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Abstract 

Algoma-type banded iron formations (BIFs), which represent chemical sedimentary rocks 

characterized by alternating layers of iron-rich minerals and chert intercalated with Eoarchean to 

late Paleoproterozoic volcano-sedimentary sequences, act as a favorable host rock for orogenic 

gold mineralization within several Archean cratons (i.e., Pilbara, Kaapvaal, Superior, Slave and 

Churchill). Besides this economic aspect, these Fe-rich sequences have long been appreciated as 

an important contributor to furthering our understanding of the geochemical evolution of the 

Earth. However, these deposits are in general tectonically deformed, metamorphosed and 

dismembered, thus making reconstruction of their depositional setting and overall geologic 

setting difficult. 

Based on four Canadian BIF-hosted gold deposits (the Meadowbank, Meliadine, 

Musselwhite and Beardmore-Geraldton deposits), this thesis aims to establish the depositional 

setting of the Algoma-type BIF using the abundance of REE+Y of chert material used as proxy 

of the primary signature, as well as assess gold enrichment processes based on textures and trace 

element zoning of variable sulfides (i.e., pyrite, arsenopyrite and pyrrhotite) and finally study if 

there is a particular geochemical type of Algoma-type BIF associated with gold mineralization. 

Laser ablation-inductively coupled plasma-mass spectrometric (LA-ICP-MS) analyses 

performed on chert material suggest that BIFs from the four deposits show common depositional 

settings illustrated by deposition in semi-closed to closed basin under variable influence of high-

temperature (>250ºC) hydrothermal fluids input and detrital contamination. Moreover, evidence 

of late diagenetic processes involving O isotopic exchange between chert precursor (i.e., opaline 

material) and seawater origined fluid have been documented. According to their primary 
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signature, it appears that barren versus mineralized BIFs do not show any geochemical 

divergence suggesting that the depositional setting may influence the epigenetic gold 

mineralization. Based on quantitative element distribution maps combined with line traverse and 

spot analyses by LA-ICP-MS on sulfides, a common gold mineralizing event characterized by 

intense stratabound sulfide-replacement of Fe-rich material was reported in three studied 

deposits exhibiting a Au-As-Se-Te-Ag element association. This result suggests that 

metamorphic/hydrothermal orogenic processes driven by devolatilization of a common weakly to 

unmetamorphosed source rock have ledto generation of gold-bearing fluid which channelled into 

Algoma-type BIF via major crustal faults and/or shear zones within low tensile strength rocks. 
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 Chapter 1: Introduction to the Thesis 

1.1 Statement of the problem 

 Gold mineralization in Archean greenstone belts represents an economically important 

commodity reflecting 13% of the world’s gold resource (e.g., Pilbara, Kaapvaal, Zimbabwe, 

Superior, Slave and Churchill; Phillips et al., 1984; Goldfarb et al., 2001; Bleeker, 2006; Dubé 

and Gosselin, 2007; Biczok et al., 2012). Among the many types of gold deposits, the Algoma-

type BIF illustrates a prime exploration target. In these deposits, gold is associated with simple- 

to complex networks of laminated quartz-carbonate fault-fill veins hosted within sulfidized parts 

of the BIF within regionally deformed, metamorphosed and dismembered BIF facies (i.e., oxide-

, silicate- or carbonate-facies) of these terranes (e.g., the Homestake, Lupin, Morro Velho, 

Musselwhite deposits).  

 Algoma-type BIFs, which have long been appreciated as an important contributor to 

furthering our understanding of the geochemical evolution of the Earth (e.g., atmosphere and 

hydrosphere) consist of thinly bedded, chemical sedimentary rocks comprising alternating layers 

of iron-rich minerals and chert (Gross, 1980) typically intercalated with Eoarchean to late 

Paleoproterozoic volcano-sedimentary sequences within Archean greenstone belts (Goodwin, 

1973; Bekker et al., 2010). The iron-bearing minerals are considered to have originally 

precipitated as iron oxyhydroxides, such as ferrihydrite, that were transformed during diagenesis 

to hematite, magnetite and siderite depending in part on the microbial biomass concentration 

(Posth et al., 2013). Where metamorphosed, the Fe-rich component may include more complex 

mineral assemblages that comprise a variety of silicate phases (e.g., amphibole, garnet). The 
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origin of the interbedded chert is controversial, but the consensus is that it may originate either as 

a seawater precipitate (Bolhar et al., 2005; Thurston et al., 2012), or as a hydrothermal 

precipitate (Allwood et al., 2010; Thurston et al., 2012) or due to replacement (Hanor and 

Duchac, 1990). A less common view suggests dissociation of iron silicates into iron oxides and 

colloidal silica (Lascelles, 2007). Only a few studies explain the alternation of iron-rich and chert 

bands either by the influence of biological processes and/or temperature variations (e.g., Posth et 

al., 2013) or by variations of the hydrothermal input (i.e., jasper under weak hydrothermal 

conditions and siderite under more intense hydrothermal conditions; Van Kranendonk et al., 

2003).  

 Timing (syngenetic versus epigenetic) and the origin of gold within BIF-hosted gold 

deposits have long been subject of research and genetic debates over the last few decades. In the 

1970s, some authors suggested a syngenetic origin characterized by sedimentary exhalative 

processes in which gold is concentrated in arsenian pyrite introduced into BIFs by hydrothermal 

fluids during chemical sedimentation or early diagenesis (e.g., Fripp et al., 1976). However, an 

epigenetic model is supported by the presence of replacement features (e.g., sulfide facies) and 

the discordant nature of vein systems typically observed in BIF-hosted gold deposits. Lately, the 

consensus favours an epigenetic (i.e., orogenic) model for gold mineralization related to 

metamorphic-hydrothermal processes in which BIF represents an efficient chemical trap by 

virtue of its high iron content for metal- and H2S-rich fluids focused into favorable structural 

traps (e.g., fold hinges, shear zones; e.g., Phillips et al., 1984; Phillips and Powell, 2010; Poulsen 

et al., 2000). However, the source of the gold remains debatable (e.g., mafic volcanic versus 

sedimentary rocks versus a mantle; Phillips and Powell, 2010; Large et al., 2011; Frimmel and 

Hennigh, 2015).  
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 In the context outline above, this thesis originated through the Targeted Geoscience 

Initiative-4 (TGI-4) program of the Geological Survey of Canada (Lode Gold project) and a 

NSERC Collaborative Research and Development project with funding from Agnico-Eagle 

Mines Ltd and Goldcorp Inc., was designed to address the fundamental issue of whether there is 

a particular geochemical type of BIF, that has a greater potential to host gold mineralization. If 

the latter, then this would be a very opportunistic exploration tool. In detail, this thesis aims to: 

(1) identify where feasible the primary geochemical signature of BIF and define its depositional 

setting; (2) based on the latter, assess if one geochemical type of BIF is associated preferentially 

with Au mineralization; and finally (3) provide insights into understanding of the gold 

mineralizing processes and its possible identify elemental associations indicative of source 

reservoirs. 

 In order to address the above questions, four world-class Canadian gold deposits were 

studied: (1) the ~4 Moz Au Meadowbank deposit, hosted by the 2.71 Ga Woodburn Lake 

�J�U�H�H�Q�V�W�R�Q�H���E�H�O�W�������������W�K�H���•���������0�R�]���$�X���0�H�O�L�D�G�L�Q�H���G�L�V�W�U�L�F�W�����K�R�V�W�H�G���E�\���W�K�H�����������*�D���5�D�Q�N�L�Q���,�Q�O�H�W��

greenstone belt; (3) the ~6 Moz Au Musselwhite deposit, hosted by the 2.9-3 Ga North Caribou 

greenstone belt; and (4) the ~4 Moz Au Beardmore-Geraldton district, hosted by the 2.7 Ga 

eponymous greenstone belt (e.g., Dubé et al., 2015). 

1.2 Background and critical review of literature 

1.2.1 Geochemistry applied to BIF 

 Geochemical indicators, such as the REE+Y signature, when applied to carefully selected 

chert bands from Algoma-type BIF (i.e. representing the component least affected by diagenesis 

and metamorphism; Krapez et al., 2003), provide information that permits one to constrain the 
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origin of the BIF (e.g. Barrett et al., 1988; Bolhar et al., 2005; Thurston et al., 2012). The 

abundance of REE+Y are controlled by three possible processes, namely precipitation from open 

marine seawater (e.g. Bau and Dulski, 1996), precipitation from hydrothermal fluids (e.g. 

Allwood et al., 2010; Danielson et al., 1992), or replacement processes (e.g. Hanor and Duchac, 

1990). All of these aforementioned processes can be further influenced by input of terrigenous 

material (Alexander et al., 2008) and oceanographic processes, such as precipitation of 

phosphates (e.g., Pufahl and Hiatt, 2012).  

 The treatment of chemical data for BIF departs from that of most other rock types (e.g., 

chondritic plots or mantle normalized spidergrams) and, instead, it is customary to normalize 

samples to shale specifically with the Mud from Queensland (MUQ) standard (Kamber et al., 

2005; Lawrence and Kamber, 2006) now widely referenced in order to decrease the influence of 

terrigenous input. The MUQ represents a bimodal felsic and mafic volcanic provenance similar 

to the provenance of detritus in an Archaean granite greenstone belt (Kamber et al., 2005; 

Lawrence and Kamber, 2006). Yttrium is included with the rare earth element owing to its 

similar chemistry due to a valence of 3+, though it is not a lanthanide, therefore it is inserted into 

the conventional rare earth diagram between Dy and Ho. 

 Due to the anoxic character of Archean seawater, the shale normalized REE and Y patterns 

for Archean seawater are very similar to modern seawater except the lack of a negative Ce 

anomaly (Planavsky et al., 2010). Therefore, an Archean seawater pattern normalized to MUQ is 

characterized by: (1) depletion in LREE relative to middle and heavy REE; (2) a strongly 

superchondritic Y/Ho ratio due to superchondritic Y content; (3) positive La and Gd anomalies; 

and (4) a variable, but well developed positive Eu anomaly (Kamber et al., 2004) 



5 
 

 Positive La, Y and Gd anomalies indicate precipitation from seawater under anoxic 

conditions (absence of a negative Ce anomaly) in oceans, whereas the presence of a positive Eu 

anomaly reflects the influence of high temperature (> 250°C) hydrothermal fluids ( Kamber et 

al., 2004).  

 Previous research at Laurentian University directed by Thurston and Kamber (Baldwin, 

2009; Baldwin et al., 2011; Thurston et al., 2012) has geochemically characterized the BIF chert 

in the Abitibi Greenstone Belt where BIF represents a cap on each mafic-felsic cycle, especially 

in the ca. 2730 Ma Deloro Assemblage. This work focused on REE+Y and other trace elements 

and confirmed the previous REE+Y systematics. The present study is thus a continuation of this 

work and will be the first examination of Algoma-type BIF associated with gold mineralization 

and the first to relate chert chemistry to proximity to mineralization. Frei et al. (2008) have 

shown that Au-mineralized BIF at the Homestake mine exhibits LREE enrichment and subdued 

Eu anomalies, hence indicating of an external source for the sulfides. This study did not consider 

the development of a footprint of hydrothermal alteration at a broader scale, nor did the study 

attempt to develop a vectoring tool. 

 A study of the geochemical characteristics of Algoma-type-BIF may yet define a vectoring 

tool to proceed from barren or unaltered BIF to altered- and gold mineralized zones, thereby 

establishing the pre-mineralization composition of BIF to allow a better characterization and 

understanding of the mineralizing processes and geochemical footprint of any hydrothermal 

system. 

1.2.2 Sulfide composition 

In recent years with the advent of LA ICP-MS mapping capability, Large et al. (2007, 2009, 
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2011) suggested that gold in some sediment-hosted gold deposits (e.g., black shale unit from the 

Sukhoi Log deposit; turbiditic sandstone facies from the Bendigo deposit) likely originated 

within the crystal structure of syn-sedimentary to early-diagenetic fine-grained and/or framboidal 

arsenian pyrite along with a specific suite of trace elements (As, Ni, Pb, Zn, Mo, Te, V, Se). Due 

to subsequent burial, deformation and metamorphism (i.e., greenschist facies), in addition to 

granite intrusion, gold and other metals are released from the pyrite lattice (which may be 

converted into coarse-grained metamorphic pyrrhotite) and/or host rock via structural channels 

into favorable structural sites by a metal-rich hydrothermal fluid (Large et al., 2011, Bull et al., 

2015), which precipitates gold along with various other sulfides such as coarse-grained 

arsenopyrite, a common mineral phase in sediment-hosted gold systems (e.g., Wagner et al., 

2007; Cook et al., 2013). In this context, an important question is whether gold in the BIF-hosted 

gold deposits originates from the same or similar source rock (i.e., black shale) and may 

represent a similar process in terms of gold enrichment and deposit formation (e.g., Steadman et 

al., 2014; Gao et al., 2015).  

1.3 Structure of the thesis 

This thesis is written in a non-traditional format and is divided into 4 chapters, in which 

chapters 2 to 4 represent manuscripts for publication in the highest caliber, international, peer-

reviewed scientific journals. It is noted that it is inevitable that these chapters may overlap in 

their introduction due to their preparation as individual papers, and the necessity to introduce the 

areas and materials in all cases. In addition, there is also reference made to the previous chapters 

in some instances due to their sequential publication.  

The first chapter introduces the research problem and thesis objectives in addition to a brief 
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review of the critical literature relevant to the project. Moreover, it introduces the thesis and 

summarizes the following chapters. 

Chapter 2, entitled “Interpretations and implications of LA ICP-MS analysis of chert for the 

origin of geochemical signatures in banded iron formations (BIFs) from the Meadowbank gold 

deposit, Western Churchill Province, Nunavut” has been published by Chemical Geology (2015, 

Chemical Geology, v. 410, p. 89-107) and was written by B. Gourcerol, P.C. Thurston, D.J. 

Kontak and O. Côté-Mantha. This chapter represents the first step of the project and gives an 

overview of the methodology applied to all the studied deposits in order to address how chert 

lithogeochemistry can be used to better understand the nature and origin of Algoma-type BIF-

hosted gold deposits. In detail, this chapter examines similarities and/or differences between 

mineralized and apparently non-mineralized BIFs based on their geochemical signature and 

petrographic study in order to establish if there is a geochemical signature for the types of BIF 

that contain gold mineralization and whether a hydrothermal footprint for the mineralization can 

be detected. It is noted that this chapter is largely based on Gourcerol, B., Thurston, P.C., 

Kontak, D.J., and Côté-Mantha, O. 2014. Interpretations and implications of preliminary LA 

ICP-MS analysis of chert for the origin of geochemical signatures in banded iron formations 

(BIFs) from the Meadowbank gold deposit, Western Churchill Province, Nunavut: Geological 

Survey of Canada, Current research 2014-1, 26 p. doi:10.4095/293129. 

Chapter 3, entitled “Depositional setting of Algoma-type banded iron formation” written by 

B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, and J. Biczok was submitted to 

Precambrian Research and was accepted with revisions required. The revised manuscript has 

since been returned to the journal as of January 2016. In this chapter, the authors attempt to 

validate the restricted-basin model as a depositional setting for the Algoma-type BIFs by using 
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the geochemical signature of the chert bands as a proxy for the primary signature of ocean water 

chemistry and hydrothermal vent fluids. In addition, the cherts were analyzed in-situ using 

secondary ion mass spectrometry (SIMS) �W�R���G�H�W�H�U�P�L�Q�H���W�K�H�L�U���/18O signature in order to assess post 

deposition exchange of the chert with later fluids (e.g., diagenetic, metamorphic). An indirect 

intent of this study was also to establish whether chert beds in these settings retain a geochemical 

signature that may relate to a subsequent gold mineralizing event. In detail, these hypotheses 

were tested by: (1) defining the role of chemical reservoirs (i.e., seawater, hydrothermal fluids, 

and terrestrial detritus) in chert deposition; and (2) using redox-sensitive Ce behavior to assess 

the oxygenation state of the water column during chert precipitation. It is noted that minor parts 

of this chapter were published in Gourcerol, B., Thurston, P.C., Kontak, D.J., Côté-Mantha, O., 

and Biczok, J. 2015. Depositional Setting of Algoma-type Banded Iron Formation from the 

Meadowbank, Meliadine and Musselwhite gold deposits: In: Targeted Geoscience Initiative 4: 

Lode Gold Project Synthesis, (Eds.) B. Dubé and P. Mercier-Langevin; Geological Survey of 

Canada, Open File 7852, p. 55-68. doi:10.13140/RG.2.1.1333.2645 

Chapter 4, entitled “Gold and trace element distribution in sulfides from mineralized 

Algoma-type BIFs; Implications for nature of mineralizing fluids, metal sources and deposit 

models” , was written by B. Gourcerol, D.J. Kontak, P.C. Thurston and J.A. Petrus is formatted to 

be submitted to Economic Geology. This chapter examines the textures and trace element 

contents and internal zoning of variable sulfides such as pyrite, pyrrhotite and arsenopyrite to 

evaluate the potential source of metals within three Canadian BIF-hosted gold deposits: (1) the 

~4 Moz Au Meadowban�N���G�H�S�R�V�L�W�������������W�K�H���•���������0�R�]���$�X���0�H�O�L�D�G�L�Q�H���G�L�V�W�U�L�F�W�����D�Q�G�����������W�K�H���a�����0�R�]��

Au Musselwhite deposit. These deposits are hosted by Algoma-type BIFs and occur in 

metamorphosed and moderately to strongly deformed greenstone belts and are considered 
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orogenic gold deposits. In detail, this study investigates: (1) the distribution of gold and various 

trace elements in the sulfide lattice in order to identify similarities and differences in the timing 

and elemental associations of gold mineralization from the three deposits; and (2) compare these 

features to other orogenic deposits, such as clastic sediment-hosted gold deposits to investigate a 

potential source of gold. 

