. Bau and A. Koschinsky, Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferro manganeses crusts, Geochemical Journal, vol.43, pp.37-47, 2008.

A. Bekker, J. F. Slack, N. Planavsky, B. Krapez, A. Hofmann et al., Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic and biospheric processes, Economic Geology, issue.105, pp.467-508, 2010.

M. R. Bhatia and K. A. Crook, Trace elements characteristics of graywackes and tectonic setting discrimination of sedimentary basins, Contributions to Mineralogy and Petrology, vol.92, pp.181-193, 1986.

J. Biczok, P. Hollings, P. Klipfel, L. Heaman, R. Maas et al., Geochronology of the North Caribou greenstone belt, Superior Province Canada: Implications for tectonic history and gold mineralization at the Musselwhite mine, 2012.

, Precambrian Research, pp.209-230

R. Bolhar, M. J. Van-kranendonk, and B. S. Kamber, A trace element study of sideritejasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara craton-Formation from hydrothermal fluids and shallow seawater, Precambrian Research, vol.137, pp.93-114, 2005.

F. W. Breaks, I. A. Osmani, and E. A. Dekemp, Geology of the North Caribou Lake area, northwestern Ontario; Ontario Geological Survey, Open File Report, vol.6023, 2001.

R. L. Carpenter, Relative and absolute timing of supracrustal deposition, tectonothermal activity and gold mineralization, West Meliadine region, vol.62, 2004.

R. L. Carpenter, N. A. Duke, H. A. Sandeman, and R. Stern, Relative and absolute timing of gold mineralization along the Meliadine Trend, Nunavut, Canada; evidence for Paleoproterozoic gold hosted in an Archean greenstone belt.; Economic Geology and the, Bulletin of the Society of Economic Geologists, vol.100, pp.567-576, 2005.

A. Danielson, P. Moeller, and P. Dulski, The europium anomalies in banded iron 11 formations and the thermal history of the oceanic crust, Chemical Geology, pp.89-100, 1992.

W. J. Davis, J. J. Ryan, H. A. Sandeman, and S. Tella, A Paleoprotorozoic detrital zircon age for a key conglomeratic horizon within the Rankin Inlet area, Geological Survey of Canada, vol.10, 2008.

H. J. Debaar, M. P. Bacon, and P. G. Brewer, Rare earth elements in the Pacific and Atlantic Oceans; Geochemica et Cosmochimica Acta, vol.49, pp.1943-1959, 1985.

K. Ding, W. E. Seyfried, Z. Zhang, M. K. Tivey, K. L. Von-damm et al., The in-situ pH of hydrothermal fluids at mid-ocean ridge; Earth and Planetary, vol.237, pp.167-174, 2005.

P. Fralick and P. K. Pufahl, Iron formation in Neoarchean deltaic successions and the microbially mediated deposition of transgressive systems tracts, Journal of Sedimentary Research, vol.76, pp.1057-1066, 2006.

A. M. Goodwin, Archean iron-formations and tectonic basins of the Canadian Shield, 1973.

, Economic Geology, v, vol.68, pp.915-933

B. Gourcerol, P. C. Thurston, D. J. Kontak, and O. Côté-mantha, Interpretations and implications of preliminary LA ICP-MS analysis of chert for the origin of geochemical signatures in banded iron formations (BIFs) from the Meadowbank gold deposit, Chemical Geology, pp.89-107, 2015.

B. Gourcerol, P. C. Thurston, D. J. Kontak, O. Côté-mantha, and J. Biczok, The 12 geochemistry of chert from the Banded Iron Formation-type Musselwhite and Meadowbank gold deposits: Distinguishing primary and mineralization-related signatures of chert: Geological Survey of Canada, 2015.

G. A. Gross, A classification of iron-formations based on depositional environments, 1980.

, Canadian Mineralogist, v, vol.100, pp.1511-1527

R. S. Hall and D. M. Rigg, Gold '86; an international symposium on the geology of gold deposits, pp.124-136, 1986.

J. S. Hanor and K. C. Duchac, Isovolumetric silicification of early Archean komatiites, 1990.

, geochemical mass balances and constraints on origin, Journal of Geology, vol.98, pp.863-877

J. Hoefs, Stable isotope geochemistry, p.293, 2009.

H. D. Holland, The geologic history of seawater, pp.583-625, 2003.

P. Hollings and R. Kerrich, Trace element systematics of ultramafic and mafic volcanic rocks from the 3 Ga North Caribou greenstone belt, northwestern Superior Province, Precambrian Research, issue.93, pp.257-279, 1999.

R. B. Hrabi, W. A. Barclay, D. Fleming, and R. B. Alexander, Structural evolution of the Woodburn Lake group in the area of the Meadowbank gold deposit, Nunavut; In Current Research 2003-C27, Geological Survey of Canada, vol.10, 2003.

H. L. James, Sedimentary facies iron-formation; Economic Geology, vol.49, pp.235-293, 1954.

V. Janvier, S. Castonguay, P. Mercier-langevin, B. Dubé, V. Mcnicoll et al., Preliminary results of geology of the Portage deposit, Geological Survey of Canada, 2015.

B. S. Kamber, R. Bolhar, and G. E. Webb, Geochemistry of late Archean stromatolites from Zimbabwe: evidence for microbial life in restricted epicontinental seas, vol.132, pp.379-399, 2004.

B. S. Kamber, A. Greig, and K. D. Collerson, A new estimate for the composition of weathered young upper continental crust from alluvial sediments, 2005.

, Geochimica et Cosmochimica Acta, vol.69, pp.1041-1058

B. S. Kamber and G. E. Webb, Transition metal abundances in microbial carbonate: a pilot study based on in-situ LA-ICP-MS analysis, Geobiology, issue.5, pp.375-389, 2007.

B. S. Kamber, G. E. Webb, and M. Gallagher, The rare earth element signal in Archaean microbial carbonate: information on ocean redox and biogenicity, Journal of the Geological Society, vol.171, pp.745-763, 2014.

A. Kappler, C. Pasquero, K. O. Konhauser, and D. K. Newman, Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria, Geology, vol.33, pp.865-868, 2005.

I. Kawabe, A. Ohta, S. Ishii, M. Tokumura, and K. Miyauchi, , 1999.

, between Fe-Mn oxyhydroxide precipitates and weakly acid NaCl solutions: Convex tetrad effect and fractionation of Y and Sc from heavy lanthanides

, Geochemical Journal, v, vol.33, pp.167-179

I. Kawabe, Calculation of oxygen isotope fractionation in quartz-water system with special reference to the low temperature fractionation, Geochimica et Cosmochimica Acta, vol.42, pp.613-621, 1978.

I. Kita, S. Taguchi, and O. Matsubaya, Oxygen isotope fractionation between amorphous silica and water at 34-93°C. Nature, v. 314, pp.83-84, 1985.

C. Klein, Some Precambrian banded iron-formation (BIFs) from around the world: Their age, geologic settings, mineralogy, metamorphism, geochemistry, and origin, American Mineralogist, vol.90, pp.1473-1499, 2005.

L. P. Knauth and D. R. Lowe, Oxygen isotope geochemistry of cherts from Onverwacht Group (3.4 billion years), Transvaal, South-Africa, with implications for secular variations in isotopic composition of cherts, Earth Planetary Science Letter, pp.209-222, 1978.

L. P. Knauth, Silica: Physical Behavior, Geochemistry and Materials Applications, pp.233-258, 1994.

L. P. Knauth and D. R. Lowe, High Archean climatic temperature inferred from oxygen isotope geochemistry of chert in the 3.5 Ga Swaziland Supergroup, vol.115, pp.566-580, 2003.

O. K. Konhauser, D. K. Newman, and A. Kappler, The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations, 2005.

, Geobiology, issue.3, pp.167-177

D. U. Kresz and B. Zayachivsky, Precambrian Geology, northern Long Lac area, 1991.

L. R. Kump and W. E. Seyfried, Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers; Earth and Planetary Science Letters, vol.235, pp.654-662, 2005.

B. Lafrance, J. C. Dewolfe, and G. M. Stott, A structural reappraisal of the Beardmore-Geraldton Belt at the southern boundary of the Wabigoon subprovince, Ontario, and implications for gold mineralization, Canadian Journal Earth Sciences, pp.217-235, 2004.

C. J. Lawley, B. Dubé, P. Mercier-langevin, B. Kjarsgaard, R. Knight et al., Defining and mapping hydrothermal footprints at the BIF-hosted Meliadine gold district, Journal of Geochemical Exploration, vol.155, pp.33-55, 2015.

M. G. Lawrence and B. S. Kamber, The behavior of the rare earth elements during estuarine mixing-revisited, 2006.

, Marine Chemistry, v, vol.100, pp.147-161

A. C. Lawson, Report on the geology of the Lake of the Woods region, with special reference to the Keewatin (Huronian?) belt of the Archean rocks; Geological Survey of Canada, p.1885

C. Lécuyer and P. Allemand, Modelling of the oxygen isotopes evolution of seawater, p.16, 1999.

, Cosmochimica Acta, v, vol.63, pp.351-361

H. P. Longerich, S. E. Jackson, and D. Gunther, Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation, Journal of Analytical Atomic Spectrometry, issue.11, pp.899-904, 1996.

W. O. Mackasey, G. R. Edwards, and D. F. Cape, Legault Township, District of Thunder Bay; Ontario Division of Mines, Preliminary Map P-1191, 1976.

J. Marin, M. Chaussidon, and F. Robert, Microscale oxygen isotope variations in 1.9 Ga Gunflint cherts: assessments of diagenesis effects and implications for oceanic paleotemperature reconstructions; Geochemica et Cosmochimica Acta, vol.74, pp.116-130, 2010.