Finally, chapter 5 concludes this thesis manuscript.  

Appendix A comprises a GSC Current Research report written by B. Gourcerol, P.C., 

Thurston, D.J., Kontak, O., Côté-Mantha, and J., Biczok in 2015 entitled “The geochemistry of 

chert from the Banded Iron Formation-type Musselwhite and Meadowbank gold deposits: 

Distinguishing primary and mineralization-related signatures of chert” (Current Research 2015-

1, 24 p. doi: 10.4095/295531). This report was not part of any of the previously described 

chapters and presents the results of in-situ laser ablation inductively coupled mass spectrometric 

(LA-ICP-MS) analysis of chert from the Musselwhite and Meadowbank BIF-hosted lode-gold 

deposits.  

Appendix B comprises a manuscript submitted to Canadian Mineralogist entitled “Do 

magnetite layers in Algoma-type BIF preserve their primary geochemical signal: A case study of 

samples from three Archean BIF-hosted gold deposits?”  written by B. Gourcerol, D.J. Kontak, 

P.C. Thurston and Q. Duparc. The main objective of this study was to assess the potential of 

using the REE + Y systematics of magnetite bands to identify their primary geochemical 

signature, as we have done for the associated cherts in order to constrain the genesis of BIF units. 

As of December 2015, the revised paper had been returned to the journal and is in press. 
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Lastly, Appendix C entitled “Chemical concordance of chert and iron-oxide layers in 

Archean Algoma-type BIF: implications for Earth ocean chemistry” and written by B. Gourcerol, 

D.J., Kontak and P.C., Thurston (2015), has been submitted to Geology. The main objective of 

this study was to explore the influence of post-depositional processes on the primary signal of 

chert and iron-oxide layers from several BIF horizons, within the Meliadine gold district 

(Churchill province, Canada). This study combined three sets of data on the same BIF samples: 

(1) REE+Y studies on the chert layers to determine the genesis of the cherts; (2) REE+Y study of 

the magnetite layers to establish whether diagenetic changes affect their systematics; and (3) an 

oxygen isotope study to establish the diagenetic history on the chert bands and possible influence 

of later hydrothermal fluids. The study provides the first integration of these data sets to 

document chemical concordance in the chert and magnetite layers, which validates the earlier 

results of this thesis, and to show that despite the modification of the oxygen isotopic 

composition of the chert the primary geochemical signature has remained intact. 

1.4 References 
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 Chapter 2: Interpretations and implications of LA ICP-MS analysis of chert 

for the origin of geochemical signatures in banded iron formations (BIFs) 

from the Meadowbank gold deposit, Western Churchill Province, Nunavut 

2.1 Abstract 

Among the many types of mineral deposits within Archean cratons, gold mineralization is an 

important economic commodity with over 20 000 metric tons of gold produced from greenstone 

belts in 2001. Of the Archean-early Paleoproterozoic gold deposits, several different types of 

mineralization are known, which includes the important Algoma-type Banded Iron Formation 

(BIF) where gold is locally associated with sulfide-facies zones within regionally extensive 

oxide-facies. It is commonly accepted that the shale-normalized chemical signature of REE+Y of 

chert bands in Algoma-type BIFs may reflect one of three processes, each of which may be 

relevant to the nature and origin of the gold mineralization: (1) direct seawater precipitation, (2) 

involvement of and contribution from hydrothermal fluids, and (3) replacement of precursor 

volcanic units due to silicification. An essential question in regards to the mineralization is, 

therefore, whether the gold mineralizing fluids have a preference for one geochemical type of 

iron formation versus another. In order to assess the relevance of these competing models, we 

report herein the results of a LA ICP-MS study of chert samples within different Algoma-type 

BIFs from the Meadowbank deposit (24.5 Mt proven/probable ore reserves grading 2.8 g/t, 2011) 

hosted in the Neoarchean Woodburn Lake Group of the Rae Domain of the western Churchill 

Province, Canada. This study used 39 carefully selected and characterized (i.e., petrography and 

SEM-EDS imaging) chert samples from the main deposit, the Central BIF, and four additional 

BIFs, the Far West, West, East and Grizzly zones, with data collected using line traverses along 
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the chert bands. The geochemical data indicate that an ambient seawater signature (i.e., 

enrichment in HREE relative to LREE associated with positive La and Y anomalies) dominates 

the samples with a lesser hydrothermal component (characterized by a positive Eu anomaly) and 

the influence of detrital contamination can also be detected. These initial results indicate that the 

methodology and protocol employed provides a reliable means to assess and interpret the 

chemical signature of BIFs hosting gold mineralization. In the present case, the results for the 

Meadowbank deposit suggest that chert from mineralized BIF units do not record a typical 

chemical signature that may be used as a vector for potential gold mineralization.  

2.2 Introduction 

Algoma-type BIFs are thinly bedded chemical sedimentary rocks comprising alternating 

layers of iron-rich minerals and chert (James, 1954), which are stratigraphically associated with 

submarine, volcanic rocks in Eoarchean to Paleoproterozoic greenstone belts (Goodwin, 1973; 

Bekker et al., 2010). Studies of gold deposits associated with Algoma-type BIF in Archean 

cratons have shown that gold is associated with localized sulfide-facies zones within regionally 

extensive oxide-facies units (e.g., Kaapvaal, Zimbabwe, Superior, Slave and Churchill; Phillips 

et al., 1984; Bleeker, 2006; Biczok et al., 2012). The depositional and geodynamic settings of 

these deposits are contentious due to post depositional overprinting and the absence of modern 

analogues. The iron-bearing minerals in iron formations precipitated from basin waters and 

hydrothermal fluids; they include siderite or/and iron oxyhydroxides that were transformed by 

diagenesis and metamorphism to hematite, magnetite, iron silicates and sulfides. The origin of 

chert is controversial, but the consensus is that it, like the iron-bearing minerals, originated as 

either a seawater (e.g., Bolhar et al., 2005; Thurston et al., 2012) or hydrothermal (e.g., Allwood 

et al., 2010; Thurston et al., 2012) precipitate or by replacement of a precursor volcanic unit due 
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to silicification (e.g., Hanor and Duchac, 1990). 

In regard to the origin of Algoma-type BIF-hosted gold deposits, an important question is 

whether the gold mineralizing fluids have a preference for one geochemical type of iron 

formation versus another? Lode-gold and BIF-hosted gold deposits are both widely conceded to 

be epigenetic (Goldfarb et al., 2001, 2005), thus, at a regional scale, the geochemical signature of 

BIFs, using chert chemistry as a proxy for this, may perhaps provide a vector towards zones with 

an enhanced potential to host gold mineralization. Therefore, a study of the geochemical 

characteristics of Algoma-type BIF, both barren and those associated with gold mineralization, 

may prove useful in addressing important issues regarding these deposits by: (1) providing 

insight into which, if any, type of iron formation is a preferred host for gold mineralization by 

first identifying and then using the pre-mineralization chemical signal; (2) provide insights into 

understanding of the mineralizing processes; (3) possibly providing a geochemical footprint of 

the mineralized system; and (4) if the aforementioned latter exists then providing a vectoring tool 

from least or unaltered to altered-mineralized zones. 

This article presents the results of in-situ laser ablation inductively coupled plasma mass 

spectrometry (LA ICP-MS) study of chert from several BIF zones (i.e., Far West, West IF, 

Central BIF, East BIF and Grizzly) within the Meadowbank gold deposit in the western 

Churchill Province of northern Canada (Fig. 2.1).The greenstone belt is characterized by a 

bimodal volcanism with minor metasedimentary rocks (e.g., Armitage et al., 1996; Pehrsson et 

al., 2000, 2004; Sherlock et al., 2001a, b, 2004; Hrabi et al., 2003). Since its original discovery, 

several regional mapping programs (Henderson and Henderson, 1994; Zaleski et al., 1997a, b; 

Zaleski et al., 1999a, b; Sherlock et al., 2001a, b) and deposit scale studies (Armitage et al., 

1996; Pehrsson et al., 2000, 2004; Sherlock et al., 2001a, b, 2004; Hrabi et al., 2003) have been 
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conducted, which, provide the geological background for this study. In addition, this project 

forms part of a more comprehensive study of the geology, chert geochemistry, and hydrothermal 

footprint of the Meadowbank deposit as part of the Geological Survey of Canada’s Targeted 

Geoscience Initiative (TGI-4) Lode-Gold Project (Castonguay et al., 2012). The results of the 

study presented here represent the first in a series of sub-projects on the geochemistry of BIFs to 

address how lithogeochemistry of chert may be used to better understand the nature and origin of 

this gold deposit type. Moreover, the study seeks to identify similarities and/or differences 

between mineralized (i.e. Central BIF, and Grizzly) and apparently non-mineralized BIFs (i.e. 

Far West and West IF) based on their geochemical signatures. 

2.3 Geological setting 

Located in the Rae Domain of the Churchill Province, the Meadowbank deposit is hosted by 

the ca. 2.7 Ga bimodal Woodburn Lake greenstone belt (Ashton, 1985; Roddick et al., 1992; 

Aspler and Chiarenzelli, 1996a) consisting of tholeiitic and komatiitic metavolcanic rocks with 

minor calc-alkaline felsic tuffs and flows overlain by a >2.62 Ga package of iron-formation, 

quartzite and quartzo-feldspathic metasedimentary rocks (Armitage et al., 1996; Sherlock et al., 

2001a, b, 2004; Hrabi et al., 2003; Pehrsson et al., 2004). All these units are intruded by Archean 

to Paleoproterozoic mafic and felsic plutonic rocks.  

The aforementioned rocks were deformed at least by four regional-scale Neoarchean to 

Paleoproterozoic deformation events (Table 2.1; e.g., Henderson et al., 1991; Ashton, 1985), two 

of which had a significant effect on the geometry of the mineralized bodies in the Third Portage 

area (Ashton, 1985; Sherlock et al., 2004). The regional metamorphic grade ranges, going from 

the north- to south, from middle- greenschist to amphibolite facies (Table 2.2; Pehrsson et al., 
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2004). 

Numerous units of Algoma-type BIF (0.2 to 10 m thick) occur in the area, which include the 

Far West IF, West IF, Central BIF, East BIF, and Grizzly IF; all of these are generally 

interlayered with volcanic rocks and locally with a quartzite unit (Sherlock et al., 2001a, b; 2004; 

Fig. 2.2). Representative core samples and their matching polished thin sections are shown in 

Fig. 2.3. 

The BIFs are oxide-facies units consisting of laminated magnetite and chert layers (0.2 to 5 

cm) associated with minor silicate bands which reflect variations of the metamorphic grade: (1) 

grunerite/biotite in the north; (2) cummingtonite/biotite in the middle; and (3) garnet/biotite in 

the south (Fig. 2.2; Table 2.2). Minor chlorite, muscovite, sericite ankerite, siderite, 

stilpnomelane, and apatite are interlayered with the chert and magnetite bands (Fig. 2.3; 

Armitage et al., 1996; Hrabi et al., 2003; Sherlock et al., 2004). Discontinuous chlorite-rich 

bands, 1 to 5 cm thick, locally interlayered with BIF may represent clastic sediments or a 

transition between chemical and clastic sediments (Armitage et al., 1996; Agnico-Eagle Mines 

Ltd, 2008), whereas stilpnomelane may reflect the influence of volcanic detritus (Klein, 2005). 

The Far West BIF is surrounded by intermediate volcanic rocks, locally quartzite and 

ultramafic rocks. The chert bands are commonly deformed and folded, may show very diffuse 

contacts with the magnetite bands, and are now composed of recrystallized subhedral quartz with 

minor apatite and late-stage sericite (Fig. 2.3A, B); pyrite is the dominant sulfide species 

associated with the chert bands. The Far West BIF is barren except for a 3.6 m interval which 

averages 2.81 g/t Au; the gold in this interval is associated with isolated late-stage pyrite 

(Agnico-Eagle pers. comm. 2012).  
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The West BIF is surrounded by intermediate volcanic rocks and locally by quartzite and 

ultramafic rocks; it is composed of pyrrhotite-rich cherty bands (2-10 modal %). Metamorphic 

grade ranges from upper greenschist to amphibolite and is characterized by a grunerite, 

hornblende, and stilpnomelane-bearing assemblage. Despite the presence of sulfides, the West IF 

has not returned significant gold assays (Armitage et al., 1996; Agnico-Eagle pers. comm. 2012). 

The chert bands are deformed and composed of recrystallized, subhedral quartz grains that are 

mostly overprinted by later, foliated grunerite-cummingtonite grains, calcite and local hematite 

(Fig. 2.3C, D). 

The Central BIF is host to the main deposit and is composed of four principal mineralized 

bodies: North Portage Zone, Third Portage Zone, Bay Zone and Goose Island Zone (Fig. 2.2). 

Generally, the BIFs are associated with intermediate and ultramafic volcanic rocks and are 

composed of laminated magnetite and chert layers intercalated with variable silicate facies 

assemblages which vary in their mineralogy depending on the metamorphism (Fig. 2.2, Table 

2.2; Armitage et al., 1996). Chert bands are deformed and composed of recrystallized, subhedral 

quartz grains associated with late hornblende, grunerite-cummingtonite and euhedral magnetite 

(Fig. 2.3E, F). The mineralized zones consist of pyrrhotite, pyrite, and sparse chalcopyrite and 

arsenopyrite, and are mainly located at the contacts of the magnetite/chert layers. Pyrite also 

occurs within vugs in quartz veins and at the margins of quartz veins where it typically replaces 

pyrrhotite and magnetite (Armitage et al., 1996; Castonguay et al., 2012). 

In the mine vicinity, the non-mineralized East BIF is typically surrounded by intermediate 

volcanic rocks with local ultramafic rocks. This BIF is at middle greenschist facies and is 

characterized by well-banded magnetite-chert iron formation. The chert bands are deformed with 

the host rock and composed of recrystallized, subhedral quartz grains associated with late 
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hornblende, grunerite-cummingtonite, calcite, some euhedral magnetite grains and locally rare 

hematite (Fig. 2.3G, H).  

The Grizzly BIF zone is dominated by intermediate volcanic rocks with local ultramafic 

rocks. This iron formation displays alteration characterized by quartz flooding. This alteration, 

which hosts visible gold, is characterized by the presence of ankerite, sericite, and 

cummingtonite. The chert bands are brecciated and altered by intense silicification, with diffuse 

ankerite, weak but pervasive chlorite, and moderate hematite; grunerite-cummingtonite grains 

are also present along the contact with magnetite bands (Fig. 2.3I, J). The Grizzly zone occurs 

near massive textured Paleoproterozoic granite which cuts the sedimentary package, a feature 

which is discussed later in the context of an unusual chemical signature for the analyzed chert 

band from this locality. 

2.3.1 Mineralization  

The characteristics of the gold mineralization have been documented within the 

Meadowbank area through government mapping and deposit-scale studies (Roddick et al., 1992; 

Armitage et al., 1996; Davis and Zaleski, 1998; Kerswill et al., 1998, 2000; Kerswill, 2000; 

Pehrsson et al., 2000; Sherlock et al., 2001a, b; Pehrsson et al., 2004). These studies, coupled 

with exploration activities, have delineated four principal mineralized zones (Fig. 2.2) where 

only three are in the production stage (i.e., The North Portage Zone, the Third Portage Zone and 

the Bay Zone). 

The ore bodies in the Central BIF consist of several sub-parallel bands of auriferous iron 

formation. Sherlock et al. (2001a, b) suggested that the ore bodies are mostly developed at the 

contact between an ultramafic body and the volcano-sedimentary package. According to 
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Armitage et al., (1996) and Sherlock et al., (2001a, b), epigenetic gold mineralization is closely 

associated with D1-D2 deformation and originated from the circulation of fluids enriched in Mg, 

K, Ca, S, As, Cu and Au. 

The Third Portage Zone and the Bay Zone which contain the majority of the ore reserve 

(10.59 Mt proven/probable grading 2.98 g/t gold in 2011; Agnico Eagle Mines Ltd, 2012), have 

an assemblage of fine-grained cummingtonite, minor fine-to medium-grained chlorite and biotite 

which represents upper-greenschist facies metamorphism. According to Armitage et al. (1996), 

the cummingtonite grew in the same manner as grunerite did this being at mid-greenschist facies 

(i.e. at the interface between magnetite and chert bands). Similar mineralogy is present in the 

north (i.e. pyrrhotite-pyrite-chalcopyrite-arsenopyrite), but the pyrrhotite is more abundant here 

as massive- to disseminated grains and as pervasive replacement of magnetite. Chalcopyrite and 

arsenopyrite occur as inclusions in pyrrhotite.  