J. Marin-carbonne, M. Chaussidon, M. C. Boiron, and F. Robert, A combined in-situ oxygen, silicon isotopic and fluid inclusion study of a chert sample from Onverwacht Group (3.35 Ga, South Africa): new constraints on fluid circulation, Chemical Geology, vol.286, pp.59-71, 2011.

J. Marin-carbonne, M. Chaussidon, and F. Robert, Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: implications for paleo-temperature reconstructions; Geochemica et Cosmochimica Acta, vol.92, pp.129-147, 2012.

J. Marin-carbonne, F. Faure, M. Chaussidon, D. Jacob, and F. Robert, A petrographic and isotopic criterion of the state of preservation of Precambriancherts based on the characterization of the quartz veins, vol.231, pp.290-300, 2013.

J. Marin-carbonne, F. Robert, and M. Chaussidon, The silicon and oxygen isotope compositions of Precambrian cherts: A record of oceanic paleo-temperatures?, vol.247, pp.223-234, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01769048

A. Masuda and Y. Ikeuchi, Lanthanide tetrad effect observed in marine environment, 1979.

, Geochemical Journal, v, vol.13, pp.19-22

A. Masuda, O. Kawakami, Y. Dohmoto, and T. Takenaka, Lanthanide tetrad effects in nature: two mutually opposite types, W and M, Geochemical Journal, vol.21, pp.119-124, 1987.

Y. Matsuhisa, J. R. Goldsmith, and R. N. Clayton, Oxygen isotopic fractionation in the system quartz-albite-anorthite-water, Geochimica et Cosmochimica Acta, vol.43, pp.1131-1140, 1979.

S. M. Mclennan, S. Hemming, D. K. Mcdaniel, and G. N. Hanson, Geochemical approaches to sedimentation, provenance and tectonics, vol.284, pp.21-40, 1993.

V. Mcnicoll, B. Dubé, J. Biczok, S. Castonguay, W. Oswald et al., new high-precision U-Pb ages and their impact on the geological and structural setting of the deposit, Abstract, Geol. Assoc. of Canada annual meeting, 2013.

M. Minami, A. Masuda, K. Takahashi, M. Adachi, and H. Shimizu, Y-Ho fractionation and lanthanide tetrad effect observed in cherts, Geochemical Journal, vol.32, pp.405-419, 1998.

P. Moran, Lithogeochemistry of the sedimentary stratigraphy and metasomatic alteration 18 in the Musselwhite gold deposit. North Caribou Lake metavolcanic-metasedimentary belt, Superior Province, Canada: implications for deposition and mineralization, vol.351, 2008.

H. Ohmoto, Y. Watanabe, K. E. Yamaguchi, H. Naraoka, M. Haruna et al., Chemical and biological evolution of early Earth: Constraints from banded iron formations, vol.198, pp.291-331, 2006.

W. Oswald, S. Castonguay, B. Dubé, V. J. Mcnicoll, J. Biczok et al., Geological setting of the world-class Musselwhite gold Mine, Superior Province, northwestern Ontario, and implications for exploration, Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration, pp.69-84, 2015.

A. Otto, Ore forming processes in the BIF-hosted gold deposit Musselwhite Mine, vol.86, 2002.

S. J. Pehrsson, L. Wilkinson, and E. Zaleski, Geology of the Meadowbank gold deposit area, Nunavut; Geological Survey of Canada, Open File, vol.4269, 2004.

S. J. Pehrsson, R. G. Berman, and W. J. Davis, Paleoproterozoic orogenesis during Nuna aggregation: a case study of reworking of the Rae craton, 2013.

, Precambrian Research, v, vol.232, pp.167-188

N. Planavsky, A. Bekker, O. J. Rouxel, B. S. Kamber, A. W. Hofmann et al., , p.19

T. W. Lyons, Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition, Geochimica et Cosmochimica Acta, vol.74, pp.6387-6405, 2010.

N. R. Posth, I. Kohler, E. D. Swanner, C. Schroder, E. Wellmann et al., Simulating Precambrian banded iron formation diagenesis, Chemical Geology, vol.362, pp.66-73, 2013.

P. K. Pufahl, F. Pirajno, and E. E. Hiatt, Riverine mixing and fluvial iron formation: A new type of Precambrian biochemical sediment, Geology, vol.12, pp.1235-1238, 2013.

F. Robert and M. Chaussidon, A palaeo-temperature curve for the Precambrian oceans based on silicon isotopes in cherts, Nature, vol.443, pp.969-972, 2006.

W. S. Shanks, Geology of Eva and Summer Townships, District of Thunder Bay, 1993.

R. Sherlock, S. Pehrsson, A. V. Logan, R. B. Hrabi, and W. J. Davis, Geologic setting of the Meadowbank gold deposits, pp.67-107, 2004.

R. L. Sherlock, R. B. Alexander, R. March, and W. A. Barclay, Geologic setting of the Meadowbank iron formation-hosted gold deposits; In Current Research 2001-C11, Geological Survey of Canada, vol.23, 2001.

R. L. Sherlock, R. B. Alexander, R. March, and W. A. Barclay, Geologic setting of the Meadowbank iron formation-hosted gold deposits; Geological Survey of Canada, p.20, 2001.

A. E. Armitage, R. S. James, and S. P. Goff, Gold mineralization in Archean banded iron formation, Third Portage Lake area, Northwest Territories, Canada: Exploration and Mining Geology, vol.5, pp.1-15, 1996.

L. B. Aspler and J. R. Chiarenzelli, Stratigraphy, sedimentology and physical volcanology of the Henik Group, Late Archean paleogeography of the Hearne Province and tectonic implications: Precambrian Research, vol.77, pp.59-89, 1996.

M. Bestmann and D. J. Prior, Intragranular dynamic recrystallization in naturally deformed calcite marble: diffusion accommodated grain boundary sliding as a result of subgrain rotation recrystallization, Journal of Structural Geology, vol.25, pp.1597-1613, 2003.

J. Biczok, P. Hollings, P. Klipfel, L. Heaman, R. Maas et al., Geochronology of the North Caribou greenstone belt, Superior Province Canada: Implications for tectonic history and gold mineralization at the Musselwhite mine: Precambrian Research, pp.209-230, 2012.

F. P. Bierlein, D. I. Grovs, R. J. Goldfarb, and B. Dubé, Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits: Miner Deposita, vol.40, pp.874-886, 2006.

F. P. Bierlein and D. E. Crowe, Phanerozoic orogenic lode gold deposits: Review in Economic Geology, vol.3, pp.103-139, 2000.

F. W. Breaks, I. A. Osmani, and E. A. Dekemp, Geology of the North Caribou Lake area, northwestern Ontario: Ontario Geological Survey, Open File Report, vol.6023, 2001.

S. W. Bull, R. R. Large, G. R. Jenkin, P. A. Lusty, I. Mcdonald et al., Setting the stage for the genesis of the giant Bendigo ore system, vol.393, pp.1-31, 2015.

S. W. Caddey, R. L. Bachman, T. J. Campbell, R. R. Reid, and R. P. Otto, The Homestake gold mine, an Early Proterozoic iron-formation-hosted gold deposit, United States Geological Survey, vol.67, 1991.

R. L. Carpenter, Relative and absolute timing of supracrustal deposition, tectonothermal activity and gold mineralization, West Meliadine region, vol.362, 2004.

R. L. Carpenter, N. A. Duke, H. A. Sandeman, and R. Stern, Relative and absolute timing of gold mineralization along the Meliadine Trend, Nunavut, Canada; evidence for Paleoproterozoic gold hosted in an Archean greenstone belt: Economic Geology and the, Bulletin of the Society of Economic Geologists, vol.100, pp.567-576, 2005.

M. Chen, I. H. Campbell, Y. Xue, W. Tian, T. R. Ireland et al., Multiple sulfur isotope analyses support a magmatic model for the volcanogenic massive sulfide deposits of the Teutonic Bore volcanic Complex, Economic Geology, vol.110, issue.6, pp.1411-1423, 2015.

N. J. Cook, C. L. Ciobanu, D. Meria, D. Silcock, and B. Wade, Arsenopyrite-Pyrite Association in an Orogenic Gold Ore: Tracing Mineralization History from Textures and Trace Elements: Economic Geology, vol.108, pp.1273-1283, 2013.

W. J. Davis, J. J. Ryan, H. A. Sandeman, T. , and S. , implications for Archean and Proterozoic evolution of the area: In Current research 2008-8, Geological Survey of Canada, vol.10, 2008.

B. Dubé, P. Mercier-langevin, S. Castonguay, V. J. Mcnicoll, W. Bleeker et al., Precambrian lode gold deposits -a summary of TGI-4 contributions to the understanding of lode gold deposits, 2015.

, Precambrian Lode Gold Deposits and Implications for Exploration

. Mercier-langevin, Geological Survey of Canada, Open File 7852, pp.1-24

B. Dubé, P. Mercier-langevin, I. Kjarsgaard, M. Hannington, V. Becu et al., The Bousquet 2-Dumagami world-class Archean Aurich volcanogenic massive sulfide deposit, Abitibi, Quebec; metamorphosed submarine advanced argillic alteration footprint and genesis, Economic Geology and the Bulletin of the Society of Economic Geologists, vol.109, issue.1, pp.121-166, 2014.

B. Dubé and P. Gosselin, Greenstone-hosted quart-carbonate vein deposits: Geological Association of Canada, Mineral Deposits Division, Special Publication, vol.5, pp.49-73, 2007.

R. L. Folk, Nannobacteria and the formation of framboidal pyrite: Textural evidence, Journal of Earth System Science, vol.114, pp.369-374, 2005.

J. M. Franklin, H. L. Gibson, I. R. Jonasson, and A. G. Galley, Volcanogenic Massive sulfide Deposits: Economic Geology 100th Anniversary Volume, pp.523-560, 2005.

H. E. Frimmel and Q. Hennigh, First whiffs of atmospheric oxygen triggered onset of crustal gold cycle: Mineralium Deposita, vol.50, pp.5-23, 2015.