At the northern end of the Central BIF, in the North Portage Zone, additional mineralization 

occurs and is manifested by disseminated pyrrhotite, pyrite, chalcopyrite and arsenopyrite with 

the pyrrhotite forming fine-grained clusters and discontinuous, layer-parallel veinlets in 

grunerite-bearing magnetite-rich bands of BIF (Armitage et al., 1996). Pyrite replaces pyrrhotite 

and magnetite and chalcopyrite/arsenopyrite are present in the form of inclusions in pyrrhotite.  

2.4 Analytical methods and data treatment 

Thirty nine samples of BIF from drill core and outcrop in the Far West, West IF, Central 

BIF, East BIF and Grizzly areas (Fig. 2.2) were collected for petrographic study with an 

emphasis on the chert or chert-carbonate phases of each sample. An effort was made to avoid 

BIF with chert bands of <0.05 centimeters thickness, as the analysis of bands of this thickness 
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presents challenges. In addition, chert bands were analyzed in preference to Fe-rich bands to 

minimize the effects of diagenetic alteration. Thin sections from these samples were examined in 

detail, using both transmitted and reflected light microscopy followed by SEM-EDS imaging and 

analysis (Fig. 2.4).  

Trace-elements and REE concentrations were obtained on 100 µm thick polished sections. 

Based on previous petrographic work, areas for analysis were selected to minimize the presence 

of phases other than microcrystalline quartz after chert, including alteration, and mineral 

inclusions. Exploratory in-situ analyses were made using a Resonectics Resolution M-50 laser 

ablation instrument coupled to a Thermo X-Series II quadrupole ICP-MS at the Geochemical 

Fingerprinting Laboratory of Laurentian University, in Sudbury, Ontario, using the protocol of 

Kamber and Webb (2007). As chert bands show very low concentrations of REE, spot analyses 

may be below the limit of detection for many elements, therefore line traverses using both 140 

and 190 µm beam diameters with a repetition rate of 10 Hz and an energy density of 7 J/cm2, 

were used to obtain data above the detection limit (Fig. 2.4A, B, C). However, the line traverse 

method increases the influence of any detrital contaminants either as inclusions or minerals 

disseminated along the traverse line within the chert bands. Therefore, the Queensland alluvial 

shale composite (MUQ) was used to normalize the REE+Y values to decrease the influence of 

terrigenous input. The MUQ represents a bimodal felsic and mafic volcanic provenance (Kamber 

et al., 2005), which is similar to the expected average terrigenous input from bimodal greenstone 

belt volcanism into the Archean ocean (e.g., Bolhar et al., 2005; Thurston et al., 2012). 

Concentrations of elements were determined using off-line calculations, following the protocol 

of Longerich et al. (1996) using the NIST 612 glass standard as a primary reference material and 

SiO2 as an internal standard.  
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The elemental concentrations reported herein represent, therefore, the integrated signal over 

the length of the analytical traverses. The elements analyzed included the 14 REEs (139La, 140Ce, 

141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb and 175Lu), in addition 

to 7Li, 9Be, 29Si, 45Sc, 47Ti, 51V, 52Cr, 55Mn, 56Fe, 59Co, 60Ni, 65Cu, 66Zn, 69Ga, 75As, 85Rb, 88Sr, 

89Y, 90Zr, 93Nb, 95Mo, 107Ag, 111Cd, 115In, 118Sn, 121Sb, 133Cs, 137Ba, 178Hf, 181Ta, 182W, 197Au, 

205Tl, 208Pb, 232Th and 238U (Tables 2.3, 2.4, 2.5 and 2.6). The detection limits for the analyzed 

elements vary based on factors such as the volume of inclusions within chert. The detection 

limits were calculated using the relationship described in Longerich et al. (1996) and range from 

0.001 to 0.002 ppm for the REE and Y (Table 2.7). 

Furthermore, where discussed below, La, Gd, Eu and Ce anomalies are calculated following 

the procedure of Lawrence and Kamber (2005) using extrapolated Pr and Nd values in 

calculating the La anomaly and similar procedures for Eu, Gd and Ce.  

2.5 REE+Y systematics in BIF 

The presence and abundance of REE+Y in chert bands may represent a primary signature, 

which can be influenced by one or more processes: (1) precipitation from marine seawater in 

temporarily isolated or well-connected basins (e.g., Bau and Dulski, 1996); (2) precipitation from 

vent-sourced hydrothermal fluids (e.g., Danielson et al., 1992; Allwood et al., 2010); and (3) 

silicification of precursor volcanic units (e.g., Hanor and Duchac, 1990; Lowe, 1999). Chert 

geochemistry is also strongly dependent on the extent of contamination by terrigeneous detritus 

(e.g., Alexander et al., 2008), volcanic ash (e.g., Klein, 2005) and oceanographic processes (e.g., 

phosphate circulation and precipitation).  

Several studies have shown that the REE+Y systematics of Archean seawater are analogous 
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to the modern ocean (Fig. 2.5; e.g., Bau and Dulski, 1996; Thurston et al., 2012) which shows: 

a. Depletion in light rare-earth elements (LREE) relative to heavy rare-earth elements 

(HREE); 

b. A strongly super-chondritic Y/Ho ratio (i.e., >27), which produces a positive Y anomaly 

that is often between 40-90; 

c. A positive La anomaly (La/La* between 1.15 and 1.3); 

d. Positive Gd anomaly (Gd/Gd* between 1.3 and 1.5); 

e. A well-developed, negative Ce anomaly resulting from the oxidation of Ce+3 to Ce+4 in 

the water column. 

Therefore, the shale-normalized (i.e., MUQ) REE+Y pattern for Archean cherts influenced 

by volcanism and especially by high-temperature (>250°C) hydrothermal fluids (Fig. 2.5; Bau 

and Dulski, 1996; Kamber et al., 2004) will be characterized by a seawater signature with an 

associated high-temperature hydrothermal fluid signature:  

a. A depletion in light rare earth elements (LREE) relative to heavy rare earth elements 

(HREE);  

b.  Super-chondritic Y/Ho ratio (i.e., >27), yielding a positive Y/Y*MUQ anomaly, 

commonly between 40-90;  

c. A slightly positive La anomaly (La/La*MUQ between 1.15 and 1.3); 

d. Variable but well-developed positive Eu anomaly. 
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Due to the anoxic character of Archean seawater, the shale normalized REE+Y patterns for 

Archean seawater are very similar to modern seawater except that Ce shows a negative anomaly 

(Planavsky et al., 2010).  

Hydrothermal precipitates are characterized by a lack of LREE depletion, absence of both 

La and Gd anomalies, and a variably developed positive Eu anomaly (e.g., Allwood et al., 2010).  

It is noticed that Gd anomalies reported in previous articles on REE+Y data from BIF 

precipitated in Archean seawater (e.g., Bolhar et al., 2005; Thurston et al., 2012) were small to 

nonexistent and is therefore not referred again in this article. Any Gd anomaly present is 

considered due to a combination of a small positive Gd anomaly associated with seawater (Bau 

and Dulski 1996) and slightly-negative Gd anomaly associated with hydrothermal vent fluid 

(e.g., Allwood et al., 2010). Therefore, as Archean seawater was influenced by hydrothermal 

vent fluids, the Gd anomalies show a non-depletion and non-enrichment suggesting precipitation 

under influence of seawater and hydrothermal input. 

On the other hand, the chert bands may have been derived from hydrothermal circulation 

and silica replacement of volcanic and sedimentary rocks, as proposed by Hanor and Duchac 

(1990), which involved the silicification of various rocks in the Barberton greenstone belt. In this 

study, evidence for a replacement process in chert bands is evidenced from petrographic studies 

of the rocks and geochemically by elemental enrichment that is diagnostic of the precursor rock 

type. Thus, cherts produced by silicification of the different protoliths provided the following 

geochemistry: (1) silicified komatiites and basalts are enriched in Cr and Ni; and (2) silicified 

dacite to rhyolite are enriched in Ba, Zr, Sr, and Rb (Lowe, 1999). Neither textural nor 

geochemical evidence of such silicification processes relevant to chert formation were observed 
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in this study.  

Some chemical heterogeneities in chert may be due to inclusions or presence of 

disseminated grains, including single mineral phases, such as phosphates, garnets, clay minerals, 

and/or resistant minerals (e.g., zircon, xenotime, garnet etc.), which reflect either detrital 

contamination or a late metamorphic event (Fig. 2.4D, E, F). Although sample selection was 

based on careful petrographic study of the samples in order to avoid such heterogeneities in the 

chert, the beam diameter was large relative to the size of chert micro-banding and thus, some 

inclusions may affect the REE+Y concentrations (i.e, normalized patterns) depending on their 

modal abundances. In order to assess such influence, in Figure 2.6 is illustrated the effect of 

selected accessory minerals (i.e., Apatite (Fig. 2.6A), xenotime (Fig. 2.6B), zircon (Fig. 2.6C) 

and garnets (Fig. 2.6D)) on a typical LA-ICP-MS chert band analysis (Thurston et al., 2012). As 

the latter figure shows, small quantities of these minerals in the chert bands may affect, in some 

cases dominate, the REE chemistry and therefore interpretation of the bulk cherts (e.g., 0.3% 

apatite, 0.003% xenotime, 0.3% of zircon and 0.05% garnets). Therefore, the REE+Y 

geochemistry also represents an important tool in identifying and assessing the role of potential 

contamination of low abundance accessory minerals. If such contaminants are recognized 

through these above enumerated screening processes, then the REE+Y data can be used to 

constrain the genesis of BIF cherts and assess such contamination. Elements such as Sr, Ga, Sc, 

Zr and Th, and REE ratios, such as Nd/YbMUQ (i.e., Nd/YbMUQ �§���������D�Q�G���<���+�R�����L���H�������F�K�R�Q�G�U�L�W�L�F��

(i.e., 24-27) values), are excellent monitors of detrital contamination (i.e., detrital or volcanic 

input). 

Metamorphism and ore-forming processes (i.e., epigenetic fluids) may remobilize the 

REE+Y and consequently alter the primary signature of chert bands. Therefore, the REE+Y 
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signature of seawater and hydrothermal vent fluids will not be detected in MUQ-normalized 

profiles, as this paper addresses, thus a careful selection of samples was done prior to analytical 

studies. 

2.6 Results 

The REE+Y data from the sampled iron formations were normalized to MUQ and, despite 

some minor exceptions, the REE+Y normalized data (Tables 2.3, 2.4, 2.5 and 2.6; Fig. 2.7), 

show relatively uniform patterns. The dataset includes a moderate enrichment in the HREE 

relative to both the LREE and middle REE (Nd/YbMUQ = 0.05-0.6), positive La, Y and Eu 

anomalies related to the non-depletion of Gd, and super-chondritic to chondritic Y/Ho ratios 

(La/La*MUQ = 0.8-4.6; Y/Y*MUQ = 0.8-1.9; Eu/Eu*MUQ = 1.2-5.1; Gd/Gd*MUQ = 0.9-1.3; Y/Ho = 

24-53). 

Considering the chert data from each of the BIFs individually, some differences are apparent 

and these are discussed below. Most of samples from Far West (Fig.2.7A), which represents a 

barren BIF, are not discussed further here due to their very low levels of REEs and, 

consequently, the very erratic REEMUQ normalized patterns which resulted. This fact suggests 

that Far West material was chemically reworked after deposition which depleted the REE+Y 

contents of the chert samples.  

The West BIF (Figs. 2.7B, 2.8) data have relatively flat REE+Y patterns compared to the 

other BIFs and the data can be subdivided into two distinct groupings: 

a. Samples AMB-126233, AMB-126234, AMB-126235, AMB-128328 and AMB-128329 

are enriched in the HREE relative to both the MREE and the LREE (Nd/YbMUQ = 0.04-

0.5), have positive La, Y and Eu anomalies, non-depletion of Gd, and super-chondritic 
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Y/Ho ratios (La/La*MUQ = 1.5-2.6, Y/Y*MUQ = 1.1-1.6, Eu/Eu*MUQ = 1.7-3.5, 

Gd/Gd*MUQ = 0.9-1.2; Y/Ho = 32-46; Fig. 2.8A);  

b. Samples AMB-128330, AMB-128331 and AMB-128332 show relatively flat patterns 

(i.e., unfractionated) to weak enrichment in HREE relative to MREE and LREE 

(Nd/YbMUQ = 0.5-2), weak positive La and Eu anomalies (La/La*MUQ = 1.3-1.9, 

Eu/Eu*MUQ = 1.2-1.3) along with an absence of both Gd and Y anomalies (Gd/Gd*MUQ = 

0.9-1.1, Y/Y*MUQ = 0.9-1.1) and chondritic to super-chondritic Y/Ho ratios (Y/Ho = 26-

31; Fig. 2.8B).  

The second group of samples can be explained by detrital contamination and/or the presence 

of some disseminated subhedral phosphate grains (i.e., fluorapatite), which are observed in the 

chert bands (Fig. 2.8B), as illustrated by Y/Ho and Nd/YbMUQ values. The presence of detrital 

contamination is generally reflected by a relationship between (Pr/Sm)MUQ and Th and Ga, as the 

latter substitutes for Al and may be enriched in clay minerals of continental provenance (Bolhar 

et al., 2005). The source and origin of phosphate contamination has, however, yet to be 

established. In general, phosphate contamination in BIF is not significant (e.g., Thurston et al., 

2012; Bau and Alexander 2009). 

Generally, samples of Archean shale and volcanic tuff do not display significant positive Eu 

anomalies, as illustrated by the West IF data. Meanwhile, fluorapatite grains are present in each 

BIF, thus the shape of the REE plots could suggest a detrital origin, hence representing a 

component of detrital contamination. Theoretically, because of its presence in each of the BIFs in 

the area, fluorapatite contamination should affect each BIF sample to some degree, thereby 

producing a slightly concave downward REE+Y patterns associated with a negative Eu anomaly 
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(Fig. 2.8B; after Sano et al., 2002). 

Based on Pr/SmMUQ ratios, the Ga, Th and Sr content and a REE+Y pattern similar to apatite 

(except for a negative Eu anomaly), the data suggest samples AMB-128330, AMB-128331 and 

AMB-128332 may be influenced by some phosphate contamination (Fig. 2.8C, D, E; after Sano 

et al., 2002). This pattern suggests an association of these elements with terrigenous input (i.e., 

due to high concentration of Ga and Th) that consists of phosphate and aluminum with, in 

addition, a hydrothermal input indicated by the positive Eu anomaly. In the traverse-based 

sampling method used, the laser could, therefore, have encountered phosphates in these three 

samples. 

The Central BIF (Figs. 2.7C, 2.9) data show relatively constant REE+Y patterns with 

enrichment in the HREE relative to the MREE (Nd/YbMUQ = 0.1-0.3), positive La, Y and Eu 

anomalies, a lack of a Gd anomalies, and mainly super-chondritic Y/Ho ratios (La/La*MUQ = 0.8-

4.6, Y/Y*MUQ = 0.8-1.9 and Eu/Eu*MUQ = 1.5-3.5, Gd/Gd*MUQ = 0.9-1.2, Y/Ho = 24-53); these 

geochemical indices are consistent with contributions from ambient seawater and hydrothermal 

vent fluids (Fig. 2.9A, B). The lone exception to this explanation is sample AMB-126232 which 

shows an enrichment in the LREE relative to HREE (Nd/YbMUQ = 7; Fig. 2.9C) and a positive 

Eu anomaly (Eu/Eu*MUQ = 3.2). Interestingly, the pattern for this latter sample is similar to that 

for a garnet-quartz alteration envelope in the giant Broken Hill Zn-Pb deposit (Spry et al., 2007), 

which is shown in Fig. 2.9C for reference. Sample AMB-126232 also shows a strong correlation 

between (Eu/Eu*)MUQ (i.e., proxy of calcium) and (Pr/Sm)MUQ (Fig. 2.9F), which suggests the 

influence of garnet on the pattern. This artifact of the pattern could be explained by the presence 

of a thin layer of garnet adjacent (i.e., 3 mm) to the traverse which may have influenced the chert 

chemistry (Fig. 2.4B). It is also noted that samples AMB-126223 andAMB-126231 (Fig. 2.9B) 
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show enrichment in both Ga and Th relative to (Pr/Sm)MUQ, which suggest some detrital 

contamination (Fig. 2.9D, E). 

The data for the East BIF (Figs. 2.7D, 2.10) show very consistent shale-normalized patterns 

with enrichment in the HREE relative to MREE (Nd/YbMUQ = 0.1-0.4) and associated positive 

La, Y and Eu anomalies, non-depletion of Gd and chondritic to super-chondritic Y/Ho ratios 

(La/La*MUQ = 1-1.7, Y/Y*MUQ = 0.9-1.4 and Eu/Eu*MUQ = 2.1-5.1, Gd/Gd*MUQ = 0.9-1.1, Y/Ho 

= 25-41), which suggests the influence of both ambient seawater and, especially, a hydrothermal 

fluid (Fig. 2.10A). Examination of the data in more detail reveal, however, that samples AMB-

126241, AMB-126243 and AMB-126246 have relatively flatter patterns (Fig. 2.10B) which are 

similar to apatite (after Sano et al., 2002), but which lack a negative Eu anomaly. The contents of 

Ga, Th, Sr relative to (Pr/Sm)MUQ (Fig. 2.10C, D, E) illustrate a correlation between these 

elements and, in addition, we note that these three patterns also have smaller Eu anomalies. The 

patterns for these samples could, therefore, be explained by some terrigenous input, similar to the 

West IF, with the laser traverse analysis potentially having been influenced by some fluorapatite. 