H. E. Frimmel, A giant Mesoarchean crustal gold-enrichment episode: possible causes and consequences for exploration: Society of Economic Geology, Special publication v, vol.18, pp.209-234, 2014.

R. Frei, P. S. Dahl, E. F. Duke, T. R. Hansen, M. M. Frandsson et al., Trace element and isotopic characterization of Neoarchean and Paleoproterozoic iron formations in the Black Hills (South Dakota USA): assessment of chemical change during 2.9-1.9 Ga deposition bracketing the 2.4-2.2 Ga first rise of atmospheric oxygen: Precambrian Geology, vol.162, pp.441-474, 2008.

R. E. Fripp, Stratabound gold deposits in Archean banded iron formation, Rhodesia: Economic Geology, vol.71, pp.58-75, 1976.

J. Gao, S. E. Jackson, B. Dubé, D. J. Kontak, D. Souza et al., Genesis of the Canadian Malartic, Côté Gold, and Musselwhite gold deposits: Insights, 2015.

, element mapping of pyrite, Contributions to the understanding of Precambrian Lode Gold Deposits and Implications for Exploration, vol.4

P. Dubé and . Mercier-langevin,

, Geological Survey of Canada, Open File 7852, pp.157-175

R. J. Goldfarb and D. I. Groves, Orogenic gold: common or evolving fluid and metal sources through time: Lithos, vol.233, pp.2-26, 2015.

R. J. Goldfarb, T. Baker, B. Dubé, D. I. Groves, C. J. Hart et al., Distribution, character and genesis of gold deposits in metamorphic terranes, Orogenic gold and geologic time: A global synthesis, vol.18, pp.1-75, 2001.

B. Gourcerol, P. C. Thurston, D. J. Kontak, and O. Côté-mantha, Interpretations and implications of preliminary LA ICP-MS analysis of chert for the origin of geochemical signatures in banded iron formations (BIFs) from the Meadowbank gold deposit, Chemical Geology, pp.89-107, 2015.

B. Gourcerol, P. C. Thurston, D. J. Kontak, O. Côté-mantha, and J. Biczok, The geochemistry of chert from the Banded Iron Formation-type Musselwhite and Meadowbank gold deposits: Distinguishing primary and mineralization-related signatures of chert: Geological Survey of Canada, 2015.

B. Gourcerol, P. C. Thurston, D. J. Kontak, O. Côté-mantha, and J. Biczok, Depositional setting of Algoma-type banded iron formation from the Meadowbank, Meliadine, and Musselwhite gold deposits, In: Targeted Geoscience Initiative, vol.4, p.102, 2015.

B. Dubé and P. Mercier-langevin, Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration, Open File, vol.7852, pp.55-68

D. I. Groves, R. J. Goldfarb, F. Robert, and C. J. Hart, Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research and exploration significance: Economic Geology, vol.100, pp.203-224, 2003.

D. I. Groves, G. N. Phillips, S. E. Ho, S. M. Houston, and C. A. Standing, Craton-scale distribution of Archean greenstone gold deposits; predictive capacity of the metamorphic model: Economic Geology, vol.82, pp.2045-2058, 1987.

R. S. Hall and D. M. Rigg, Gold '86; an international symposium on the geology of gold deposits; proceedings volume: GOLD '86, pp.124-136, 1986.

P. Hollings and R. Kerrich, Trace element systematics of ultramafic and mafic volcanic rocks from the 3 Ga North Caribou greenstone belt, northwestern Superior Province: Precambrian Research, pp.257-279, 1999.

D. Howell, W. L. Griffin, N. J. Pearson, W. Powell, P. Wieland et al., Trace element portioning in mixed-habit diamonds: Chemical Geology, vol.355, pp.134-143, 2013.

R. B. Hrabi, W. A. Barclay, D. Fleming, A. , and R. B. , Structural evolution of the Woodburn Lake group in the area of the Meadowbank gold deposit, Nunavut; In Current Research 2003-C27: Geological Survey of Canada, vol.10, 2003.

C. Isaac, Stable isotope (N, O, H) geochemistry, petrology and compositions of biotite of the Musselwhite Mine, Ontario: implications for mineralization: Unpublished Master's Thesis, vol.104, 2008.

V. Janvier, S. Castonguay, P. Mercier-langevin, B. Dubé, V. Mcnicoll et al., Preliminary results of geology of the Portage deposit, Geological Survey of Canada, 2015.

C. J. Kelly, D. A. Schneider, P. Dubé, and . Mercier-langevin, Insights into the timing of mineralization and metamorphism in the North Caribou Greenstone Belt, Western Superior Province; In: Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration, Open File, vol.7852, pp.245-253, 2015.

J. A. Kerswill, . V. ;-r, W. D. Kirkham, R. I. Sinclair, J. M. Thorpe et al., Models for iron-formation-hosted gold deposits, Geological Survey of Canada, pp.171-199, 1993.

J. A. Kerswill, W. D. Eckstrand, &. R. Sinclair, and . Thorpe, Iron-formation hosted stratabound gold; In: Geology of Canadian Mineral Deposit Types, pp.367-382, 1996.

D. J. Kontak, Applications and implications of trace element chemistry and elemental mapping of ore minerals to hydrothermal ore deposit discrimination and genetic models: Geological Association of Canada-Mineralogical Association of Canada Joint Annual Meeting, p.293, 2007.

D. J. Kontak and P. K. Smith, A metaturbidite-hosted lode gold deposit: the Beaver Dam deposit Nova Scotia I. vein paragenesis and mineral chemistry: Canadian Mineralogist, vol.31, pp.471-522, 1993.

R. R. Large, J. A. Halpin, L. V. Danyushevsky, V. V. Maslennikov, S. W. Bull et al., Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution: Earth and Planetary Science Letters, vol.389, pp.209-220, 2014.

R. R. Large, S. W. Bull, and V. V. Maslennikov, A Carbonaceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits: Economic Geology, vol.106, pp.331-358, 2011.

R. R. Large, L. Danyushevsky, C. Hollit, V. Maslennikov, S. Meffre et al., Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits: Economic Geology, vol.104, pp.635-668, 2009.

R. R. Large, V. V. Maslennikov, F. Robert, L. V. Danyushevsky, C. et al., Multistage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi Log Deposit, Economic Geology, vol.102, pp.1233-1267, 2007.

C. J. Lawley, B. Dubé, P. Mercier-langevin, B. Kjarsgaard, R. Knight et al., Defining and mapping hydrothermal footprints at the BIF-hosted Meliadine gold district, Journal of Geochemical Exploration, vol.155, pp.33-55, 2015.

C. J. Lawley, B. Dubé, P. Mercier-langevin, V. J. Mcnicoll, R. A. Creaser et al., Setting, age, and hydrothermal footprint of the emerging Meliadine gold district, Nunavut; In: Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration, pp.99-111, 2015.

C. J. Lawley, R. A. Creaser, S. Jackson, Z. Yang, B. Davis et al., Unravelling the Western Churchill Province paleoproterozoic gold metallotect: constraints from Re-Os arsenopyrite and U-Pb xenotime geochronology and LA-ICP-MS arsenopyrite trace element chemistry at the BIF-hosted, 2015.

M. Gold-district, Economic Geology, v. 110, pp.1425-1454

P. G. Lhotka and B. E. Nesbitt, Geology of unmineralized and gold-bearing iron formation, Canadian Journal of Earth Sciences, vol.26, pp.46-64, 1989.

H. P. Longerich, S. E. Jackson, and D. Günther, Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation, Journal of Analytical Atomic Spectrometry, issue.11, pp.899-904, 1996.

T. C. Mccuaig and R. Kerrich, P-T-t deformation-fluid characteristics of lode gold deposits: Evidence from alteration systematics: Ore Geology Reviews, pp.381-453, 1998.

T. C. Mccuaig and R. Kerrich, HFSE/REE fractionations in high-MgO magmas as 106 indicators of mantle source characteristics and melting depths: Program with Abstracts-Geological Association of Canada, 1994.

, Mineralogical Association of Canada: Joint Annual Meeting, vol.19, p.73

V. Mcnicoll, B. Dubé, J. Biczok, S. Castonguay, W. Oswald et al., The Musselwhite gold deposit, new high-precision U-Pb ages and their impact on the geological and structural setting of the deposit: Abstract, Geol. Assoc. of Canada annual meeting, 2013.

P. Moran, Lithogeochemistry of the sedimentary stratigraphy and metasomatic alteration in the Musselwhite gold deposit. North Caribou Lake metavolcanic-metasedimentary belt, Superior Province, Canada: implications for deposition and mineralization, vol.351, 2008.

R. M. Morelli, C. C. Bell, R. A. Creaser, and A. Simonetti, Constraints on the genesis of gold mineralization at the Homestake gold deposit, Black Hills, South Dakota from rhenium-osmium sulfide geochronology: Miner Deposita, vol.45, pp.461-480, 2010.

R. Moss, S. D. Scott, and R. A. Binns, Gold content of eastern Manus Basin volcanic rocks; implications for enrichment in associated hydrothermal precipitates: Economic Geology and the, Bulletin of the Society of Economic Geologists, vol.96, issue.1, pp.91-107, 2001.

W. Müller, M. Shelley, P. Miller, and S. Broude, Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell, Journal of Analytical Atomic Spectrometry, vol.24, pp.209-214, 2009.

W. Oswald, S. Castonguay, B. Dubé, V. J. Mcnicoll, J. Biczok et al., , p.107

P. ;. Langevin, P. Dubé, and . Mercier-langevin, Geological setting of the world-class Musselwhite gold Mine, Superior Province, northwestern Ontario, and implications for exploration, Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration, vol.7852, pp.69-84, 2015.

A. Otto, Ore forming processes in the BIF-hosted gold deposit Musselwhite Mine, vol.86, 2002.

C. Paton, J. Hellstrom, B. Paul, J. Woodhead, and J. Hergt, Iolite: Freeware for the visualisation and processing of mass spectrometric data: Journal of Analytical Atomic pectrometry, vol.26, pp.2508-2518, 2011.

S. J. Pehrsson, L. Wilkinson, and E. Zaleski, Geology of the Meadowbank gold deposit area, Nunavut: Geological Survey of Canada, Open File, vol.4269, 2004.

S. J. Pehrsson, R. G. Berman, and W. J. Davis, Paleoproterozoic orogenesis during Nuna aggregation: a case study of reworking of the Rae craton, vol.232, pp.167-188, 2013.

G. N. Phillips, P. , and R. , Formation of gold deposits: a metamorphic devolatilization model: Journal of metamorphic geology, vol.28, pp.689-718, 2010.

G. N. Phillips, D. N. Groves, M. , and J. E. , An epigenetic origin for Archean banded iron formation-hosted gold deposits: Economic Geology, vol.79, pp.162-171, 1984.

I. K. Pitcairn, D. A. Teagle, D. Craw, G. R. Olivo, R. Kerrich et al., Sources of metals and fluids in orogenic gold deposits: Insights from the Otago and Alpine schists, Economic Geology, vol.101, pp.1525-1546, 2006.

K. H. Poulsen, F. Robert, and B. Dubé, Geological classification of Canadian gold deposits: Geological Survey of Canada, Bulletin, vol.540, 2000.

D. J. Prior, J. Wheeler, L. Peruzzo, R. Spiess, and C. Storey, Some garnet micro structures: an illustration of the potential of orientation maps and misorientation analysis in microstructural studies, Journal of Structural Geology, vol.24, pp.999-1011, 2002.

A. Putnis and C. V. Putnis, The mechanism of re-equilibration of solids in the presence of a fluid phase, Journal of Solid State Chemistry, vol.180, pp.1783-1786, 2010.

C. V. Putnis, T. Geisler, P. Schmid-beurmann, T. Stpehan, and C. Giampaolo, , 2007.

, American Mineralogist, vol.92, pp.19-26

A. Putnis, Mineral replacement reactions: from macroscopic observations to microscopic mechanisms; Mineralogical Magazine, vol.66, pp.689-708, 2002.

J. R. Ridley and L. W. Diamond, Fluid chemistry of orogenic lobe gold deposits and implications for genetic models: Reviews in Economic Geology, vol.13, pp.141-162, 2000.

M. Rittner and W. Müller, 2D mapping of LA-ICPMS trace element distributions using R: Computers & Geosciences, v. 42, pp.152-161, 2012.

J. Schieber, Sedimentary pyrite: A window into the microbial past: Geology, v. 30, p.109, 2002.

F. Scholz and T. Neumann, Trace element diagenesis in pyrite-rich sediments of the Achterwasser lagoon, SW Baltic Sea: Marine Chemistry, vol.107, pp.516-532, 2007.

R. L. Sherlock, M. S. Pehrsson, A. V. Logan, R. B. Hrabi, and W. J. Davis, Geological Setting of the Meadowbank Gold Deposits, Nunavut: Exploration and Mining Geology, vol.13, issue.1-4, pp.67-107, 2004.

R. L. Sherlock, R. B. Alexander, R. March, and W. A. Barclay, Geologic setting of the Meadowbank iron formation-hosted gold deposits; In Current Research 2001-C11: Geological Survey of Canada, vol.23, 2001.

R. L. Sherlock, R. B. Alexander, R. March, and W. A. Barclay, Geologic setting of the Meadowbank iron formation-hosted gold deposits: Geological Survey of Canada, Open File, vol.3149, 2001.

J. A. Steadman, R. R. Large, G. J. Davidson, S. W. Bull, J. Thompson et al., Paragenesis and composition of ore minerals in the Randalls BIF-hosted gold deposits, Yilgarn Craton, Western Australia: Implications for the timing of deposit formation and constraints on gold sources, pp.110-132, 2014.

P. C. Sylvester, L. J. Cabri, M. N. Turbett, G. Mcmahon, J. G. Laflamme et al., Synthesis and evaluation of a fused pyrrhotite standard reference material for platinum-group element and gold analyses by laser ablation-ICPMS: Geological Survey of, 2005.

E. Finland and F. , Platinum-group elements; from genesis to beneficiation and environmental impact, 10th International Platinum Symposium, p.110

S. Tella, D. Paul, R. G. Berman, W. J. Davis, T. D. Peterson et al., Bedrock geology compilation and regional synthesis of parts of Hearne and Rae domains, western Churchill Province, Open File, vol.5441, 2007.

H. V. Thomas, R. R. Large, S. W. Bull, V. Maslennikov, R. F. Berry et al., Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins and reefs at Bendigo gold mine, Australia: Insights for ore genesis, Economic Geology, vol.106, pp.1-31, 2011.

P. Thurston, J. Ayer, J. Goutier, and M. A. Hamilton, Depositional Gaps in Abitibi Greenstone Belt Stratigraphy: a key to exploration for syngenetic mineralization: Economic Geology, pp.1097-1134, 2008.

A. G. Tomkins, Windows of metamorphic sulfur liberation in the crust: implication for gold deposit genesis: Geochemica et Cosmochimica Acta, vol.74, pp.3246-3259, 2010.

A. G. Tomkins, D. R. Pattison, and E. Zaleski, The Hemlo gold deposit, Ontario; an example of melting and mobilization of a precious metal-sulfosalt assemblage during amphibolite facies metamorphism and deformation: Economic Geology, vol.99, pp.1063-1084, 2004.

T. Wagner, R. Klemd, T. Wenzel, and B. Mattson, Gold upgrading in metamorphosed massive sulfide ore deposits: direct evidence from laser-ablation-inductively coupled plasma-mass spectrometry analysis of invisible gold: Geology, pp.775-778, 2007.

J. O. Wheeler, P. F. Hoffman, K. D. Card, A. Davidson, B. V. Sanford et al., , p.111

W. R. Roest, Geological map of Canada: Geological survey of Canada, 1996.

C. C. Wohlgemuth-ueberwasser and K. P. Jochum, Capability of fs-LA-ICP-MS for sulfide analysis in comparison to ns-LA-ICP-MS: Reduction of laser induced matrix effects?, Journal of Analytical Atomic spectrometry, 2015.

J. Woodhead, J. Hellstrom, J. Hergt, A. Greig, and R. Maas, Isotopic and elemental imaging of geological materials by laser ablation Inductively Coupled Plasma mass spectrometry, Journal of Geostandards and Geoanalytical Research, vol.31, pp.331-343, 2007.

G. M. Wright, Geology of the southeastern barren grounds, Parts of the Districts of Mackenzie and Keewatin: Geological Survey of Canada, Memoire, vol.350, 1967.

K. Yue and Y. He, Gold contents of both mantle-derived xenoliths and sulfides in them from eastern China, Science in China Series D; Earth Sciences, vol.51, issue.4, pp.499-508, 2008.

J. Biczok, P. Hollings, P. Klipfel, L. Heaman, R. Maas et al., Geochronology of the North Caribou greenstone belt, Superior Province Canada: Implications for tectonic history and gold mineralization at the Musselwhite mine, 2012.

, Precambrian Research, pp.209-230

R. Frei, P. S. Dahl, E. F. Duke, T. R. Hansen, M. M. Frandsson et al., Trace element and isotopic characterization of Neoarchean and Paleoproterozoic iron formations in the Black Hills (South Dakota USA): assessment of chemical change during 2.9-1.9 Ga deposition bracketing the 2.4-2.2 Ga first rise of atmospheric oxygen, vol.162, pp.441-474, 2008.

J. Gao, S. E. Jackson, B. Dubé, D. J. Kontak, D. Souza et al., Genesis of the Canadian Malartic, Côté Gold, and Musselwhite gold deposits: Insights from LA-ICP-MS element mapping of pyrite, Contributions to the understanding of Precambrian Lode Gold Deposits and Implications for Exploration, vol.4, 2015.

P. Dubé and . Mercier-langevin, Geological Survey of Canada, vol.7852, pp.157-175

R. R. Large, S. W. Bull, and V. V. Maslennikov, A Carbonaceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits; Economic Geology, vol.106, pp.331-358, 2011.

R. R. Large, L. Danyushevsky, C. Hollit, V. Maslennikov, S. Meffre et al., Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits, Economic Geology, vol.104, pp.635-116, 2009.

R. R. Large, V. V. Maslennikov, F. Robert, L. V. Danyushevsky, and Z. Chang, Multistage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi Log Deposit, Economic Geology, vol.102, pp.1233-1267, 2007.

J. A. Steadman, R. R. Large, G. J. Davidson, S. W. Bull, J. Thompson et al., Paragenesis and composition of ore minerals in the Randalls BIF-hosted gold deposits, Yilgarn Craton, Western Australia: Implications for the timing of deposit formation and constraints on gold sources, pp.110-132, 2014.

, A.12 References

B. W. Alexander, M. Bau, P. Andersson, and P. Dulski, Continentally-derived solutes in shallow Archean sea water; rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, Geochimica et Cosmochimica Acta, vol.72, pp.378-394, 2008.

D. S. Alibo and Y. Nozaki, Rare earth elements in seawater: particle association, shalenormalization, and Ce oxidation, Geochimica et Cosmochimica Acta, vol.63, pp.363-372, 1999.

A. C. Allwood, B. S. Kamber, M. R. Walter, I. W. Burch, and I. Kanik, Trace element record depositional history of an Early Archean stromatolitic carbonate platform, Chemical Geology, vol.270, pp.148-163, 2010.

A. E. Armitage, R. S. James, and S. P. Goff, Gold mineralization in Archean banded iron formation, Third Portage Lake area, Northwest Territories, Canada; Exploration and Mining Geology, vol.5, pp.1-15, 1996.