There are only two samples from the Grizzly BIF for which data have been generated and the 

two patterns are similar. The patterns show that HREE are strongly enriched relative to both the 

MREE and LREE (Nd/YbMUQ = 0.07-0.1, there are positive La, Y and Eu anomalies, a lack of 

depletion of Gd, and super-chondritic Y/Ho ratios (La/La*MUQ = 1.6, Y/Y*MUQ = 1.1-1.3, 

Eu/Eu*MUQ = 2.3-3.5, Gd/Gd*MUQ = 1-1.1, Y/Ho = 35; Fig. 2.7E). Although there is an overall 

difference in the relative fractionation of these patterns compared to the other chert data (Fig. 7), 

the general enrichment of the HREEs and the positive La and Y anomalies are consistent with a 

seawater influence, whereas the strong positive Eu anomalies suggest a hydrothermal input.  
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2.7 Summary and Discussion 

The Meadowbank gold deposit consists of several Algoma-type BIFs which differ in their 

petrography, geochemistry and gold endowment. The trace-element geochemical signatures for 

several BIFs in this gold deposit area have been determined in order to constrain the origin of the 

units in terms of the processes inferred to be relevant to their formation, as well as assess the 

effect of such geochemical characteristics on the auriferous content of these BIFs and consequent 

implications for BIF-hosted gold deposits in general. The results of this study also have 

implications for assessing the origin of chert in the broader context of its environment. 

2.7.1 Geochemical signatures for the BIFs at Meadowbank 

The Far West BIF is unmineralized except for one area where an interval running 2.8 g/t Au 

over 3.6 meters was encountered (Agnico-Eagle Mines Ltd, 2012). Most of the chert data from 

this BIF were not plotted due to their low concentrations of REEs and, consequently (Fig. 2.7A), 

very erratic REE patterns. As noted already, the low REE contents for these samples is 

anomalous compared to all the other chert material analyzed in this study (Fig. 2.7) and may 

reflect subsequent modification (i.e., REE mobility) of the chert post-dating its formation, but at 

present no further speculation is possible. As for the two unusual shale-normalized patterns 

recorded for the these three chert samples shown in Fig. 2.7A, which contrast with the patterns 

for most of the other data, we can only speculate that they may also be attributed to modification 

post their formation. 

The West BIF is barren except for a few weakly anomalous gold values (Agnico-Eagle 

Mines Ltd, 2012) which were not selected in this study. The geochemical data for these samples 

show very consistent REE patterns (Fig. 2.7B) which are attributed to the influence of ambient 
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seawater with some hydrothermal input. Some chert bands, however, record the influence of 

detrital contamination, as represented by the levels of Th and Sr (i.e., proxies for phosphates).  

The Central BIF is the most mineralized BIF in the Meadowbank area with 24.5 Mt of 

proven/probable ore reserves grading 2.8 g/t (2011 data; Agnico-Eagle pers. comm. 2012). The 

geochemistry for this BIF (Fig. 2.7C) shows the combined influence of both ambient seawater 

and hydrothermal input with some chert bands reflecting some crustal influence, as indicated by 

the elevated Ga (i.e., proxy of aluminum) and Th. With regards to the hydrothermal input, the 

extent of the positive Eu anomaly, used as a proxy for such influence, is among the highest for 

all of the chert samples analyzed in this study. We cannot at this time, however, rule out the 

possibility that this increased Eu anomaly relates to the influence of the hydrothermal fluid 

related to the gold mineralization and further work is required to address this point, such as 

comparing its18O value to those cherts lacking such Eu anomalies.  

The East BIF, which is mostly barren except for an isolated intersection of 3.23 g/t Au over 

2.7 meters (Agnico-Eagle Mines Ltd, 2012), is located to the east of the richly mineralized 

Central BIF. The chert data from this BIF show very similar REE patterns to the West IF and 

reflect the influence of both ambient seawater and hydrothermal fluids (Fig. 2.7D), in addition to 

some detrital contamination, as indicated from the contents of Ga (i.e., proxy of aluminum), Th 

and Sr (i.e., proxy for phosphates). As with the Central BIF samples, the extent of the positive Eu 

anomalies are the highest of all the samples analyzed and again indicate significant contribution 

of a hydrothermal vent fluid. 

Located at the extreme east of the property, the Grizzly BIF shows both homogeneous, but 

very weak gold mineralization, as reflected by one intersection that averages 0.20 g/t over 49 
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meters, and also some richer intersections in the lower-grade zones (e.g., 0.96 g/t over 24 meters 

including 7.44 g/t over 2.6 meters; Agnico-Eagle pers. comm. 2012). This BIF shows very 

distinctive REE patterns compared to the other chert data (Fig. 2.7E) with significant HREE 

enrichment relative to LREE and a strong positive Eu anomaly. As noted already, the general 

pattern observed suggests an ambient seawater signature that is, however, also mixed with high-

temperature hydrothermal fluid, as indicated by the Eu anomaly. The nature of the pronounced 

depletion in LREE relative to HREE, can be explain by presence of carbonates (i.e., ankerite) in 

the chert bands which is uncommon to the region and may be related to a later cross-cutting 

granitic body dated at ca. 2.61 ±0.04 Ga localized close to sampling area (i.e.,<500 meters). The 

history of this BIF is different from the other auriferous and barren BIFs in the region and that it 

may have been influenced by its proximity to the noted younger granitic intrusion. 

Three parameters, namely Nd/YbMUQ, La/La* and Y/Ho, can be used to gauge the extent of 

seawater influence relevant to the formation of the BIF at Meadowbank (e.g., Kamber, 2010; 

Thurston et al., 2012). The ratios are all defined by Lawrence and Kamber (2006): (1) La/La* is 

a measure of the strength of the La anomaly caused by seawater precipitation; (2) Y/Ho is a 

measure of the enrichment or depletion of Y from chondritic values, again a measure of 

hydrogenous processes; (3) Nd/Yb is used as a measure of HREE fractionation in BIF 

geochemistry, as it uses only elements not affected by seawater or hydrothermal processes. The 

Nd/YbMUQ values for the West BIF (0.042-2.170) are greater in average than those for the East 

BIF (0.142-0.484) and the Central BIF (0.135-0.484), thus, it can be inferred that the West BIF 

likely formed in deeper water than either the Central or the East BIF which show similar values. 

The positive- to moderately negative Nd/YbMUQ values and associated chondritic Y/Ho ratio 

indicate a hydrogenous sedimentary signature (e.g., Thurston et al., 2012). Most samples in this 
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study also show weakly positive values for Eu/Eu* (1.24-5.12), which provide an indication of 

the relative influence of high-temperature hydrothermal fluids and thus proximity of chert 

deposition relative to fluid vents (i.e., the more positive the Eu anomaly the closer the 

hydrothermal fluid source). In this context, it is noted that the positive Eu anomaly for the 

Meadowbank BIF is not as high as that recorded for the BIFs which occur above the Deloro 

assemblage (e.g., 30+) in the Abitibi greenstone belt (Thurston et al., 2012). Finally, the West 

BIF and East BIF show similar REE patterns, which means that the two units could be folded 

equivalents of the same unit with the western unit perhaps representing deeper water based on 

Nd/Yb values listed above (Kamber, 2010).  

2.7.2  Implications for the nature of gold mineralization in BIF at Meadowbank 

The use of the REE+Y geochemistry of chert within BIFs at the Meadowbank mine has been 

effective in terms of recognizing processes (i.e., seawater, hydrothermal fluids, and 

contamination) relevant to their formation; however, there appears to be no difference in the 

geochemistry of barren versus mineralized BIFs in the Meadowbank area. The study has not, 

however, examined the potential influence of other factors that may be relevant in the context of 

the gold mineralizing event; these include the influence of organic processes on BIF 

development (Posth et al., 2013), the effects of early versus late-stage sulfide formation, the 

geochemistry of the sulfides, and the overall oxidation state of the BIF on the mineralizing 

processes. Furthermore, and also important, is that the absence of comparable data sets to that 

presented here precludes the possibility of assessing the results in a broader context; however, it 

is the intent of this project to further evaluate the application of the methods presented here to 

other auriferous BIF settings (i.e., Meliadine, NWT; Musselwhite and Beardmore-Geraldton 

deposits, Ontario). Moreover, Meadowbank has discontinuous outcrop exposure of BIFs and this 
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precluded, unfortunately, assessing the on-strike variability of the chert chemistry. Better 

continuity of exposure is found at Beardmore-Geraldton and Meliadine deposits where this 

aspect will be addressed in the context of evaluating the hydrothermal footprint in the context of 

both chemistry and extent. 

2.7.3 Implications of the results for BIFs 

The foregoing discussion has emphasized several important and significant contributions 

from this study which are relevant to studying BIFs in general: (1) The LA ICP-MS analyses 

done in traverse mode on carefully selected chert bands within BIFs using appropriate analytical 

protocols can provide quantitatively meaningful data at both low detection limits (i.e., to 0.0001 

to 0.001 shale-normalized values; see Fig. 2.7) and sufficiently high resolution (200 µm beam 

diameter); (2) The data produced in this study, when shale-normalized, indicate repeatedly that 

internally consistent and regular shale-normalized patterns can be achieved and reproduced. The 

data reflect and are consistent with the well-known and established geochemical behavior of the 

REEs as a group, in particular within a marine setting, which allow them to be routinely used as 

petrogenetic indicators for a wide variety of processes; (3) The consistency of the patterns noted 

in this study indicate, importantly, that potentially primary chemical signatures have been 

retained within the chert samples used despite several post-formation deformation and 

metamorphic events, in some cases to amphibolite facies; and (4) The previous conclusions 

provide, therefore, the opportunity to interpret, as has been done previously but with a high 

degree of confidence, the geochemical signals in the context of processes relevant to chert 

formation, these being contributions from ambient seawater, hydrothermal fluids, and detrital 

contamination. Given the robust behavior of the REEs and other elements not easily volatilized, 

these elements can be used in conjunction with easily volatilized elements to define the extent of 



39 
 

the hydrothermal footprint of the gold mineralizing event in settings where continuity of 

exposure may allow this. 
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2.9 Figures and captions 

 

Figure 2.1: Simplified regional geological map of the Rae and Hearne Domains (modified from 

Hrabi et al., 2003).  
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Figure 2.2: Geological map of the Meadowbank deposit area showing the location of the main 

BIFs which have been sampled for this study (modified after Agnico-Eagle Mines Ltd.).  
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Figure 2.3: Photographs of drill core (5 cm in length) and corresponding scanned polished-thin 

sections for samples from the BIFs used in this study: A, B) Sample AMB-216236 from the Far 

West; C, D) Sample AMB-126234 from the West IF; E, F) Sample AMB-126224 from the 

Central BIF; G, H) Sample AMB-126242 from the East BIF; I, J) Sample AMB-1268335 from 

the Grizzly zone. For the polished-thin sections, the clear transparent material is chert, whereas 

the remaining dark material is a mixture of oxides, silicates and sulfide material, as discussed in 

the text for each BIF.  
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Figure 2.4: Back-scattered electron image from the SEM for different samples from the 

Meadowbank BIFs: A) chert bands with heterogeneities (e.g., magnetite and amphiboles grains); 

B) example of traverse line done in chert bands in edge of garnet band (from AMB-126232); C) 

zoom-in of traverse line in chert bands (from AMB-126223). Example of heterogeneities in chert 

bands: D) apatite grain in chert bands (from AMB-126247); E) xenotime grains disseminated in 

chert bands (from AMB-126231); and F) zircon grains disseminated in chert bands (from AMB-

126231).  
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Figure 2.5: Shale (MUQ)-normalized REE+Y patterns illustrating the chemical signatures of the 

modern ambient seawater and hydrothermal vent fluid (after Bau and Dulski, 1999). 
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Figure 2.6: Shale (MUQ) - normalized REE+Y patterns of chert sample (black circle) from 

Thurston et al. (2011), affected by variable concentration of residual contamination: A) apatite 

(data from Sano et al. (2002)); B) xenotime (data from Borai et al. (2002)); C) zircon (data from 

Sano et al. (2002)); and D) garnet (data from Spy et al. (2007)).  
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Figure 2.7: Shale (MUQ) - normalized REE+Y patterns for chert samples from the different BIFs 

sampled at Meadowbank: A) Far West; B) West IF; C) Central BIF; D) East BIF; and E) Grizzly 

area.  
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Figure 2.8: Geochemical data for chert samples from the West BIF at Meadowbank: A, B) Shale 

(MUQ) - normalized REE patterns reflecting the influence of ambient seawater and 

hydrothermal fluids. Note that in Fig. 2.8B is also shown the profile for an apatite for 

comparison to samples from Meadowbank, as discussed in the text; C) Ga vs. Pr/SmMUQ; D) Th 

vs. Pr/SmMUQ; and E) Sr vs. Pr/SmMUQ.  
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Figure 2.9: Geochemical data for chert samples from the Central BIF at Meadowbank: A, B, C) 

Shale (MUQ) - normalized REE patterns reflecting the influence of ambient seawater and 

hydrothermal fluids. Also note that in Figure 2.9C is shown the profile for a garnet-rich sample 

from Mt. Isa, Australia (from Spry et al., 2007) for comparison to one of the profiles form 

Meadowbank, as discussed in the text; D) Ga vs. Pr/SmMUQ; E) Th vs. Pr/SmMUQ; and F) 

Eu/Eu*MUQ vs. Pr/SmMUQ.  
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Figure 2.10: Geochemical data for chert samples from the East BIF at Meadowbank: A,B) Shale 

(MUQ) - normalized REE patterns reflecting the influence of ambient seawater and 

hydrothermal fluids; C) Ga vs. Pr/SmMUQ; D) Th vs. Pr/SmMUQ; and E) Sr vs. Pr/SmMUQ.  
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2.10 Tables and captions 

Table 2.1: Deformation events in the Meadowbank area 

 

 

 

 

 

 

Deformation 
events

Generation of 
structure

Description Age

L4 Crenulation lineation

S4
Steeply dipping axial surfaces, and local crenulation 
cleavages 

F4

Upright, open- to tight folds. Moderately to 
shallowly plunging, with NNE-trending, steeply 
dipping (>60°) axial surfaces

L3
Shallowly plunging to subhorizontal crenulation 
lineation, itself subparallel to F3 fold axes

F3 Southeast-verging minor fold set with shallowly to 
moderately northwest-dipping (<40°) axial surfaces 

Shear zone West-directed, reverse shear zones

L2 Strong crenulation or intersection lineations

S2
Axial-planar foliations with variable orientation. 
Vary from schistosity, to crenulation, to a 
transposition foliation

F2

Tight- to isoclinal, generally intrafolial folds. The 
folds are doubly plunging shallowly to the north or 
south, NE- to E-verging in the Third Portage area, 
and NW- to N-verging in the North Portage area

L1 Clast elongation lineations

S1
Schistosity largely sub-parallel to bedding and 
layers. Indicated by phyllosilicate and chlorite 
alignment

F1 Shallowly plunging, isoclinal folds

D1
2620-2590 Ma and  1835 

Ma

D4 1835-1760 Ma

D3 1790 Ma

D2 1800-1900 Ma
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Table 2.2: Metamorphic events in the Meadowbank area 

 

 

 

 

 

 

 

 

 

 

 

Metamorphic 
events

Facies 
assemblage Description Age

M3
Mid-upper 
greenschist to 
amphibolite

Characterized by a new generation of biotite, garnet, cummingtonite 
and actinolite overprinting D2 structures and is contained in S3 fabrics. 
The mineral assemblage suggests a temperature near 450°C and a 
pressure of 3 kbars (Pehrsson et al., 2000)

post-
mineralization, 1.8 

Ga

Amphibolite 
grade

Located in the south part of the property, in the Goose Island zone 
(Fig. 3). Characterized by an assemblages of biotite-staurolite-
muscovite-garnet suggesting temperatures near 550°C and a pressure 
at least 3.0 kbars

Upper 
greenschist

Located in the central part of the Meadowbank area; characterized by 
an assemblages of epidote amphibolites suggesting temperature of 
about 450°C at lower pressures

Mid-greenschist

Located in the north of the Meadowbank area; composed of  kyanite 
in the quartzite unit and grunerite-chlorite in the BIF suggesting a 
temperature near 400°C and pressure of at least 2.5 kbars (Armitage 
et al., 1996)

M1 Greenschist 
Unknown pressure. Interpreted to predate D2 structures and posdates 
the 2.60 Ga granites