K. E. Ashton, Geological Association of Canada, Mineralogical Association of Canada, Program with Abstracts, p.2, 1985.

L. B. Aspler and J. R. Chiarenzelli, Stratigraphy, sedimentology and physical volcanology of the Henik Group, central Ennadai-Rankin greenstone belt, Late Archean paleogeography of the Hearne Province and tectonic implications, 1996.

, Precambrian Research, v, vol.77, pp.59-89

, Meadowbank project exploration compilation and best targets in the mine area, 2012.

M. Bau and P. Dulski, Distribution of Y and rare-earth elements in the Penge and Kuruman Iron Formations, Transvaal Supergroup, South Africa, vol.79, pp.37-55, 1996.

M. Bau, B. W. Alexander, R. Zr, . Hf, and T. Ta, U) in adjacent magnetite and chert bands and in reference standards FeR-3 and FeR-4 from the Temagami iron-formation, Canada, and the redox level of the Neoarchean ocean, vol.174, pp.337-346, 2009.

A. Bekker, J. F. Slack, N. Planavsky, B. Krapez, A. Hofmann et al., Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic and biospheric processes, Economic Geology, issue.105, pp.467-508, 2010.

J. Biczok, P. Hollings, P. Klipfel, L. Heaman, R. Maas et al., Geochronology of the North Caribou greenstone belt, Superior Province Canada: Implications for tectonic history and gold mineralization at the Musselwhite mine, 2012.

, Precambrian Research, pp.209-230

W. Bleeker, Mineral Resources of Canada: A Synthesis of Major Deposit-types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods, Geological Survey of Canada, 2006.

R. Bolhar, M. J. Van-kranendonk, and B. S. Kamber, A trace element study of siderite-149, 2005.

. Ga-warrawoona-group, Pilbara craton-Formation from hydrothermal fluids and shallow seawater, Precambrian Research, vol.137, pp.93-114

F. W. Breaks, I. A. Osmani, and E. A. Dekemp, Geology of the North Caribou Lake area, northwestern Ontario; Ontario Geological Survey, Open File Report, vol.6023, 2001.

S. Castonguay, V. Janvier, P. Mercier-langevin, B. Dubé, V. Mcnicoll et al., Recognizing optimum banded-iron formation-hosted gold environments in ancient, deformed and metamorphosed terranes: Preliminary results from the Meadowbank deposit, 2012.

A. Danielson, P. Moeller, and P. Dulski, The europium anomalies in banded iron formations and the thermal history of the oceanic crust, Chemical Geology, pp.89-100, 1992.

W. J. Davis and E. Zaleski, Geochronological investigations of the Woodburn Lake group, Western Churchill province, Northwest Territories: Preliminary results; Radiogenic Age and Isotopic Studies: Report 11; in Current Research 1998-F, Geological Survey of Canada Research, pp.89-97, 1998.

D. W. Davis and G. M. Stott, Geochronology of several greenstone belts in the Sachigo Subprovince, northwestern Ontario. Ontario Geological Survey, 2001.

E. A. Dekemp, Stratigraphy, provenance, and geochronology of Archean supracrustal rocks of western Eyapamikama Lake area, Northwestern Ontario, vol.98, 1987.

A. M. Goodwin, Archean iron-formations and tectonic basins of the Canadian Shield, 1973.

, Economic Geology, v, vol.68, pp.915-933

R. J. Goldfarb, T. Baker, B. Dubé, D. I. Groves, C. J. Hart et al., Distribution, character and genesis of gold deposits in metamorphic terranes, Economic Geology 100th Anniversary Volume, vol.18, pp.1-75, 2001.

B. Gourcerol, P. C. Thurston, D. J. Kontak, and O. Côté-mantha, Interpretations and implications of preliminary LA ICP-MS analysis of chert for the origin of geochemical signatures in banded iron formations (BIFs) from the Meadowbank gold deposit, Current research 2013-20, vol.22, 2013.

R. S. Hall and D. M. Rigg, Gold '86; an international symposium on the geology of gold deposits, pp.124-136, 1986.

J. S. Hanor and K. C. Duchac, Isovolumetric silicification of early Archean komatiites, 1990.

, geochemical mass balances and constraints on origin, Journal of Geology, vol.98, pp.863-877

J. R. Henderson, M. N. Henderson, L. L. Pryer, and R. G. Cresswell, Geology of the Whitehills-Tehek area, District of Keewatin: An Archean supracrustal belt with ironformation hosted gold mineralization in the central Churchill province, Geological Survey of Canada, vol.151, pp.149-156, 1991.

P. F. Hoffman, Precambrian geology and tectonic history of North America, The Geology of North America-An overview, 1989.

, The Geology of North America, Part A, pp.447-512

P. Hollings and R. Kerrich, Trace element systematics of ultramafic and mafic volcanic rocks from the 3 Ga North Caribou greenstone belt, northwestern Superior Province, Precambrian Research, vol.93, pp.257-279, 1999.

R. B. Hrabi, W. A. Barclay, D. Fleming, and R. B. Alexander, Structural evolution of the Woodburn Lake group in the area of the Meadowbank gold deposit, Nunavut; in Current Research, Geological Survey of Canada, vol.27, 2003.

C. Isaac, Stable isotope (N, O, H) geochemistry, petrology and compositions of biotite of the Musselwhite Mine, Ontario: implications for mineralization, vol.104, 2008.

H. L. James, Sedimentary facies iron-formation; Economic Geology, vol.49, pp.235-293, 1954.

V. Janvier, S. Castonguay, P. Mercier-langevin, B. Dubé, V. Mcnicoll et al., Recognizing optimum banded-iron formation hosted gold environments in ancient, deformed and metamorphosed terranes: Preliminary results from the Meadowbank deposit, Nunavut; Geological Survey of Canada, 2013.

B. S. Kamber, R. Bolhar, and G. E. Webb, Geochemistry of late Archean stromatolites from Zimbabwe: evidence for microbial life in restricted epicontinental seas, 2004.

V. Reearch, , vol.132, pp.379-399

B. S. Kamber and G. E. Webb, Transition metal abundances in microbial carbonate: a pilot study based on in-situ LA-ICP-MS analysis, Geobiology, issue.5, pp.375-389, 2007.

B. S. Kamber, Archean mafic-ultramafic volcanic landmasses and their effect on oceanatmosphere chemistry, Chemical Geology, vol.274, pp.19-28, 2010.

M. J. Kolb, A microstructural study of Musselwhite Mine and Hammond Reef shear-zonehosted gold deposits, vol.197, 2010.

M. G. Lawrence and B. S. Kamber, The behavior of the rare earth elements during estuarine mixing-revisited, 2006.

, Marine Chemistry, v, vol.100, pp.147-161

V. Mcnicoll, B. Dubé, J. Biczok, S. Castonguay, W. Oswald et al., The Musselwhite gold deposit, new high-precision U-Pb ages and their impact on the geological and structural setting of the deposit. Abstract, Geol Assoc of Canada annual meeting, 2013.

A. R. Miller and S. Tella, Stratigraphic settings of semi-conformable alteration in the Spi Lake area, Kaminak greenstone belt, Churchill province, Northwest Territories. In Current Research 1995-C, Geological Survey of Canada, pp.175-186, 1995.

P. Moran, Lithogeochemistry of the sedimentary stratigraphy and metasomatic alteration in the Musselwhite gold deposit. North Caribou Lake metavolcanic-metasedimentary belt, Superior Province, Canada: implications for deposition and mineralization, 2008.

. Ontario, Bedrock geology of Ontario: Ontario Geological Survey, 1992.

W. Oswald, B. Dubé, S. Castonguay, V. Mcnicoll, J. Biczok et al., New insights on the structural and geological setting of the worldclass Musselwhite gold deposit, Superior Province, northwestern Ontario; Geological Survey of Canada, 2014.

A. Otto, Ore forming processes in the BIF-hosted gold deposit Musselwhite Mine, vol.86, 2002.

J. A. Percival, Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Special Publication, issue.5, pp.903-928, 2007.

S. Pehrsson, L. Wilkinson, E. Zaleski, J. Kerswill, and R. B. Alexander, Structural geometry of the Meadowbank deposit area, Woodburn Lake group-implications for a major gold deposit in the western Churchill province, 2000.

S. J. Pehrsson, L. Wilkinson, and E. Zaleski, Geology of the Meadowbank gold deposit area, Nunavut; Geological Survey of Canada, Open File, vol.4269, 2004.

S. J. Pehrsson, R. G. Berman, and W. J. Davis, Paleoproterozoic orogenesis during Nuna aggregation: a case study of reworking of the Rae craton, 2013.

, Precambrian Research, vol.232, pp.167-188, 2013.

G. N. Phillips, D. I. Groves, and J. E. Martyn, An epigenetic origin for Archean banded iron-formation-hosted gold deposits, Economic Geology and the Bulletin of the Society of Economic Geologists, vol.79, pp.162-171, 1984.

N. Planavsky, A. Bekker, O. J. Rouxel, B. S. Kamber, A. W. Hofmann et al., Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition, Geochimica et Cosmochimica Acta, vol.74, 2010.

J. C. Roddick, J. R. Henderson, and H. J. Chapman, U-Pb ages from the Archean Whitehills-Tehek Lakes Supracrustal Bell, Radiogenic Age and Isotopic Studies, pp.31-40, 1992.

M. Schau, Geology of the Prince Albert Group in parts of Walker Lake and Laughland Lake map areas, District of Keewatin; Geological Survey of Canada, Bulletin, vol.337, 1982.

R. L. Sherlock, M. S. Pehrsson, A. V. Logan, R. B. Hrabi, and W. J. Davis, Geological Setting of the Meadowbank Gold Deposits, Woodburn Lake Group, Nunavut; Exploration and Mining Geology, vol.13, pp.67-107, 2004.

R. L. Sherlock, R. B. Alexander, R. March, and W. A. Barclay, Geologic setting of the Meadowbank iron formation-hosted gold deposits, 2001.

, Geological Survey of Canada, vol.23, p.p

R. L. Sherlock, R. B. Alexander, R. March, and W. A. Barclay, Geologic setting of the Meadowbank iron formation-hosted gold deposits; Geological Survey of Canada, Open File, vol.3149, 2001.

G. M. Stott, F. Corfu, F. W. Breaks, and P. C. Thurston, Multiple orogenesis in northwestern Superior Province: Geological Association of Canada, Abstracts, vol.14, p.56, 1989.

P. Thurston, I. Osmani, and D. Stone, Northwestern Superior Province: review and terrane analysis, Geology of Ontario, Special, vol.4, pp.80-142, 1991.

P. C. Thurston, B. S. Kamber, and M. Whitehouse, Archean cherts in banded iron formation: Insight into Neoarchean ocean chemistry and depositional processes, 2011.

, Precambrian Research, pp.227-257

, 3) and diagrams (Fig. B.3) show relatively uniform REE+Y patterns for the magnetite layers sampled from the three different gold deposits (i.e., Meadowbank, Meliadine and Musselwhite) and these data are discussed separately below. Comparisons to other studies of magnetite geochemistry are discussed in subsequent sections. In the Meadowbank area (Fig. B.3A), the magnetite bands show depletion in light REE (LREE) relative to middle and heavy REE (HREE) with Nd/Yb MUQ = 0.1-0.4 associated with slight to moderate positive La, REE+Y Systematics Despite some minor exceptions, the REE+Y normalized data presented in the tables (Tables B

*. Eu/eu and . Muq-=, 7) and super-chondritic Y/Ho values (Y/Ho = 30.9-43.9). In addition

, In the Meliadine gold district (Fig. B.3B), most of the magnetite layers also show depletion in the LREE relative to middle and HREE

*. Eu/eu and . Muq-=-0, 9-1.9) and super-chondritic to chondritic Y/Ho values (Y/Ho = 24.7-34.9). In detail, samples MEL-032 and MEL-033 yield slightly anomalous HREE-depleted concentrations (Nd/Yb MUQ = 1.4-1.9) which are also associated with moderate positive La

, 3C), magnetite layers show depletion in LREE relative to middle and HREE (Nd/Yb MUQ = 0.3-0.5) with associated slight to moderate positive La

. Dare, Ni and Zn occur in the magnetite, whereas the relatively high Si concentrations, as noted in the three deposits, are attributed to the presence of quartz and/or other silicate grains present along the line traverses. The moderate concentrations of Ba and Sr detected may reflect presence of feldspar, likely of metamorphic origin. In previous geochemical studies of magnetite, data have been normalized to bulk continental crust (values from Rudnick and Gao, 2003) in order to emphasize the partitioning behavior of the trace elements between magnetite, the magma, hydrothermal fluid, and co-crystallizing phases, Magnetite layer samples from the three deposits show relatively similar abundances of major and trace elements, as indicated in Figure B.4, which attests to their similar overall geochemistry. As expected, high concentrations of Fe, p.167, 2009.

. Situ-(dare, Compared to the relatively high-temperature (i.e., >500ºC) hydrothermal magnetite samples from Dare et al. (2014), the magnetites in this study formed in part from lower temperature fluids, including a component of hydrothermal vent fluids (<250ºC). Thus, based on the latter, 2007.

. Nadoll, In contrast to these elements, similar or higher normalized values are noted for Pb, Zr, Hf, Mn, Mo, Nb and/or Cu, which might be attributable to the high solubility of Pb and contamination from ubiquitous micro-to nanometer scale inclusions (Duparc, 2014) such as zircon, 2012.

. Thurston, Below, we assess the validity of this chemical pattern that is also present in the magnetite layers interbedded with the cherts using the 168 data from the three Archean Algoma-type BIFs examined in this study. In addition, these data are then used to assess the validity of the currently defined fields for magnetite from BIF in magnetite classification diagrams, Bau and Dulski, 1996.

. Dekov, 2010) and the magnetite layers in this study highlights that, other than the differences in the Ce anomalies between modern metalliferous sediments versus Archean BIFs, which is due to oxidation of Ce +3 to Ce +4 in the oxic water column, the REE+Y distribution patterns of these two sample suites are very similar. In addition, both modern metalliferous sediments and ancient magnetite layers in BIFs show depletion in LREE relative to middle and HREE with associated slight to moderate positive La, Y and Eu anomalies. It is widely accepted that the depletion in LREE relative to HREE with associated variable positive La and Y anomalies represents fractionation of the REE and Y in an ambient seawater column due to the preferential removal of these elements onto Fe-oxyhydroxides, organic matter, and clay particles, B.7.1 Assessing the primary geochemical signature for magnetite layers Comparison of the REE+Y distribution patterns of metalliferous sediments (on a carbonatefree basis) composed mainly of poorly crystalline to amorphous Fe-Mn oxyhydroxides and variable amorphous silicate phases from the Pacific, 1987.

, 4) (due to primary chert and/or detrital quartz or silicates) which have partly diluted the primary geochemical signature. However, as Si concentration is around 10% of Fe concentration

D. S. Alibo and Y. Nozaki, Rare earth elements in seawater: particle association, shalenormalization, and Ce oxidation: Geochimica et Cosmochimica Acta, vol.63, pp.363-372, 1999.

A. C. Allwood, B. S. Kamber, M. R. Walter, I. W. Burch, and I. Kanik, Trace element record depositional history of an Early Archean stromatolitic carbonate platform, Chemical Geology, vol.270, pp.148-163, 2010.

T. Angerer, S. G. Hagemann, and L. Danyushevsky, Geochemical evolutions of the banded iron formation-hosted high-grade iron ore system in the Koolyanobbing Greenstone Belt, Western Australia; Economic Geology, vol.107, pp.599-644, 2012.

A. E. Armitage, R. S. James, and S. P. Goff, Gold mineralization in Archean banded iron formation, Third Portage Lake area, Northwest Territories, Canada; Exploration and Mining Geology, vol.5, pp.1-15, 1996.

L. B. Aspler and J. R. Chiarenzelli, Stratigraphy, sedimentology and physical volcanology of the Henik Group, central Ennadai-Rankin greenstone belt, Late Archean paleogeography of the Hearne Province and tectonic implications, 1996.

, Precambrian Research, v, vol.77, pp.59-89

T. J. Barrett and I. Jarvis, Rare-earth-element geochemistryof metalliferous sediments from DSDP LEG 92: The East Pacific Rise Transect, Chemical Geology, vol.67, pp.243-259, 1988.

M. Bau and P. Dulski, Distribution of Y and rare-earth elements in the Penge and Kuruman Iron Formations, p.188, 1996.

J. Biczok, P. Hollings, P. Klipfel, L. Heaman, R. Maas et al., Geochronology of the North Caribou greenstone belt, Superior Province Canada: Implications for tectonic history and gold mineralization at the Musselwhite mine, 2012.

, Precambrian Research, pp.209-230

R. Bolhar, M. J. Van-kranendonk, and B. S. Kamber, A trace element study of sideritejasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara craton-Formation from hydrothermal fluids and shallow seawater, Precambrian Research, vol.137, pp.93-114, 2005.

F. W. Breaks, I. A. Osmani, and E. A. Dekemp, Geology of the North Caribou Lake area, northwestern Ontario; Ontario Geological Survey, Open File Report, vol.6023, 2001.

R. L. Carpenter, Relative and absolute timing of supracrustal deposition, tectonothermal activity and gold mineralization, West Meliadine region, vol.362, 2004.

R. L. Carpenter, N. A. Duke, H. A. Sandeman, and R. Stern, Relative and absolute timing of gold mineralization along the Meliadine Trend, Nunavut, Canada; evidence for Paleoproterozoic gold hosted in an Archean greenstone belt.; Economic Geology and the, Bulletin of the Society of Economic Geologists, vol.100, pp.567-576, 2005.

W. T. Chen, M. Zhou, X. Li, J. F. Gao, and K. Hou, In-situ LA-ICP-MS trace elemental analyses of magnetite: Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan Province, Ore Geology Reviews, vol.65, pp.929-939, 2015.

S. A. Dare, S. J. Barnes, and G. Beaudoin, Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination, Geochimica et Cosmochimica Acta, vol.88, pp.27-50, 2012.

S. A. Dare, G. Beaudoin, J. Méric, E. Boutroy, and C. Potvin-doucet, Trace elements in magnetite as petrogenetic indicators, vol.49, pp.785-796, 2014.

W. J. Davis, J. J. Ryan, H. A. Sandeman, and S. Tella, A Paleoprotorozoic detrital zircon age for a key conglomeratic horizon within the Rankin Inlet area, Geological Survey of Canada, vol.10, 2008.

V. M. Dekov, J. Cuadros, G. D. Kamenov, D. Weiss, T. Arnold et al., Metalliferous sediments from the H.M.S. Challenger voyage, pp.1872-1876, 2010.

C. Geochemica and . Acta, , vol.74, pp.5019-5038

Q. Duparc, Corrélations de formations sédimentaires du nord-est de la sous-province de La Grande, vol.243, 2014.

Q. Duparc, S. A. Dare, P. A. Cousineau, and J. Goutier, Magnetite chemistry as a provenance indicator in Archean metamorphosed sedimentary rocks, Journal of Sedimentary Research, 2015.

C. Dupuis and G. Beaudoin, Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types, vol.46, pp.319-335, 2011.

B. Gourcerol, P. C. Thurston, D. J. Kontak, O. Côté-mantha, and J. Biczok, The geochemistry of chert from the Banded Iron Formation-type Musselwhite and Meadowbank gold deposits: Distinguishing primary and mineralization-related signatures of chert, Geological Survey of Canada, vol.24, 2015.