< 2.60 Ga- > 1.8-
1.9 Ga 

M2 Coeval with D2



1 
 

Table 2.3: Abundances of elements and REE+Y for samples from Central BIF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samples AMB-126222 AMB-126223 AMB-126224 AMB-126225 AMB-126226 AMB-126227 AMB-126230 AMB-126231 AMB-126232
Si (ppm) 331200 250600 313200 366000 357800 326800 329400 155600 381400
Li (ppm) 0.310 4.630 0.760 1.760 0.077 0.055 0.455 16.610 0.974
Be (ppm) 0.560 0.254 0.480 0.240 0.067 0.187 0.144 6.370 0.000
Sc (ppm) 4.551 10.140 4.252 5.295 3.903 3.437 3.524 27.180 3.054
Ti (ppm) 4.210 1358.000 5.100 27.100 2.101 6.980 5.270 2780.000 35.900
V (ppm) 0.324 9.360 0.118 1.565 0.049 0.386 0.445 188.900 3.330
Cr (ppm) 6.800 46.600 5.500 17.100 4.880 2.890 5.900 201.400 5.880
Mn (ppm) 540 616 353.716 239 96 39.500 33.500 34.700 7.370
Fe (ppm) 82.660 63.400 33100 30600 2050 25600 30800 12450 2140
Co (ppm) 0.553 0.870 1.730 0.509 0.235 0.203 1.000 1.943 0.177
Ni (ppm) 13.200 74.430 14.000 11.000 4.190 2.600 6.200 7.310 4.900
Cu (ppm) 475.635 151.568 13.000 13.900 15.400 6.900 12.900 2.750 8.700
Zn (ppm) 41.400 132.100 26.800 33.000 7.600 13.400 15.600 13.000 14.500
Ga (ppm) 0.176 6.830 0.320 0.924 0.178 0.417 0.758 141.400 0.839
As (ppm) 2.446 4.300 0.761 0.630 1.310 0.923 0.860 0.479 1.380
Rb (ppm) 0.208 3.460 0.652 1.630 0.220 0.675 1.645 364.000 0.273
Sr (ppm) 1.460 20.400 18.400 5.650 21.800 3.830 13.500 95.200 10.930
Y (ppm) 7.790 16.300 4.050 5.000 0.539 0.710 1.384 12.100 0.186
Zr (ppm) 0.153 104.900 0.205 8.800 0.233 0.146 0.199 183.000 2.250
Nb (ppm) 0.031 4.170 0.050 0.180 0.016 0.053 0.064 7.900 0.022
Mo (ppm) 0.107 0.166 0.062 0.088 0.078 0.038 0.171 0.125 0.134
Ag (ppm) 0.270 0.117 3.000 0.054 0.054 0.026 0.043 0.058 0.069
Cd (ppm) 0.292 0.213 1.500 0.408 0.700 0.316 0.429 0.150 0.676
In (ppm) 0.024 0.049 0.027 0.026 0.012 0.022 0.015 0.142 0.020
Sn (ppm) 1.087 3.082 1.470 2.600 0.620 1.940 0.373 19.800 0.338
Sb (ppm) 0.702 0.736 0.760 0.388 0.148 0.348 0.000 0.137 0.140
Cs (ppm) 0.088 1.607 0.227 0.505 0.083 0.187 1.104 10.190 0.121
Ba (ppm) 0.394 3.280 1.430 3.580 0.598 1.140 2.820 1480.000 1.600
La (ppm) 0.733 1.750 2.000 0.850 0.135 0.243 0.125 2.650 1.160
Ce (ppm) 1.190 3.970 3.150 1.570 0.299 0.518 0.416 5.500 1.920
Pr (ppm) 0.141 0.451 0.322 0.157 0.036 0.059 0.056 0.690 0.203
Nd (ppm) 1.010 2.120 1.320 0.700 0.131 0.249 0.274 2.940 0.790
Sm (ppm) 0.213 0.650 0.288 0.182 0.038 0.060 0.098 1.390 0.101
Eu (ppm) 0.217 0.328 0.188 0.102 0.038 0.044 0.035 0.568 0.061
Gd (ppm) 0.455 1.350 0.437 0.343 0.056 0.083 0.156 1.950 0.063
Tb (ppm) 0.074 0.281 0.074 0.058 0.011 0.015 0.028 0.368 0.007
Dy (ppm) 0.556 2.220 0.503 0.423 0.068 0.094 0.197 2.480 0.031
Ho (ppm) 0.145 0.503 0.114 0.106 0.017 0.021 0.043 0.500 0.007
Er (ppm) 0.438 1.510 0.366 0.306 0.047 0.063 0.127 1.530 0.015

Tm (ppm) 0.060 0.219 0.055 0.044 0.007 0.010 0.019 0.239 0.003
Yb (ppm) 0.366 1.439 0.349 0.258 0.042 0.062 0.113 1.630 0.010
Lu (ppm) 0.062 0.217 0.064 0.045 0.009 0.010 0.018 0.268 0.003
Hf (ppm) 0.004 1.591 0.002 0.170 0.002 0.002 0.004 4.610 0.058
Ta (ppm) 0.002 0.430 0.003 0.013 0.001 0.003 0.005 0.604 0.003
W (ppm) 0.258 0.993 0.080 0.234 0.042 0.053 0.710 11.390 0.091
Au (ppm) 0.004 0.012 0.022 0.004 0.002 0.003 0.007 0.013 0.004
Tl (ppm) 0.006 0.020 0.019 0.013 0.007 0.011 0.032 3.045 0.029
Pb (ppm) 17.363 9.748 940.000 4.500 3.340 1.079 2.150 11.740 5.380
Th (ppm) 0.006 1.220 0.005 0.035 0.002 0.012 0.003 7.700 0.043
U (ppm) 0.007 0.930 0.043 0.045 0.012 0.021 0.023 6.320 0.021

Y/Ho 53.724 32.406 35.526 47.170 31.706 33.971 31.889 24.200 27.886
Eu/Eu* 3.327 1.553 2.366 1.883 3.511 2.652 1.249 1.490 3.280
La/La* 4.648 1.494 1.819 1.875 0.887 1.265 0.954 1.215 1.508
Y/Y* 1.956 1.184 1.253 1.758 1.214 1.242 1.180 0.875 1.175

Ce/Ce* 1.860 1.273 1.234 1.371 0.945 1.132 1.134 1.045 1.132
Gd/Gd* 1.246 1.065 1.088 1.166 0.987 1.002 1.055 1.001 1.011
Pr/Sm 0.514 0.538 0.867 0.669 0.731 0.765 0.440 0.385 1.559
Nd/Yb 0.254 0.135 0.348 0.249 0.290 0.369 0.222 0.166 7.191
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Table 2.4: Abundances of elements and REE+Y for samples from the East BIF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samples AMB-126241 AMB-126242 AMB-126243 AMB-126245 AMB-126246 AMB-126247 AMB-126248 AMB-126249 AMB-126250
Si (ppm) 488400 832000 784800 714600 746000 670600 639600 569600 657400
Li (ppm) 1.907 0.406 0.282 0.061 2.150 0.536 0.576 0.249 0.680
Be (ppm) 3.720 0.215 0.206 0.096 0.099 0.148 0.058 0.000 0.040
Sc (ppm) 5.466 4.041 3.514 2.986 3.516 2.821 2.617 2.907 2.872
Ti (ppm) 8.570 3.050 12.100 12.250 13.400 5.030 4.830 1.368 4.070
V (ppm) 0.601 0.185 1.770 0.529 1.047 0.245 0.188 0.085 0.205
Cr (ppm) 16.900 6.100 15.500 5.800 7.600 5.820 5.200 9.100 6.630
Mn (ppm) 1602 1030 265 89 78.500 222 105 677 482
Fe (ppm) 28800 13490 12890 54700 31800 9790 6720 12200 17020
Co (ppm) 0.340 0.471 0.661 1.140 0.389 0.129 0.189 0.165 0.372
Ni (ppm) 2.770 2.750 6.500 2.750 5.600 2.750 2.790 3.500 2.450
Cu (ppm) 5.100 2.970 4.700 5.200 5.300 37.400 7.300 6.400 4.660
Zn (ppm) 15.600 10.870 10.350 12.000 12.840 6.670 11.300 7.800 7.560
Ga (ppm) 0.894 0.144 0.751 0.751 0.444 4.190 1.140 0.201 0.412
As (ppm) 0.514 0.142 1.790 0.624 2.140 0.558 0.055 0.567 0.553
Rb (ppm) 1.550 0.019 0.069 0.026 0.774 1.940 0.909 0.078 1.150
Sr (ppm) 55.000 29.200 27.900 0.998 1.120 44.300 24.100 46.900 46.100
Y (ppm) 16.190 2.340 4.120 0.624 0.291 1.150 0.810 2.870 1.730
Zr (ppm) 2.170 0.461 0.970 0.550 0.860 0.224 1.120 0.178 0.425
Nb (ppm) 0.169 0.026 0.048 0.102 0.053 0.078 0.035 0.014 0.024
Mo (ppm) 0.124 0.138 0.460 0.034 0.134 0.079 0.081 29.000 0.111
Ag (ppm) 0.043 0.028 0.045 0.016 0.044 0.133 0.030 0.047 0.088
Cd (ppm) 0.296 0.422 0.331 0.198 0.407 0.308 0.321 0.314 0.327
In (ppm) 0.083 0.012 0.036 0.008 0.030 0.010 0.010 0.017 0.009
Sn (ppm) 0.870 0.261 1.560 0.226 2.200 0.209 0.148 1.840 0.200
Sb (ppm) -0.029 0.030 0.075 0.687 0.725 0.000 0.000 0.152 0.000
Cs (ppm) 0.279 0.008 0.029 0.017 0.062 0.062 0.053 0.041 0.060
Ba (ppm) 11.860 0.293 0.555 0.384 2.460 85.000 18.100 1.260 3.990
La (ppm) 6.790 0.189 2.310 0.161 0.077 0.127 0.069 0.453 0.172
Ce (ppm) 12.030 0.562 4.380 0.319 0.135 0.322 0.187 1.130 0.499
Pr (ppm) 1.605 0.088 0.522 0.041 0.017 0.049 0.023 0.137 0.064
Nd (ppm) 6.770 0.463 2.070 0.204 0.070 0.270 0.118 0.760 0.332
Sm (ppm) 1.574 0.158 0.408 0.063 0.021 0.118 0.042 0.219 0.110
Eu (ppm) 0.834 0.191 0.309 0.039 0.017 0.100 0.046 0.212 0.156
Gd (ppm) 1.800 0.236 0.537 0.096 0.033 0.153 0.065 0.364 0.167
Tb (ppm) 0.283 0.041 0.085 0.015 0.006 0.024 0.011 0.059 0.028
Dy (ppm) 1.990 0.309 0.660 0.091 0.036 0.156 0.077 0.362 0.189
Ho (ppm) 0.441 0.071 0.145 0.019 0.011 0.035 0.020 0.079 0.043
Er (ppm) 1.354 0.240 0.478 0.056 0.030 0.098 0.057 0.238 0.131

Tm (ppm) 0.197 0.040 0.079 0.009 0.007 0.016 0.011 0.033 0.019
Yb (ppm) 1.285 0.299 0.574 0.057 0.036 0.107 0.064 0.215 0.125
Lu (ppm) 0.210 0.060 0.097 0.010 0.008 0.020 0.013 0.040 0.024
Hf (ppm) 0.036 0.009 0.013 0.015 0.010 0.004 0.009 0.003 0.009
Ta (ppm) 0.003 0.002 0.004 0.007 0.005 0.003 0.004 0.001 0.001
W (ppm) 0.215 0.076 0.085 0.120 0.136 0.249 0.095 0.060 0.084
Au (ppm) 0.002 0.002 0.003 0.001 0.003 0.004 0.002 0.002 0.001
Tl (ppm) 0.023 0.015 0.015 0.008 0.022 0.014 0.018 0.009 0.012
Pb (ppm) 2.030 1.133 2.970 1.010 2.850 3.860 1.570 2.170 1.273
Th (ppm) 0.050 0.009 0.021 0.013 0.014 0.002 0.003 0.001 0.003
U (ppm) 0.255 0.015 0.212 0.040 0.027 0.006 0.006 0.004 0.011

Y/Ho 36.712 32.819 28.414 32.500 25.752 32.951 41.117 36.329 40.233
Eu/Eu* 2.198 4.359 2.949 2.292 2.672 3.272 3.833 3.449 5.122
La/La* 1.312 1.025 1.213 1.706 1.237 1.408 1.431 1.773 1.272
Y/Y* 1.325 1.128 0.988 1.202 1.009 1.245 1.531 1.325 1.458

Ce/Ce* 0.973 1.027 1.024 1.197 0.956 1.132 1.317 1.407 1.252
Gd/Gd* 1.055 1.066 1.085 1.141 0.998 1.075 1.068 1.154 1.094
Pr/Sm 0.791 0.434 0.993 0.503 0.640 0.320 0.419 0.485 0.449
Nd/Yb 0.484 0.142 0.332 0.328 0.178 0.233 0.170 0.325 0.243
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Table 2.5: Abundances of elements and REE+Y for samples from the West IF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samples AMB-126233 AMB-126234 AMB-126235 AMB-128328 AMB-128329 AMB-128330 AMB-128331 AMB-128332
Si (ppm) 302600 249000 328200 593400 611000 393600 305800 457600
Li (ppm) 0.146 0.213 0.130 0.316 0.226 65.100 9.790 11.100
Be (ppm) 0.063 0.990 0.213 0.012 0.316 1.154 1.570 1.980
Sc (ppm) 2.980 3.530 3.234 3.241 2.538 15.610 7.340 7.780
Ti (ppm) 7.510 7.550 2.380 2.249 1.910 1840.000 474.000 630.000
V (ppm) 0.211 0.465 0.131 0.162 0.133 27.200 11.090 4.610
Cr (ppm) 4.710 172.000 6.700 5.250 3.590 39.100 49.300 22.600
Mn (ppm) 210.0 226.0 159.0 126.1 264.0 658.0 268.6 158.0
Fe (ppm) 38800 61500 31100 78600 39100 67800 51400 15900
Co (ppm) 1.080 0.740 0.397 0.479 0.314 11.980 2.120 1.710
Ni (ppm) 12.000 7.400 6.700 2.690 2.790 44.100 13.050 12.100
Cu (ppm) 25.000 2.800 3.900 2.360 19.400 18.800 3.780 9.010
Zn (ppm) 11.200 22.900 11.600 14.670 12.300 141.000 13.760 16.500
Ga (ppm) 0.517 1.753 0.264 0.237 0.773 27.800 16.040 19.800
As (ppm) 0.528 0.128 0.406 -0.193 0.307 0.168 168.400 12.300
Rb (ppm) 2.460 8.400 0.335 0.366 2.130 116.000 30.800 34.300
Sr (ppm) 3.410 10.000 33.100 1.016 1.880 64.900 1090.000 431.000
Y (ppm) 3.080 5.030 2.030 1.767 4.980 4.320 218.300 35.200
Zr (ppm) 5.800 0.111 0.790 0.319 0.300 19.100 43.400 20.100
Nb (ppm) 0.038 0.157 0.041 0.072 0.049 3.430 1.590 1.840
Mo (ppm) 0.051 0.060 0.065 0.025 0.043 0.736 0.054 0.084
Ag (ppm) 0.034 0.370 0.038 0.009 0.050 0.033 0.068 0.043
Cd (ppm) 0.160 0.166 0.491 0.139 0.118 0.131 0.275 0.221
In (ppm) 0.012 0.021 0.015 0.007 0.016 0.093 0.017 0.021
Sn (ppm) 0.500 0.670 0.520 0.550 0.192 4.200 0.610 0.485
Sb (ppm) 0.275 0.124 0.260 0.000 0.098 0.000 0.027 0.095
Cs (ppm) 1.010 6.100 0.242 0.089 1.027 7.970 4.830 2.050
Ba (ppm) 2.370 19.800 1.870 3.040 11.310 234.000 304.000 365.000
La (ppm) 0.540 0.127 0.427 0.110 4.780 8.920 122.000 38.000
Ce (ppm) 1.030 0.286 0.770 0.272 5.290 18.520 235.000 65.000
Pr (ppm) 0.123 0.044 0.107 0.024 0.544 2.080 21.300 6.500
Nd (ppm) 0.580 0.271 0.553 0.107 2.280 8.690 84.000 28.600
Sm (ppm) 0.186 0.166 0.132 0.032 0.416 1.600 16.900 4.900
Eu (ppm) 0.090 0.229 0.142 0.028 0.349 0.418 5.120 1.340
Gd (ppm) 0.323 0.399 0.171 0.064 0.514 1.149 21.900 5.300
Tb (ppm) 0.048 0.088 0.026 0.015 0.070 0.159 3.620 0.720
Dy (ppm) 0.325 0.577 0.186 0.153 0.459 0.906 28.600 5.050
Ho (ppm) 0.080 0.153 0.045 0.044 0.108 0.166 6.990 1.290
Er (ppm) 0.253 0.476 0.145 0.171 0.340 0.406 21.400 4.190
Tm (ppm) 0.038 0.079 0.025 0.032 0.050 0.057 2.870 0.750
Yb (ppm) 0.255 0.505 0.189 0.236 0.361 0.367 15.740 4.830
Lu (ppm) 0.049 0.095 0.035 0.039 0.069 0.058 1.958 0.706
Hf (ppm) 0.060 0.003 0.012 0.007 0.003 0.579 1.133 0.630
Ta (ppm) 0.002 0.006 0.002 0.004 0.003 0.330 0.124 0.230
W (ppm) 0.064 0.051 0.068 0.023 0.050 1.020 1.227 0.463
Au (ppm) 0.003 0.002 0.002 0.000 0.001 0.004 0.003 0.002
Tl (ppm) 0.011 0.011 0.017 0.005 0.012 0.476 0.157 0.190
Pb (ppm) 0.970 1.620 1.680 0.401 0.407 5.880 20.470 8.860
Th (ppm) 0.004 0.002 0.006 0.007 0.003 1.055 3.400 4.200
U (ppm) 0.043 0.007 0.017 0.003 0.014 0.465 2.170 2.080

Y/Ho 38.500 32.876 45.618 40.159 46.111 26.024 31.230 27.287
Eu/Eu* 1.745 3.916 4.203 2.558 3.516 1.318 1.215 1.226
La/La* 1.701 1.895 1.857 1.541 2.689 1.304 1.552 1.972
Y/Y* 1.368 1.179 1.596 1.273 1.643 1.052 1.129 0.956

Ce/Ce* 1.215 1.226 1.144 1.523 1.254 1.144 1.338 1.353
Gd/Gd* 1.237 1.062 1.087 0.932 1.180 0.980 1.091 1.153
Pr/Sm 0.513 0.206 0.629 0.596 1.014 1.009 0.978 1.029
Nd/Yb 0.209 0.049 0.269 0.042 0.581 2.177 0.491 0.544
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Table 2.6: Abundances of elements and REE+Y for samples from the Far West and Grizzly 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samples AMB-126236 AMB-126238 AMB-126239 AMB-128334 AMB-128335
Si (ppm) 317200 549200 495200 271600 523400
Li (ppm) 0.72 0.09 0.21 0.67 0.15
Be (ppm) 0.33 0.00 0.06 1.00 0.20
Sc (ppm) 3.89 2.98 4.66 3.53 4.31
Ti (ppm) 19.20 7.90 27.00 49.06 1.98
V (ppm) 1.58 0.32 3.79 11.41 0.79
Cr (ppm) 7.00 8.20 7.00 25.90 5.53
Mn (ppm) 236.00 23.50 336.00 2539.00 747.00
Fe (ppm) 39700 890 10900 506100 10090
Co (ppm) 1.69 0.21 0.84 2.67 0.47
Ni (ppm) 3.71 6.24 5.10 46.08 11.00
Cu (ppm) 8.00 11.10 8.00 3.47 3.14
Zn (ppm) 28.30 11.60 29.30 230.10 10.49
Ga (ppm) 1.28 0.19 1.18 0.77 0.25
As (ppm) 0.33 1.25 0.69 0.68 7.80
Rb (ppm) 0.10 0.17 0.50 1.05 0.17
Sr (ppm) 3.12 1.45 2.25 127.00 37.10
Y (ppm) 5.24 0.24 2.48 10.61 6.24
Zr (ppm) 0.50 0.53 16.00 17.30 48.30
Nb (ppm) 0.08 0.03 0.23 0.28 0.02
Mo (ppm) 0.09 0.22 0.22 0.05 0.09
Ag (ppm) 0.06 0.05 0.09 0.02 0.03
Cd (ppm) 0.59 0.45 0.55 0.57 0.28
In (ppm) 0.04 0.03 0.02 0.01 0.01
Sn (ppm) 0.38 1.52 0.72 0.13 0.20
Sb (ppm) 0.06 0.04 0.15 1.60 0.34
Cs (ppm) 0.05 0.12 0.11 0.71 0.23
Ba (ppm) 0.46 0.51 3.69 0.77 3.20
La (ppm) 0.373 2.1 0.88 1.246 0.567
Ce (ppm) 0.79 4.46 2.63 2.2 1.107
Pr (ppm) 0.109 0.467 0.251 0.237 0.1519
Nd (ppm) 0.48 1.72 1.36 0.996 0.765
Sm (ppm) 0.172 0.248 0.42 0.309 0.274
Eu (ppm) 0.0569 0.0384 0.081 0.398 0.198
Gd (ppm) 0.33 0.153 0.52 0.625 0.548
Tb (ppm) 0.0594 0.0137 0.069 0.1306 0.1003
Dy (ppm) 0.471 0.0512 0.385 1.168 0.752
Ho (ppm) 0.137 0.00837 0.0722 0.303 0.174
Er (ppm) 0.571 0.018 0.197 1.06 0.528
Tm (ppm) 0.106 0.00303 0.0318 0.1742 0.0765
Yb (ppm) 0.777 0.0138 0.214 1.229 0.471
Lu (ppm) 0.163 0.00268 0.0382 0.1914 0.0708
Hf (ppm) 0.0149 0.011 0.249 0.245 0.289
Ta (ppm) 0.00759 0.00319 0.0148 0.01262 0.00172
W (ppm) 0.0414 0.1129 0.089 0.2389 0.151
Au (ppm) 0.00439 0.00268 0.0049 0.00227 0.00182
Tl (ppm) 0.0241 0.0239 0.0311 0.0057 0.0151
Pb (ppm) 2.09 2.13 1.56 2.11 3.17
Th (ppm) 0.00414 0.0228 0.055 0.0141 0.00666
U (ppm) 0.029 0.0561 0.196 0.176 0.123

Y/Ho 38.25 28.43 34.35 35.02 35.86
Eu/Eu* 1.082 0.931 0.813 3.964 2.329
La/La* 1.156 1.063 1.794 1.618 1.650
Y/Y* 1.163 1.218 1.317 1.178 1.303

Ce/Ce* 0.982 1.082 1.746 1.200 1.129
Gd/Gd* 1.126 1.218 1.197 1.045 1.134
Pr/Sm 0.492 1.461 0.464 0.595 0.430
Nd/Yb 0.057 11.459 0.584 0.075 0.149

Far West Grizzly
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Table 2.7: Estimated LOD values for the analyzed elements. 

 

 

 

 

 

Analyte Estimated LOD [ppm] Analyte Estimated LOD [ppm]
Li7 0.015 Sb121 0.004
Be9 0.028 Cs133 0.001
Si29 40 Ba137 0.018
Sc45 0.033 La139 0.002
Ti47 0.143 Ce140 0.002
V51 0.027 Pr141 0.002
Cr52 0.077 Nd146 0.012
Mn55 0.069 Sm147 0.012
Fe57 0.238 Eu153 0.004
Co59 0.005 Gd157 0.015
Ni60 0.052 Tb159 0.002
Cu65 0.024 Dy163 0.010
Zn66 0.035 Ho165 0.002
Ga69 0.009 Er166 0.007
As75 0.193 Tm169 0.002
Rb85 0.003 Yb172 0.011
Sr88 0.001 Lu175 0.003
Y89 0.001 Hf178 0.009
Zr90 0.002 Ta181 0.003
Nb93 0.001 W182 0.008
Mo95 0.006 Au197 0.004
Ag107 0.002 Tl205 0.002
Cd111 0.017 Pb208 0.003
In115 0.001 Th232 0.005
Sn118 0.004 U238 0.003
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 Chapter 3: Depositional setting of Algoma-type BIF 

3.1 Abstract 

Algoma-type banded iron formations (BIF) are chemical sedimentary rocks characterized by 

alternating layers of iron-rich minerals and chert that are generally interstratified with bimodal 

submarine volcanic rocks and/or sedimentary sequences in Archean greenstone belts. However, 

the geological setting for Algoma-type BIF deposition remains equivocal due to the effects of 

post-depositional deformation and metamorphism and absence of modern analogues for 

comparative studies. It is commonly accepted that the abundance of rare earth element and 

yttrium (REE+Y) in chert bands may retain a primary geochemical signature and therefore 

constrain their geological setting. In order to explore the latter, a geochemical study using the 

laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) methodology was 

done using cherts from four Canadian BIF-hosted gold deposits. These results suggest that chert 

bands record: (1) interaction of seawater with Fe-oxyhydroxides, as suggested by their heavy 

REE enrichment coupled with La and Y enrichments; (2) contributions from high-temperature 

(>250ºC) hydrothermal fluids, as suggested by positive Eu excursions; and (3) detrital 

contamination, which is suggested by relatively consistent REE concentrations and a chondritic 

�<���+�R���U�D�W�L�R�����L���H�������<���+�R���§�������������:�D�W�H�U-column pH conditions at the time of BIF deposition are 

evaluated using Ce/Ce*: a positive Ce/Ce* anomaly suggests relatively acidic conditions (i.e., 

�S�+�”�������I�R�U���P�R�V�W���R�I���W�K�H���F�K�H�U�W���V�D�P�S�O�H�V�����E�X�W���P�R�U�H���D�O�N�D�O�L�Q�H���F�R�Q�G�L�W�L�R�Q�V�����L���H�������S�+�•�������I�R�U���V�D�P�S�O�H�V��

showing Fe-oxyhydroxide precipitation within chert bands. Finally, in-situ secondary ion mass 

spectrometry (SIMS) analysis (n = 73) of chert from Meliadine show the �/18O of primary 

amorphous silica (+27‰) was modified to values of around +8 to +20‰ during diagenesis at 
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temperatures >100°C with a fluid having �/18OH2O = 0 to 5‰. Thus, whereas there has been O 

isotopic exchange during diagenesis, the REEs and trace elements are not modified in the chert 

due to the low concentrations of these elements in the reacting fluid of sea water origin. 

3.2 Introduction 

Algoma-type BIFs are thinly bedded, chemical sedimentary rocks comprising alternating 

layers of iron-rich minerals and chert. These rocks are typically intercalated with Eoarchean to 

late Paleoproterozoic volcano-sedimentary sequences within greenstone belts (Goodwin, 1973; 

Bekker et al., 2010). They differ from Superior-type BIFs which represent extensive units, 

mainly Proterozoic in age, located in passive margin sedimentary successions and showing no 

specific association with volcanic units (e.g., Gross, 1980; Bekker et al., 2010). Based on their 

sedimentary and geochemical features, a restricted basin model, equivalent to the modern Red 

Sea, corresponding to closed to semi-closed basins where volcanic and hydrothermal activities 

were extensive represents one potential BIF depositional model (e.g., Barrett et al., 1988a; 

Bolhar et al., 2005; Ohmoto et al., 2006; Bekker et al., 2010). In this scenario, iron-rich minerals 

precipitated contemporaneously with hydrothermal vent fluids to form various iron 

oxyhydroxides, such as ferrihydrite. These primary minerals were subsequently transformed 

during diagenesis to hematite, magnetite and siderite depending in part on the microbial biomass 

concentration (Posth et al., 2013). Where metamorphosed, the Fe-rich assemblage may comprise 

more complex mineral assemblages that include a variety of silicate phases (e.g., amphibole, 

garnet and plagioclase). The interbedded chert horizons are considered to reflect: (1) direct 

seawater precipitation (e.g., Bolhar et al., 2005; Thurston et al., 2012); (2) hydrothermal 

precipitation from vent fluids (Allwood et al., 2010; Thurston et al., 2012); and/or (3) the 
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products of secondary replacement (Hanor and Duchac, 1990) as confirmed by their shale-

normalized chemical signature (e.g., Thurston et al., 2011; Gourcerol et al., 2015a). 

In this study, we explore the chert geochemistry at four Canadian BIF-hosted gold deposits 

(the ~4 Moz Au Meadowbank deposit, hosted by the 2.71 Ga Woodburn Lake greenstone belt; 

�W�K�H���•���������0�R�]���$�X���0�H�O�L�D�G�L�Q�H���G�L�V�W�U�L�F�W�����K�R�V�W�H�G���E�\���W�K�H�����������*�D���5�D�Q�N�L�Q���,�Q�O�H�W���J�U�H�H�Q�V�W�R�Q�H���E�H�O�W�����W�K�H���a����

Moz Au Musselwhite deposit, hosted by the 2.9-3 Ga North Caribou greenstone belt; and the ~4 

Moz Au Beardmore-Geraldton district, hosted by the 2.7 Ga eponymous greenstone belt) that are 

either intercalated with mafic to ultramafic volcanic rocks or associated interflow sediments. 

These four gold deposits were selected in order to validate the restricted-basin model (e.g., 

Barrett et al., 1988a) as a depositional setting for Algoma-type BIFs by using the geochemical 

signature of the chert bands as a proxy for the primary signature of ocean water chemistry and 

hydrothermal vent fluids. The chert chemistry was characterized by using in-situ LA-ICP-MS 

analysis following the protocol outlined in our earlier contributions (Gourcerol et al., 2015a, b). 

In addition, we have also analyzed the cherts in-situ using secondary ion mass spectrometry 

(SIMS) to determine their �/18O signature in order to assess their post depositional exchange with 

later fluids (e.g., diagenetic, metamorphic). As far as we are aware, this is the first study that 

integrates these two data sets, that is chert trace element chemistry, in particular the rare earth 

elements (REEs), and �/18O. An indirect intent of this study was also to examine if chert beds in 

these settings retain a geochemical signature that may relate to the gold mineralizing event. In 

detail, these hypotheses were tested by: (1) defining the role of chemical reservoirs (i.e., 

seawater, hydrothermal fluids, and terrestrial detritus) in chert deposition; and (2) using Ce 

behavior to assess the oxygenation state of the water column during chert precipitation. 
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3.3 Geological setting of the selected BIFs 

3.3.1 The Meadowbank gold deposit 

Located in the Rae Domain of the Churchill Province, the Meadowbank deposit is hosted by 

the Woodburn Lake greenstone belt (ca. 2.71 Ga), which consists of tholeiitic and komatiitic 

metavolcanic rocks with minor calc-alkaline felsic tuffs and flows with intercalated BIF and 

clastic metasedimentary rocks (Armitage et al., 1996; Sherlock et al., 2001a, b, 2004; Hrabi et 

al., 2003; Pehrsson et al., 2004). The regional metamorphic grade ranges from middle 

greenschist to amphibolite facies (Pehrsson et al., 2004) and the sequence was deformed by at 

least six regional-scale deformation events (e.g., Pehrsson et al., 2013; Janvier et al., 2015). 

Numerous units of oxide-, silicate- and locally sulfide-facies Algoma-type BIF have been 

identified, which include the West IF, Central BIF and East BIF; all of the BIFs are generally 

interlayered with ultramafic to felsic volcanic rocks and locally with a quartzite unit (Gourcerol 

et al., 2015a; Sherlock et al., 2001a, b, 2004). The BIF display cm- to mm-thick, laminated 

magnetite and white- to grey chert with associated layers (0.2 to 5 cm thick) of grunerite/biotite, 

cummingtonite/biotite or garnet/biotite combinations that are related to metamorphic variation on 

the property (e.g., Gourcerol et al., 2015a). Moreover, minor chlorite, sericite, ankerite, siderite, 

stilpnomelane and apatite grains are observed either as layers interbedded with chert and 

magnetite or as inclusions in chert bands (Armitage et al., 1996; Hrabi et al., 2003; Sherlock et 

al., 2004; Gourcerol et al., 2015a). These BIFs are described more in detail in Gourcerol et al. 

(2015a). 
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3.3.2 The Meliadine gold district 

The Meliadine deposit is hosted by the 2.6 to 2.7 Ga Rankin Inlet greenstone belt (Wright, 

1967; Aspler and Chiarenzelli, 1996a), which lies along the boundary between the Central and 

the North Western Hearne domains of the Churchill Province (Tella et al., 2007; Davis et al., 

2008). The Rankin Inlet greenstone belt consists of polydeformed massive and pillowed mafic 

volcanic rocks, felsic pyroclastic rocks and associated interflow sedimentary units, gabbro sills 

and oxide-facies BIFs; all of these units are intruded by minor granite, undeformed biotite 

lamprophyre, as well as late gabbro and diabase dykes of Archean and Proterozoic age. These 

rocks have been metamorphosed from lower greenschist to lower-middle amphibolite facies 

(Carpenter, 2004; Carpenter, et al., 2005; Lawley et al., 2015).  

Several Algoma-type BIFs are recognized along the structural hanging wall of the regional-

scale Pyke Fault, including the Pump, F-Zone and Discovery (e.g., Lawley et al., 2015). These 

BIFs consist of continuous, subparallel, medium-grey cherty beds interbedded with massive, 

mm- to cm-thick beds of magnetite BIF with some chert-grunerite units and local sulfide-facies. 

Minor cm- to mm-thick layers of chlorite are reported mainly in the Discovery BIF. 

3.3.3 The Musselwhite gold deposit 

Located in the North Caribou terrane of the Superior Province, the Musselwhite deposit is 

hosted by the North Caribou greenstone belt dominated by mafic to ultramafic metavolcanic 

rocks of the 2973 to <2967 Ma Opapimiskan-Markop metavolcanic assemblage and tholeiitic 

basalts and minor felsic volcanics of the 2980 to 2982 Ma South Rim metavolcanic assemblage 

(Biczok et al., 2012; McNicoll et al., 2013). These rocks have been metamorphosed from lower 

greenschist to lower-mid amphibolite facies (Breaks et al., 2001) and deformed by three 
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deformation events (e.g., Hall and Rigg, 1986; Breaks et al., 2001; Oswald et al., 2015; McNicoll 

et al., 2016). The Opapimiskan-Markop metavolcanic assemblage consists, from the structural 

base to the top, of the “Lower Basalt” unit, the Southern Iron Formation, “Basement Basalt” unit 

and the Northern Iron Formation (Otto, 2002; Moran, 2008; Biczok et al., 2012). 