B. Gourcerol, P. C. Thurston, D. J. Kontak, O. Côté-mantha, and J. Biczok, Depositional Setting of Algoma-type Banded Iron Formation from the Meadowbank, Meliadine and Musselwhite gold deposits, Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration, vol.4, 2015.

B. Dubé and P. Mercier-langevin, Geological Survey of Canada, Open File 7852, pp.55-68

B. Gourcerol, P. C. Thurston, D. J. Kontak, and O. Côté-mantha, Interpretations and implications of preliminary LA ICP-MS analysis of chert for the origin of geochemical signatures in banded iron formations (BIFs) from the Meadowbank gold deposit, Chemical Geology, pp.89-107, 2015.

J. Grigsby, Detrital magnetite as a provenance indicator, Journal of Sedimentary Research, vol.60, pp.940-951, 1990.

R. S. Hall and D. M. Rigg, Gold '86; an international symposium on the geology of gold deposits, pp.124-136, 1986.

R. B. Hrabi, W. A. Barclay, D. Fleming, and R. B. Alexander, Structural evolution of the Woodburn Lake group in the area of the Meadowbank gold deposit, Nunavut, Current 191 Research 2003-C27, vol.10, 2003.

H. Hu, J. W. Li, D. Lentz, Z. Ren, X. F. Zhao et al., Dissolutionreprecipitation process of magnetite from the Chengchao iron deposit: insights into ore genesis and implication for in-situ chemical analysis of magnetite, Ore Geology Reviews, vol.57, pp.393-405, 2014.

V. Janvier, S. Castonguay, P. Mercier-langevin, B. Dubé, V. Mcnicoll et al., Preliminary results of geology of the Portage deposit, Geological Survey of Canada, 2015.

A. Kappler, C. Pasquero, K. O. Konhauser, and D. K. Newman, Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria, Geology, vol.33, pp.865-868, 2005.

B. S. Kamber, R. Bolhar, and G. E. Webb, Geochemistry of late Archean stromatolites from Zimbabwe: evidence for microbial life in restricted epicontinental seas, vol.132, pp.379-399, 2004.

B. S. Kamber, A. Greig, and K. D. Collerson, A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Geochimica et Cosmochimica Acta, vol.69, pp.1041-1058, 2005.

O. K. Konhauser, D. K. Newman, and A. Kappler, The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations, 2005.

, Geobiology, pp.167-177

O. K. Konhauser, E. Pecoits, S. V. Lalonde, D. Papineau, E. G. Nisbet et al., Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event, Nature, vol.458, pp.750-753, 2009.
URL : https://hal.archives-ouvertes.fr/insu-00411148

C. J. Lawley, B. Dubé, P. Mercier-langevin, B. Kjarsgaard, R. Knight et al., Defining and mapping hydrothermal footprints at the BIF-hosted Meliadine gold district, Journal of Geochemical Exploration, vol.155, pp.33-55, 2015.

M. G. Lawrence and B. S. Kamber, The behavior of the rare earth elements during estuarine mixing-revisited, 2006.

, Marine Chemistry, v, vol.100, pp.147-161

A. Loges, A. A. Migdisov, T. Wagner, A. E. Williams-jones, and G. Markl, An experimental study of the aqueous solubility and speciation of Y(III) fluoride at temperatures up to 250°C, Geochim. Et Cosmochim. Acta, vol.123, pp.403-415, 2013.

W. Li, X. Jin, B. Gao, C. Wang, and L. Zhang, Analysis of ultra-low level rare earth elements in magnetite samples from banded iron formations using HR-ICP-MS after chemical separation, Analytical Methods, issue.6, pp.6125-6132, 2014.

V. Mcnicoll, B. Dubé, J. Biczok, S. Castonguay, W. Oswald et al., new high-precision U-Pb ages and their impact on the geological and structural setting of the deposit, Abstract, Geol. Assoc. of Canada annual meeting, 2013.

P. Moran, Lithogeochemistry of the sedimentary stratigraphy and metasomatic alteration in the Musselwhite gold deposit. North Caribou Lake metavolcanic-metasedimentary belt, Superior Province, Canada: implications for deposition and mineralization, 2008.

P. Nadoll, T. Angerer, J. L. Mauk, D. French, and J. Walshe, The chemistry of hydrothermal magnetite: A review, Ore Geology Reviews, vol.61, pp.1-32, 2014.

P. Nadoll, J. L. Mauk, T. S. Hayes, A. E. Koenig, and S. E. Box, Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States; Economic Geology, vol.107, pp.1275-1292, 2012.

W. Oswald, S. Castonguay, B. Dubé, V. J. Mcnicoll, J. Biczok et al., Geological setting of the world-class Musselwhite gold Mine, Superior Province, northwestern Ontario, and implications for exploration, Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration, pp.69-84, 2015.

C. Paton, J. Hellstrom, B. Paul, J. Woodhead, and J. Hergt, Iolite: Freeware for the visualisation and processing of mass spectrometric data, Journal of Analytical Atomic Spectrometry, vol.26, pp.2508-2518, 2011.

E. Pecoits, M. K. Gringas, M. E. Barley, A. Kappler, N. R. Posth et al., Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry, Precambrian Research, vol.172, pp.163-187, 2009.

S. J. Pehrsson, L. Wilkinson, and E. Zaleski, Geology of the Meadowbank gold deposit area, Nunavut; Geological Survey of Canada, Open File, vol.4269, 2004.

S. J. Pehrsson, R. G. Berman, and W. J. Davis, Paleoproterozoic orogenesis during Nuna aggregation: a case study of reworking of the Rae craton, 2013.

, Precambrian Research, v, vol.232, pp.167-188

A. L. Pickard, M. E. Barley, and B. Krapez, Deep-marine depositional setting of banded iron formation: sedimentological evidence from interbedded clastic sedimentary rocks in the early palaeoproterozoic Dales Gorge member of Western Australia, Sedimentary Geology, vol.170, pp.37-62, 2003.

N. R. Posth, I. Kohler, E. D. Swanner, C. Schroder, E. Wellmann et al., Simulating Precambrian banded iron formation diagenesis, Chemical Geology, vol.362, pp.66-73, 2013.

G. Ray and I. Webster, Geology and chemistry of the low Ti magnetite-bearing Heff Cu-Au skarn and its associated plutonic rocks, 2007.

, Exploration and Mining Geology, vol.16, pp.159-186

R. L. Rudnick and S. Gao, Composition of the continental crust, Treatise on Geochemistry, vol.3, 2003.

R. Sherlock, S. Pehrsson, A. V. Logan, R. B. Hrabi, and W. J. Davis, Geologic setting of the Meadowbank gold deposits, pp.67-107, 2004.

R. L. Sherlock, R. B. Alexander, R. March, and W. A. Barclay, Geologic setting of the Meadowbank iron formation-hosted gold deposits, 2001.

, Geological Survey of Canada, vol.23, p.p

R. L. Sherlock, R. B. Alexander, R. March, and W. A. Barclay, Geologic setting of the Meadowbank iron formation-hosted gold deposits; Geological Survey of Canada, Open File, vol.3149, 2001.

T. Shibuya, T. Komiya, K. Nakamura, K. Takai, and S. Maruyama, Highly alkaline, high-temperature hydrothermal fluids in the early Archean ocean, vol.182, pp.230-238, 2010.

S. Tella, D. Paul, R. G. Berman, W. J. Davis, T. D. Peterson et al., Bedrock geology compilation and regional synthesis of parts of Hearne and Rae domains, western Churchill Province, Geological Survey of Canada, vol.5441, 2007.

W. S. Thorne, S. G. Hagemann, A. Webb, and J. Clout, Banded iron formation-related iron ore deposits of the Hamersley Province, Western Australia, pp.197-222, 2008.

P. C. Thurston, B. S. Kamber, and M. Whitehouse, Archean cherts in banded iron formation: Insight into Neoarchean ocean chemistry and depositional processes, 2012.

, Precambrian Research, pp.227-257

G. M. Wright, Geology of the southeastern barren grounds, Parts of the Districts of Mackenzie and Keewatin. Geological Survey of Canada, Memoire, vol.350, 1967.

W. W. Zhao and M. F. Zhou, In-situ LA-ICP-MS trace elemental analyses of magnetite: the Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China, Ore Geology Reviews, vol.65, pp.872-883, 2015.

L. ;. Huston and . Van-den-boorn, Gourcerol et al., 2015a, b). In contrast, the interbedded iron-rich layers, which were transformed from primary iron-bearing minerals, such as siderite and/or iron (Fe) oxyhydroxides, to hematite, magnetite, various iron-silicates and carbonates, and pyrite, may show a resetting of their trace element geochemistry, C.2 Introduction Algoma-type BIF are chemical sedimentary rocks characterized by alternating layers of chert and iron-rich minerals (James, 1954and hydrosphere, p.199, 2004.

, there has not been a fully integrated study at a single BIF locality which compares the chemical signal of both the silica-and iron-rich domains to test for chemical concordance with complementary ? 18 O data on the chert to assess any post-depositional chemical modification, 2010.

. Consequently, primary geochemical signal of the original opaline material and iron-oxide layers, samples of such material from several BIF horizons within the Meliadine gold district (Churchill Province, Canada) have been analyzed using in-situ laser ablation (LA) inductively coupled mass spectrometry (ICP-MS) for trace elements and secondary ion mass spectrometry (SIMS) for oxygen isotopes. These independent data sets are used for the first time on the same BIF samples to evaluate: (1) the genesis of the cherts and magnetite using REE+Y systematics; (2) whether diagenetic changes affected the primary chemical signals of these phases

, Materials and methods Twenty four samples of BIF from drill core and outcrops from the Meliadine gold district were selected from earlier work

, M-50 laser ablation instrument coupled to a Thermo X Series II quadrupole ICP-MS at the Geochemical Fingerprinting Laboratory of Laurentian University

. Kamber, Representing a mixed bimodal felsic and mafic volcanic provenance, the Queensland alluvial shale composite (MUQ) was used to normalize the REE+Y values to minimize the influence of potential terrigenous input, 2005.