The “Basement Basalt” unit is a thick sequence of massive- and pillowed tholeiitic basalt 

(Moran, 2008). The “Lower Basalt” unit is composed of basalt and ultramafic rocks, but includes 

extensive andesite (Hollings and Kerrich, 1999; Otto, 2002). The North Iron Formation is 

subdivided, from the structural base to top, into: pyrrhotite-rich mudstone (4H), chert-grunerite 

(4A), chert-magnetite (4B), clastic-chert-magnetite (“clastic”4B), garnet-grunerite-chert (4EA), 

garnetiferous amphibolite (4E) and garnet-biotite schist (4F) (e.g., Otto, 2002; Moran, 2008; 

Biczok et al., 2012). The Southern Iron Formation consists of two sub-parallel BIF horizons 

(Biczok et al., 2012). These BIFs are described more in detail in Gourcerol et al. (2015b). 

3.3.4 The Beardmore-Geraldton gold district  

The Beardmore-Geraldton gold district is hosted by the 2.7 Ga Beardmore-Geraldton 

Greenstone Belt located (BGGB) within the southern margin of the Wabigoon Subprovince 

(Lafrance et al., 2004). The BGGB consists of three east-trending shear-bounded units of 

metasedimentary and metavolcanic rocks. The southern assemblage is characterized by massive 

and pillowed basalt and andesite with thin sedimentary and tuffaceous beds (Shanks, 1993; 

Tomlinson et al., 1996) interbedded with wacke, conglomerate, siltstone and oxide-facies BIF in 

which the presence of jasper is notable. The central assemblage reflects felsic to mafic calc-

alkaline and tholeiitic volcanic units that are associated with feldspathic sandstone, siltstone, 

argillite and minor BIF overlain by polymictic conglomerate (Lafrance et al., 2004). The 
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occurrence of the pyroclastic rocks and large amygdules in the volcanic rocks suggest shallow-

water or subaerial volcanism (Kresz and Zayachivsky, 1991). Lastly, the northern assemblage 

consists of massive and amygdaloidal pillowed tholeiitic basalt and andesite interbedded with 

polymictic conglomerate and minor sandstone (e.g., Mackasey et al., 1976). These rocks have 

been metamorphosed to greenschist facies and deformed by four events of deformation (Tóth et 

al., 2015). 

The BIFs occur high in the stratigraphy of the southern metasedimentary belt and can be 

divided into three types (Fralick and Pufahl, 2006): (1) an iron oxide-rich type referred to as “a-

type” which is a dominantly iron oxide-rich (i.e., magnetite and/or hematite) sediment 

interbedded with mm- to cm-scale graded or ungraded siltstone; (2) a siltstone-rich type (i.e., “b-

type”) which is characterized by cm-scale graded to sharply bounded siltstone layers separated 

by mm-thick iron oxide-rich laminae; and (3) a sandstone-rich type (i.e., “c-type”) which 

corresponds to sandstone beds separated by mm- to cm-scale iron oxide-rich bands. Hematitic 

chert laminae or bands (i.e., jasper) are common in the three types of BIF and are interbedded 

with either sediments or iron oxide-rich layers.  

A braided fluvial system was proposed as the depositional environment for these BIFs (e.g., 

Barrett and Fralick 1989; Fralick and Pufahl, 2006) in which the BIFs occur mainly on flooding 

surfaces separating the offshore and the fluvial systems. The BIF and iron oxide-rich material 

were deposited during transgression whereas the interbedded siliciclastic sedimentary rocks 

reflect regression. 

3.4 Analytical Methods and data treatment 

The BIF samples collected for this study included: (1) thirty-three samples from drill core 
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and outcrops (Fig. 3.1A) from the Meadowbank deposit (i.e., West IF, Central BIF, East BIF); 

(2) forty samples in the Meliadine district (i.e., Pump, F-Zone and Discovery); (3) twenty-three 

samples from the Musselwhite deposit (i.e., chert-magnetite (4B), garnet-grunerite-(chert) (4EA), 

garnetiferous amphibolite (4E), and garnet-biotite schist (4F) facies); and (4) twenty seven 

samples from the Beardmore-Geraldton district (i.e., a-, b- and c-types BIF). 

3.4.1 Scanning electron microscopy and in-situ LA -ICP-MS analysis 

The chert material was analyzed by micro-sampling using laser ablation followed by ICP-

MS analysis. The advantage of this protocol over bulk analysis is that it excludes any influence 

of later veining, sulfides or deformation-related metamorphic recrystallization-precipitation (e.g., 

Kamber and Webb, 2007). In order to select areas for analysis, polished thin sections (100 µm 

thick; Fig. 3.1B) were prepared and examined, using both transmitted and reflected light 

microscopy; and selected material was studied in more detail using the scanning electron 

microscopy (SEM) coupled with an energy dispersive spectrometer (EDS) to select the most 

suitable chert bands with minimal amounts of detrital mineral inclusions and other contaminants 

related to alteration, diagenesis, metamorphic or ore-forming events (e.g., clastic grains, volcanic 

ash, phosphates). The SEM used was a JEOL 6400 SEM with an INCA energy dispersive 

spectrometer (EDS) system housed in the Central Analytical Facilities (CAF) at Laurentian 

University, Sudbury, Ontario. Operating conditions were accelerating voltage of 20 keV, 1.005 

�EA beam current, acquisition count times of 10 seconds, and a working distance of 15 mm. 

The trace element chemistry was determined using a Thermo Scientific XSERIES II ICP-

MS Laurin Technic two-volume sample cell using a pulsed ArF excimer laser (RESOlution M-

50) emitting at 193 nm and a repetition rate of 10 Hz. The instrument operated with a forward 
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power of 1450 W. Gas flows were 800 ml/min for argon, 650 ml/min for He and 6 ml/min for N. 

Dwell times for elements analysed were 10 ms. As chert bands have very low concentration of 

REEs, spot analyses may be below the limit of detection for many elements, hence, in order to 

circumvent this issue, line traverses using both 140 and 190 µm beam diameters were made with 

a repetition rate of 10 Hz and an energy density of 7 J/cm2 (Fig. 3.1C). No pre-ablation was done 

as virtually any non microcrystalline quartz present would substantially modify the REE+Y 

patterns from their primary abundances. However, as the line traverse method increases the 

influence of any detrital contaminants, either as inclusions or minerals disseminated along the 

traverse line, the Queensland alluvial shale composite (MUQ) was used to normalize the REE+Y 

values to minimize the influence of potential terrigenous input. The MUQ composition 

represents a mixed bimodal felsic and mafic volcanic provenance (Kamber et al., 2005), which 

acts as a proxy for the expected average terrigenous input from a typical bimodal greenstone belt 

into the Archean ocean (e.g., Bolhar et al., 2005; Thurston et al., 2012).  

The elemental concentrations reported in this study (Tables 1, 2, 3 and 4) represent the 

integrated signal over the length of the line traverses, which measured about 6500 ��m. The 

element list used for each analysis included the 14 REEs (139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 

157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb and 175Lu), in addition to 7Li, 9Be, 29Si, 45Sc, 47Ti, 

51V, 52Cr, 55Mn, 56Fe, 59Co, 60Ni, 65Cu, 66Zn, 69Ga, 75As, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 95Mo, 107Ag, 

111Cd, 115In, 118Sn, 121Sb, 133Cs, 137Ba, 178Hf, 181Ta, 182W, 197Au, 205Tl, 208Pb, 232Th and 238U. The 

detection limits for the analyzed elements vary based on a variety of factors, such as the volume 

of inclusions within chert. The detection limits were calculated using the relationship described 

in Longerich et al. (1996) and range from 0.01 to 0.002 ppm for the REE and Y (Table 2.7). The 

NIST 612 glass was used as an external standard and analyzed at the beginning and at the end of 
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each line traverse and for the internal standard, the silica content of the analyzed chert was used. 

It is noticed that presence of minor impurities (such as garnets, amphiboles) on a random basis in 

chert will have the effects of creating large RSD %.values. Furthermore, the La, Ce, Eu, Gd, and 

Y anomalies discussed below are calculated (Equations (1) to (5)) following the procedure of 

Lawrence and Kamber (2006): 

La/La*
MUQ = LaMUQ/(PrMUQ* (PrMUQ/NdMUQ) 2) (1) 

Ce/Ce*MUQ = CeMUQ/(PrMUQ* (PrMUQ/NdMUQ)) (2) 

Eu/Eu*
MUQ = EuMUQ/(SmMUQ

2 * TbMUQ) 1/3 (3) 

Gd/Gd*MUQ = GdMUQ/(TbMUQ
2 * SmMUQ) 1/3 (4) 

Y/Y *
MUQ = YMUQ/(0.5ErMUQ * 0.5HoMUQ) (5) 

3.4.2 Oxygen isotopes 

The oxygen isotopic compositions of selected chert samples from Meliadine (i.e., MEL-

006, MEL-008 and MEL-033) were determined by Secondary Ion Mass Spectrometry (SIMS) 

analysis using the CAMECA 7f ion microprobe at the University of Manitoba (Winnipeg, 

Canada).  

Prior to analysis, each polished thin section was cleaned with ethanol and polished with a 

1-mircon diamond-cleaning compound to remove carbon coating that was used for the SEM 

analyses. They were then cleaned with soap and immersed in a dilute soap solution in an 

ultrasonic cleaner for 10 minutes. The protocol followed was immersion of the sections three 

times each for 10 minutes in the ultrasonic cleaner, successively using tap water, purified water 

and finally ethanol. 
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Fragments of John Valley Metamorphic Quartz (JValleyQtz) were used as a standard to 

determine instrumental mass fractionation. The standard was analysed at the beginning and at the 

�H�Q�G���R�I���H�D�F�K���V�D�P�S�O�H���D�Q�D�O�\�V�L�V�����/�R�R�N�L�Q�J���D�W���W�K�H���D�F�T�X�L�V�L�W�L�R�Q���P�H�W�K�R�G�����D���§�������Q�$���S�U�L�P�D�U�\���E�H�D�P���R�I���&�V+ 

was accelerated at 10 kV and focused to a 15x20 µm spot. An offset of 300-volts was used to 

eliminate molecular ion interferences. Ions were detected with a Balzers SEV 1217 electron 

multiplier coupled with an ion-counting system using an overall dead time of 28ns. Isotopes of 

16O and 18O were detected by switching the magnetic field and analysis comprised 70 cycles for 

a total analytical time of 10 minutes. Over the four days of analyses, the external reproducibility 

�����1�����R�E�W�D�L�Q�H�G���R�Q���-�R�K�Q���9�D�O�O�H�\���V�W�D�Q�G�D�U�G���Y�D�U�L�H�G���U�H�V�S�H�F�W�L�Y�H�O�\���I�U�R�P���“ 0.6‰, ± 0.4‰, ± 0.6‰ and ± 

0.5‰ (Table 5).  

Ten analyses were performed on MEL-008, whereas thirty analyses were obtained for 

each of samples MEL-016 and MEL-033 (Table 5). In the latter two samples, the data are 

divided into three different domains (e.g., B, C and D for MEL-033) to study the variability of 

�W�K�H���/18O values in different chert bands from the same thirty centimeter sample. We also note 

that the analyzed cherts were carefully selected to exclude any influence of accessory minerals 

(e.g., amphiboles, silicates, phosphate, carbonates). 

Oxygen isotope compositions are reported in this study as per mil (‰) deviations (Table 

5) from the Vienna Standard Mean Ocean Water (V-SMOW) using the conventional notation: 

�/18O = [(18O/16Osample) / (
18O/16OV-SMOW) - 1] x 1000 (6) 
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3.5 Background 

3.5.1 Rare earth element and yttrium systematics 

The presence and abundance of REE+Y in chert bands may represent their primary 

signature, which can be influenced by one or more processes: (1) precipitation from marine 

water either in isolated basins or basins well connected to the open ocean (e.g., Bau and Dulski, 

1996, Kamber et al., 2014); (2) precipitation from vent-sourced hydrothermal fluids (e.g., 

Danielson et al., 1992; Allwood et al., 2010); and (3) chemical inheritance due to replacement by 

silicification of precursor volcanic units (e.g., Hanor and Duchac, 1990). Chert geochemistry is 

also strongly dependent on the extent of contamination by terrigeneous detritus (e.g., Alexander 

et al., 2008), volcanic ash (e.g., Klein, 2005) and oceanographic processes (e.g., phosphate and 

oxyhydroxide circulation and precipitation) (e.g., Alibo and Nozaki, 1999; Bau, 1999; 

Konhauser et al., 2005). Moreover, elements such as Sr, Ga, Sc, Zr and Th are excellent monitors 

of hydrogenous contamination such as detrital or volcanic input (Gourcerol et al., 2015a). 

Several studies have shown that the REE+Y systematics of Archean seawater are 

analogous to the modern ocean with slight to moderate influence of hydrothermal vent fluids 

(Fig. 2.5; e.g., Bau and Dulski, 1996; Lawrence and Kamber, 2006; Thurston et al., 2012; 

Gourcerol et al., 2015a). It follows, therefore, that the shale (i.e., MUQ) normalized REE+Y 

pattern for the Archean seawater will be characterized by: (1) a depletion in light rare earth 

elements (LREE) relative to heavy rare earth elements (HREE); (2) a super-chondritic Y/Ho 

ratio (i.e., Y/Ho >27), yielding a positive Y/Y*MUQ anomaly, commonly between 40-90; and (3) 

a slightly positive La anomaly (La/La*MUQ between 1.15 and 1.3). These features illustrate 

fractionation of REE and Y in the water column resulting in preferential removal onto Mn-Fe-
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oxyhydroxides, organic matter, and clay particles (e.g., Kawabe et al., 1999; Bau and 

Koschinsky, 2009). Moreover, as the chemistry of Archean seawater was also influenced by 

volcanism, water-rock interaction (e.g., Veizer, 1988), and the contribution of high-temperature 

(>250°C) hydrothermal fluids (Fig. 2.5; e.g., Danielson et al., 1992; Bau and Dulski, 1999; 

Kamber et al., 2004; Allwood et al., 2010), these processes are characterized by variable, but 

well-developed positive Eu anomalies which are a product of hydrothermal processes (Fig. 2.5; 

Kamber et al., 2004). Previously, several authors also referred to a positive Gd anomaly as a 

seawater feature (e.g., Bau and Dulski, 1996; Lawrence and Kamber, 2006; Thurston et al., 

2012) however, it has been shown that Gd is extremely sensitive to interaction of seawater with 

oxyhydroxides in which case it may show negative values (e.g., Alibo and Nosaki, 1999). 

Therefore, a positive Gd anomaly is not used in this article as an indicator of precipitation from 

seawater (Gourcerol et al., 2015a). 

3.5.2 Oxygen isotopes 

Cherts regardless of age are considered to have precipitated from Si-rich water initially as 

opal-A, then converted into opal-CT, and then finally converted to chert as a final product of 

dissolution-(re-)precipitation reactions during diagenesis (e.g., Knauth, 1994; Knauth and Lowe, 

2003; Marin Carbonne et al., 2014) despite limited evidence of the preservation of the precursor 

phases (e.g., Marin-Carbonne et al., 2014; Westall et al., 2015). These aforementioned reactions 

involve the conversion of opal to microcrystalline chert in either in a closed (i.e., metamorphic) 

or open (i.e., seawater interaction) system. Marin et al. (2010) have argued for a closed system 

�F�R�Q�Y�H�U�V�L�R�Q���E�D�V�H�G���R�Q���W�K�H���R�E�V�H�U�Y�H�G���O�D�U�J�H���U�D�Q�J�H���R�I���/18O values (up to +14‰) for chert from the 1.8 

Ga Superior-type Gunflint iron formation (Canada). These authors suggest that the amorphous 

silica precursor (�/18�2���§��������‰; from Marin et al., 2010), which precipitated at equilibrium with 
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seawater in warm Archean ocean waters, was dissolved during diagenesis by high temperature 

fluids in a closed system such that the initial chert records low �/18O values (e.g., ca. +14‰) but 

the later chert record increasingly heavier values (i.e., ca. +24 to +26‰) as a result of closed 

system diagenesis (i.e., a Rayleigh process). Consequently, these authors have suggested a model 

in whic�K���W�K�H���/18O values of chert are predicted to increase continuously through the dissolution-

precipitation process due to the closed nature of the system. 

3.6 Results 

3.6.1 Rare earth and yttrium systematics characteristics 

3.6.1.1 Meadowbank area 

Data for line traverse analyses on chert samples from the Central BIF, East BIF and West 

IF within the Meadowbank area (Gourcerol et al., 2015a) show relatively uniform REE+Y 

patterns (Fig. 3.2; table 1), with three notable exceptions (samples AMB-126232, AMB-128330 

and AMB-128332 in Fig. 3.2A and 3.2C), that include a slight to moderate enrichment in HREE 

relative to LREE and MREE (Nd/YbMUQ = 0.04-0.58) that are associated with slight to moderate 

positive La, Y and Eu anomalies (La/La*MUQ = 0.89-4.65, Y/Y*MUQ = 0.88-1.96, Eu/Eu*MUQ = 

1.25-5.12) and chondritic to super-chondritic Y/Ho values (Y/Ho = 24.2-53.72) (Table 1). 