, 4.1 REE+Y systematics All of the chert samples in this study (Fig. C.2A), except for two

, show relatively uniform normalized patterns characterized by LREE depletion relative to middle and HREE (Nd/Yb MUQ = 0.06-0.86) that are associated with slight to moderate positive, 008C)

Y. La and E. Anomalies, 7-36.46). In contrast, the chert in samples MEL-007C and MEL-008C are characterized by LREE-depleted patterns (Nd/Yb MUQ = 0.06-0.18), chondritic to sub-chondritic Y/Ho values
URL : https://hal.archives-ouvertes.fr/in2p3-00606029

, Most of the magnetite layers show depletion in the LREE relative to middle and HREE (Nd/Yb MUQ = 0.08-0.6) in the normalized plots with associated slight to moderate positive La

Y. Muq-=,

*. Eu/eu and . Muq-=-0, 89-3.0) and superchondritic to chondritic Y/Ho values (Y/Ho = 24.7-34.9) (Fig. C.2B). In detail, the magnetite layers in samples MEL-029 and MEL-032 yield slightly anomalous HREE-depleted concentrations (Nd/Yb MUQ = 1.40-1.42) which are also characterized with moderate positive La

, Oxygen isotopes The ? 18 O values for chert sample MEL-008 show a range from +6.6 to +19.1? with a mean of +14.1? (n = 10), whereas in chert sample MEL-016 values range from +7.0 to +17.3? (mean of +12.2?; n = 10), and for chert sample MEL-033

. Marin, for Archean chert. Instead, the data reported here are significantly lower by about +20 to +8? (Fig, 2010.

E. G. Bolhar, In contrast, analyses on MEL-007C and MEL-008C samples are characterized by sub-chondritic Y/Ho ratios associated with negative La and Y anomalies which suggest coeval precipitation of Fe, C.5 Discussion C.5.1 REE+Y systematics Most of the chert and magnetite samples in this study show similar shale-normalized patterns despite the fact that both of these domains represent the diagenetic transformation of different precursor materials (i.e., opaline silica and Fe oxyhydroxides, respectively), 1987.

. Bau, We refer here to the similar chemical behavior of the coexisting domains as chemical concordance which is important in that it provides evidence for the robustness of these materials which retain their primary chemical signatures despite post-depositional transformation. This conclusion therefore validates our earlier work (Gourcerol et al., 2015a) and that of others which uses such information to make inferences about the chemistry of the hydrosphere from which such materials precipitated. Moreover, this study demonstrates that beyond the capacity of in-situ LA-ICP-MS analyses to extract the primary signature information from chert bands in Archean Algoma-type BIFs, 1999.

A. C. Allwood, B. S. Kamber, M. R. Walter, I. W. Burch, and I. Kanik, Trace element record depositional history of an Early Archean stromatolitic carbonate platform, Chemical Geology, vol.270, pp.148-163, 2010.

T. Angerer, S. G. Hagemann, and D. L. , Geochemical evolutions of the banded iron formation-hosted high-grade iron ore system in the, Economic Geology, vol.107, pp.599-644, 2012.

M. Bau, Scavenging of dissolved yttrium and rare-earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect, Geochimica et Cosmochimica Acta, vol.63, issue.1, pp.67-77, 1999.

M. Bau and P. Dulski, Evolution of the yttrium-holmium systematics of seater through time, Mineralogical Magazine -Goldschmidt Conference Abstracts, v. 58A, pp.61-62, 1994.

R. Bolhar, M. J. Van-kranendonk, and B. S. Kamber, A trace element study of sideritejasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara craton-Formation from hydrothermal fluids and shallow seawater, Precambrian Research, vol.137, pp.93-114, 2005.

J. Dostal, D. J. Kontak, O. Gerel, G. Shellnut, and M. Fayek, Origin of Cretaceous ongonites (topaz-bearing albite-rich micro-leucogranites) from Ongon Khairkhan, 2015.

, Lithos, pp.173-189

B. Gourcerol, P. C. Thurston, D. J. Kontak, and O. Côté-mantha, Interpretations and implications of preliminary LA ICP-MS analysis of chert for the origin of geochemical 212 signatures in banded iron formations (BIFs) from the Meadowbank gold deposit, Chemical Geology, pp.89-107, 2015.

B. Gourcerol, P. C. Thurston, D. J. Kontak, O. Côté-mantha, J. ;. Biczok et al., Depositional Setting of Algoma-type Banded Iron Formation from the Meadowbank, Meliadine and Musselwhite gold deposits; In: Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration, Geological Survey of Canada, vol.7852, pp.55-68, 2015.

H. D. Holland, Sedimentary mineral deposits and the evolution of Earth's near-surface environments, Economic Geology, vol.100, pp.1489-1509, 2005.

D. L. Huston and G. A. Logan, Barite, BIFs and bugs: Evidence for the evolution of the Earth's early hydrosphere; Earth and Planetary Science Letters, vol.220, pp.41-55, 2004.

H. L. James, Sedimentary facies iron-formation; Economic Geology, vol.49, pp.235-293, 1954.

I. Kawabe, Calculation of oxygen isotope fractionation in quartz-water system with special reference to the low temperature fractionation, Geochimica et Cosmochimica Acta, vol.42, pp.613-621, 1978.

I. Kita, S. Taguchi, and O. Matsubaya, Oxygen isotope fractionation between amorphous silica and water at 34-93°C. Nature, v. 314, pp.83-84, 1985.

L. P. Knauth and D. R. Lowe, High Archean climatic temperature inferred from oxygen isotope geochemistry of chert in the 3.5 Ga Swaziland Supergroup, p.213, 2003.

, America Bulletin, v, vol.115, pp.566-580

W. Li, X. Jin, B. Gao, C. Wang, and L. Zhang, Analysis of ultra-low level rare earth elements in magnetite samples from banded iron formations using HR-ICP-MS after chemical separation, Analytical Methods, issue.6, pp.6125-6132, 2014.

Y. Matsuhisa, J. R. Goldsmith, and R. N. Clayton, Oxygen isotopic fractionation in the system quartz-albite-anorthite-water, Geochimica et Cosmochimica Acta, vol.43, pp.1131-1140, 1979.

P. Mercier-langevin, B. Lafrance, V. Becu, B. Dubé, I. Kjarsgaard et al., The Lemoine auriferous volcanogenic massive sulfide deposit, 2014.

G. Belt and C. Quebec, Geology and genesis; Economic Geology, vol.109, pp.231-269

J. Marin, M. Chaussidon, and F. Robert, Microscale oxygen isotope variations in 1.9 Ga Gunflint cherts: assessments of diagenesis effects and implications for oceanic paleotemperature reconstructions; Geochemica et Cosmochimica Acta, vol.74, pp.116-130, 2010.

J. Marin-carbonne, F. Robert, and M. Chaussidon, The silicon and oxygen isotope compositions of Precambrian cherts: A record of oceanic paleo-temperatures? Precambrian Research, vol.247, pp.223-234, 2014.

A. Masuda, O. Kawakami, Y. Dohmoto, and T. Takenaka, Lanthanide tetrad effects in nature: two mutually opposite types, W and M, Geochemical Journal, vol.21, pp.119-124, 1987.

A. L. Pickard, M. E. Barley, and B. Krapez, Deep-marine depositional setting of banded 214 iron formation: sedimentological evidence from interbedded clastic sedimentary rocks in the early palaeoproterozoic Dales Gorge member of Western Australia, Sedimentary Geology, vol.170, pp.37-62, 2003.

N. R. Posth, I. Kohler, E. D. Swanner, C. Schroder, E. Wellmann et al., Simulating Precambrian banded iron formation diagenesis, Chemical Geology, vol.362, pp.66-73, 2013.

A. Putnis, Mineral replacement reactions: from macroscopic observations to microscopic mechanisms; Mineralogical Magazine, vol.66, pp.689-708, 2002.

A. Putnis and C. V. Putnis, The mechanism of re-equilibration of solids in the presence of a fluid phase, Journal of Solid State Chemistry, vol.180, pp.1783-1786, 2010.

C. V. Putnis, T. Geisler, P. Schmid-beurmann, T. Stpehan, and C. Giampaolo, An experimental study of the replacement of leucite by analcime, 2007.

, American Mineralogist, vol.92, pp.19-26

S. M. Sheppard, J. W. Valley, and H. P. Taylor, Characterization and isotopic variations in natural waters, Stable isotopes in high temperature geological processes, vol.16, pp.165-184, 1986.

H. P. Taylor, Oxygen and hydrogen isotope studies of plutonic granitic rocks, Earth Planetary Science Letter, vol.38, pp.177-210, 1978.

P. C. Thurston, B. S. Kamber, and M. Whitehouse, Archean cherts in banded iron formation: Insight into Neoarchean ocean chemistry and depositional processes, 2012.

, Precambrian Research, pp.227-257

S. H. Van-den-boorn, M. J. Van-bergen, P. Z. Vroon, S. T. De-vries, and W. Nijman, Silicon isotope and trace element constraints on the origin of 3.5 Ga cherts: implications for early Archaean marine environments; Geochemica et Cosmochimica Acta, vol.74, pp.1077-1103, 2010.

M. J. Van-kranendonk, Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Earth-Science Reviews, vol.74, pp.197-240, 2006.

F. Westall, K. A. Campbell, J. G. Bréhéret, F. Foucher, P. Gautret et al., Archean (3.33 Ga) microbe-sediment systems were diverse and flourished in a hydrothermal context, Geology, vol.43, pp.615-618, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01167397