A group of samples from the East BIF (AMB-126241 and AMB-126243; Fig. 3.2B) and 

the West IF (AMB-128330, AMB-128331 and AMB-128332; Fig. 3.2C) show relatively flat 

REE patterns (Pr/SmMUQ = 0.79-1.03) associated with chondritic to super-chondritic Y/Ho values 

(Y/Ho = 26.02-36.71). Enrichments in Sr (i.e., 27.9-55 ppm; and 64.9-1090 ppm), Zr (i.e., 0.97-

2.17 ppm; and 19.1-43.4 ppm) and variable amounts of Th (i.e., 1.055-4.2 ppm) and Ga (i.e., 
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16.04-27.8 ppm) relative to the bulk of the samples is illustrated for most material from the West 

IF. Two samples from the Central BIF (AMB-126223 and AMB-126231; Fig. 3.2A) show 

depletion in LREE relative to the HREE, but moderate to flat patterns for the MREE and HREE 

that are associated with chondritic to super-chondritic Y/Ho values (Y/Ho = 24.2-32.41), 

enrichment in Zr (i.e., 104.9-183 ppm), Ga (i.e., 6.83-141.4 ppm), Sr (i.e., 20.4-95.2 ppm) and 

Th (i.e., 1.22-7.7 ppm) relative to other samples. 

Two samples from the south of the property (i.e., AMB-128330 from West IF and AMB-

126232 from Central BIF; Gourcerol et al., 2015a) show depletion in HREE relative to LREE 

(Nd/YbMUQ = 2.18-7.19) that are associated with positive La, Y and Eu anomalies (Fig. 3.2A,C).  

Lastly, with respect to these cherts, it is noted that Ce exhibits a slight to moderate 

positive anomaly in the samples (Ce/Ce*MUQ = 0.94-1.86). 

3.6.1.2 Meliadine gold district 

Data for chert samples from the Pump, F-Zone and Discovery deposits within the Meliadine 

gold district yield variable REE+Y patterns (Fig. 3.3; Table 2). Chert samples from the Pump 

deposit (Fig. 3.3A) are all very uniform in their chemistry and are characterized by LREE 

depletion (Nd/YbMUQ = 0.06-0.75), chondritic to sub-chondritic Y/Ho values (Y/Ho = 11.44-

32.53), variable La and Y anomalies (La/La*MUQ = 0.02-1.11, Y/Y*MUQ = 0.54-1.13) and 

positive Eu anomalies (Eu/Eu*MUQ = 2.17-6.13) (Fig. 3.3A). The Y/Ho ratios for most of the 

samples are lower than chondritic values (i.e., 27) and correlate with negative La and Y 

anomalies despite a depletion in LREE which is typical of seawater input. 

All chert samples from the F-Zone, except for two (MEL-015 and MEL-017), show 

relatively LREE-depleted patterns (Nd/YbMUQ = 0.16-0.61). In contrast, samples MEL015 and 
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MEL017 show the opposite trends with slight HREE depletion (Nd/YbMUQ = 1.19-7.21). Overall, 

samples show negative to positive La anomalies associated with slight- to strong relative 

enrichment in Y and Eu (La/La*MUQ = 0.42-1.43, Y/Y*MUQ = 1.05-1.35, Eu/Eu*MUQ = 2.12-8.14) 

(Fig. 3.3B). In addition, all samples yield chondritic to super-chondritic Y/Ho values (Y/Ho = 

25.25-36.34) and Sr enrichment (i.e., 6.5-30.6 ppm). Moderate enrichment in Zr is notable in 

MEL-013 and MEL-018 (i.e., 2.14-4.93 ppm). 

 Chert samples from the Discovery deposit show relative LREE depletion (Nd/YbMUQ = 

0.11-1.18) except for MEL-025 (Nd/YbMUQ = 11; Fig. 3.3C). Slight to moderate enrichment for 

La, Y and Eu occur (La/La*MUQ = 0.68-2.1, Y/Y*MUQ = 0.80-1.28, Eu/Eu*MUQ = 1.05-7.46) for 

most samples, the exception being for MEL-038 (La/La*MUQ = 0.47, Y/Y*MUQ = 0.85, 

Eu/Eu*MUQ = 2.13) (Fig. 3.3C). The Y/Ho ratios vary from sub-chondritic to super-chondritic 

with Y/Ho = 18.23-37.48. In addition, most of the samples exhibit chondritic Y/Ho values 

associated with Sr enrichment (i.e., 0.3-177 ppm) and moderate Ga enrichment (i.e., 1.32-7.04 

ppm). In contrast, samples MEL-038, MEL-039 and MEL-040 yield trace element 

concentrations (± elevated Ga). Sample MEL-038 yield low Y/Ho ratios that correlate with 

depletion in La and Y concentrations, which was also reported for some chert samples from the 

Pump deposit (Fig. 3.3C). 

 Chert samples from the Meliadine gold district show variable Ce anomalies: (1) Ce/Ce*MUQ 

= 0.15-1.01 for chert samples from the Pump deposit; (2) Ce/Ce*MUQ = 0.65-1.22 for the F-Zone 

deposit; and finally (3) Ce/Ce*MUQ = 0.64-2.01 for the Discovery deposit. 
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3.6.1.3 Musselwhite area 

 Data for chert samples from the chert-magnetite (4B; Fig. 3.4A, Table 3), the garnetiferous 

amphibolite (4E; Fig. 3.4B, Table 3), the garnet-grunerite-(chert) (4EA; Fig. 3.4C, Table 3), and 

the garnet-biotite schist (4F; Fig. 3.4D, Table 3) within the Musselwhite area were reported by 

Gourcerol et al. (2015b). It should be noted that sample E599656 from the 4B facies, samples 

E599660, E599665 and sample E599666 from 4EA are not illustrated in Figure 3.4 due to their 

erratic patterns that reflect some REE values approaching the limit of detection. However, these 

samples will be reviewed here in regard to elements lying above the detection limit. 

 Samples exhibit relatively uniform REE+Y patterns except for chert in the 4F facies (Fig. 

3.4D). Most chert sampled from the 4B facies show HREE enrichment (Nd/YbMUQ = 0.04-0.66), 

yield slight to moderate positive La, Y and Eu anomalies (La/La*MUQ = 0.8-2.35, Y/Y*MUQ = 

0.87-1.52, Eu/Eu*MUQ = 2.6-3.61) and sub-chondritic to super-chondritic Y/Ho values (Y/Ho = 

22.13-44.01) (Fig. 3.4A). Sample E599656 differs from the majority of samples by its negative 

La and Y anomalies (La/La*MUQ = 0.24, Y/Y*MUQ = 0.51; Eu/Eu*MUQ = 3.70) and very low 

Y/Ho value (i.e., 9.79). It is also noted that samples E599655 and E599668 are Sr enriched (i.e., 

848.8 ppm and 150.8 ppm respectively). 

 The two samples from the 4E show minor LREE depletion (Nd/YbMUQ = 0.39-0.7), are 

slightly to moderately La, Y and Eu enriched (La/La*MUQ = 0.7-1.66, Y/Y*MUQ = 0.98-1.22, 

Eu/Eu*MUQ = 2.43-2.6), and yield chondritic to super-chondritic Y/Ho values (Y/Ho = 25.71-

32.8) (Fig. 3.4B). 

 The chert samples from the 4EA facies are characterized by relatively flat to slightly 

fractionated patterns with LREE depletion relative to HREE (Nd/YbMUQ = 0.15-0.7), except for 
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samples E599654 and E599659 showing enrichment in LREE versus HREE (i.e., Nd/YbMUQ = 

2.34-2.98). All these samples are associated with positive Eu anomalies (Eu/Eu*MUQ = 2.34-

3.97) (Fig. 3.4C). Considering the La and Y anomalies along with the Y/Ho values, two groups 

of samples are present: (1) E599654, E599659 and E599667 show positive La and Y anomalies 

(La/La*MUQ = 1.51-3.02, Y/Y*MUQ = 1.2-2.07) and chondritic to super-chondritic Y/Ho ratios 

(Y/Ho = 29.86-55.91) (Fig. 3.4C); and (2) E599660, E599665 and E599666, which are not 

shown in the figure (see above), show negative La and Y anomalies (La/La*MUQ = 0.04-0.16, 

Y/Y* MUQ = 0.22-0.73) and very low Y/Ho ratios (Y/Ho = 4.11-16.52) (Fig. 3.4C). 

 The chert bands within the garnet-biotite schist (4F) facies are geochemically anomalous 

compared to chert from all the other studied deposits. The former samples show variable, but 

elevated LREE and MREE enrichments (Pr/SmMUQ = 0.18-0.83; Nd/YbMUQ = 1.17-5.75) and 

only moderately positive Eu anomalies (Eu/Eu*MUQ = 1.08-1.94) are noted (Fig. 3.4D). This 

facies is distinguished from the others by its REE+Y signature and, furthermore, is similar to the 

argillite studied by Thurston et al. (2012), which documented only a weak hydrothermal fluid 

influence. 

 Chert samples from the Musselwhite area exhibit variable Ce anomalies: (1) Ce/Ce*MUQ = 

0.40-1.96 for chert samples from the 4B facies; (2) Ce/Ce*MUQ = 0.40-1.96 for the 4E facies; (3) 

Ce/Ce*MUQ = 0.18-1.50 for the 4EA facies; and finally (4) Ce/Ce*MUQ = 0.74-1.25 for the 4F 

facies. 

3.6.1.4 Beardmore-Geraldton gold district  

 Data for chert and jasper samples from the a-type (i.e., iron oxide-rich type), b-type (i.e., 

siltstone-rich type) and c-type (i.e., sandstone-rich type) BIF within the Beardmore-Geraldton 
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gold district yield variable REE+Y patterns (Fig. 3.5, Table 4). Some samples exhibit both chert 

(named BG-0XX-C) and jasper (named BG-0XX-J) features, which allow a comparative study 

of their REE+Y systematics. However, most of the traverses are done on jasper bands as layers 

of pure chert are rare in this gold district. 

 Most of chert and jasper samples from the a-type BIF yield LREE depleted patterns 

(Nd/YbMUQ = 0.23-0.97) except for the BG001-J and BG002-J samples that exhibit weak 

depletion in HREE relative to LREE (Nd/YbMUQ = 1.40-1.62) (Fig. 3.5A). However, all chert 

and jasper samples show chondritic to super-chondritic Y/Ho values (Y/Ho = 28.19-38.86), 

variable La and Y anomalies (La/La*MUQ = 0.85-4.00, Y/Y*MUQ = 1.12-1.45) and positive Eu 

anomalies (Eu/Eu*MUQ = 1.81-4.40) (Fig. 3.5A). 

 Chert and jasper samples from the b-type BIF show depletion in LREE relative to HREE 

(Nd/YbMUQ = 0.28-0.55) except for sample BG006B-J, which exhibits the largest LREE 

enrichment and consequent depletion in HREE relative to LREE (Nd/YbMUQ = 1.91) with 

associated slight enrichment in Th (i.e., 1.16 ppm) and Ga (i.e., 24.3 ppm) relative to other 

samples (Fig. 3.5B). However, all chert and jasper samples show chondritic to super-chondritic 

Y/Ho values (Y/Ho = 27.65-39.75) and positive La, Y and Eu anomalies (La/La*MUQ =1.38-2.59, 

Y/Y* MUQ = 1.08-1.35, Eu/Eu*MUQ = 1.50-2.69) (Fig. 3.5B). 

 Chert and jasper samples from the c-type BIF show relatively flat patterns and they may be 

divided in two distinct groups (Fig. 3.5C): (1) samples that exhibit depletion in LREE relative to 

HREE (Nd/YbMUQ = 0.41-0.89) that are associated with weak Sr and Sc concentrations (i.e., 

BG004-J, BG017-J and BG018J) relative to other samples (i.e., respectively 6.21-11.37 ppm and 

3.35-4.88 ppm); and (2) samples that show depletion in the HREE relative to LREE (Nd/YbMUQ 
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= 1.37-2.98) and associated with enrichment in Sr and Sc (i.e., BG004-C, BG014-J, BG016-C, 

BG016-J, BG019-J and BG022-J) relative to other samples (i.e., respectively 13.6-31.46 ppm 

and 3.0-7.2 ppm). All the samples show chondritic to super-chondritic values for Y/Ho (Y/Ho = 

24.24-37.71), associated with positive La, Y and Eu anomalies (La/La*MUQ =1.11-2.14, 

Y/Y* MUQ = 0.97-1.45, Eu/Eu*MUQ = 1.07-3.05) (Fig. 3.5C). 

 It is noted that chert and jasper samples from the three types of BIF exhibit slight to 

moderate positive Ce anomalies (Ce/Ce*MUQ = 0.75-2.11). 

3.6.2 Oxygen isotopes 

The �/18O values for sample MEL-008 show a range from +6.6 to +19.1‰ with a mean of 

+14. 1‰ (Fig. 3.6A), whereas in MEL-016, the values range from +7 to +17.3‰ and have a 

mean of +12.2‰ (Fig. 3.6B), and for sample MEL-033, values range from +11 to +16.3‰ with a 

mean of +14‰ (Fig. 3.6C). Importantly, none of the samples have values close to +27‰ which 

is the inferred precursor �/18O value of amorphous silica predicted by Marin et al. (2010), instead, 

they are significantly lower by 20.4 to 7.9‰. 

3.7 Discussion 

3.7.1 Rare earth element and yttrium systematics 

Most of the chert and jasper samples (i.e., corresponding to line traverse; Fig. 3.7A) from the 

four deposits yield similar shale-normalized systematic patterns showing depletion in LREE 

relative to HREE associated with positive La and Y anomalies as well as positive Eu anomalies. 

These observations record the influence of ambient seawater and high-temperature (>250ºC) 

hydrothermal fluids during chert deposition.  
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Detrital contamination is commonly observed in several chert samples from the four 

deposits especially enrichments in particular elements such as Sr, Th, Ga, Sc and Zr combined 

with petrographic evidences and SEM-EDS analysis. Thus, presence of apatite in a chert band 

(Fig. 3.7B) may account for elevated Sr and Th values, the presence of carbonates may account 

for the elevated Sr values, the presence of clay minerals may account for elevated Ga and Th 

values, as well zircon may account for the enrichment in Zr and monazite for Th (Fig. 3.7C, D) 

(Gourcerol et al., 2015a). These enrichments may represent variable detrital inputs during 

deposition of the contained chert (Gourcerol et al., 2015a) and will significantly affect the 

REE+Y systematic patterns by yielding flatter patterns (compared to samples without detrital 

contamination), as well as chondritic values of the Y/Ho ratios (Gourcerol et al., 2015a). It is 

noted that no specific distinction between primary versus secondary apatite has been established 

in this study. 

Secondary (versus primary) chemical features of few chert samples can also be pointed out 

by study of the REE+Y patterns as demonstrated by: (1) a depletion in HREE relative to LREE 

associated with positive La, Y and Eu anomalies (e.g., AMB-128330 and AMB-126232 from the 

Meadowbank area) due to presence of garnet (Fig. 3.7E) associated with the amphibolite facies 

assemblages confirmed petrographically (Gourcerol et al., 2015a); as well as (2) a pronounced 

depletion in LREE relative to HREE suggesting presence of late carbonates (Gourcerol et al., 

2015a) such as ankerite illustrated in the Musselwhite area by samples E599655 and E599668 

and confirmed petrographically (Fig. 3.7F).  

Some samples from the Meliadine district (i.e., most of samples from Pump, Mel-038 from 

Discovery) as well as the Musselwhite area (i.e., E599656 from the 4B, E599660, E599665 and 

E599666 from the 4EA) show depletion in LREE relative to HREE associated with positive Eu 
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anomalies but differ from the bulk of samples by a lower Y/Ho ratios than chondritic values (i.e., 

27) correlated with negative La and Y anomalies. Thus, this may likely reflect precipitation from 

high-temperature (T) (>250ºC) hydrothermal vent fluid with mixing of seawater with another 

influence such as Fe-oxyhydroxides. 

The comparison of chert and adjacent jasper bands from the Beardmore-Geraldton district 

does not show a notable difference from other BIF samples in this study which suggests 

therefore the same type of process (i.e., seawater interaction with high-T hydrothermal fluids and 

variable detrital contamination) during jasper deposition. In detail, jasper bands exhibit, in 

general, higher Fe, Ti and V and lower Si contents than chert bands which is consistent with the 

presence of hematite within “chert groundmass” as confirmed by petrographic study. In addition, 

it is noticed that on average, the associated chert bands show higher Eu anomalies than the jasper 

bands which suggest a greater influence of high-T hydrothermal vent fluids during its deposition. 

3.7.2 Assessing the influence of high-temperature hydrothermal fluids 

The REE+Y patterns, for all the chert samples from the Meadowbank, Meliadine, 

Musselwhite and Beardmore-Geraldton gold districts record the influence of high-temperature 

hydrothermal vent fluids (>250ºC). In this section, we explore the relative importance of the 

hydrothermal input during chert precipitation in part by calculating binary mixing lines between 

a modern seawater composition from the North Pacific (Alibo and Nozaki, 1999) and a 

hydrothermal fluid. Shibuya et al. (2010) suggested Archean greenstone belt hydrothermal fluids 

were SiO2-rich, Fe-poor, and highly alkaline in character which contrasts with the Fe-rich and 

acidic nature of modern hydrothermal fluids. Consequently, to more accurately constrain the 

Archean conditions, a 2.7 Ga brecciated chert sample (i.e., 06PCT001M; Thurston et al., 2012) 
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characterized by an overall hydrogeneous REE+Y signature associated with a strong positive Eu 

anomaly (Eu/Eu*MUQ = 30.01) was chosen over modern high-T hydrothermal fluids to illustrate 

the hydrothermal influence in an Archean greenstone belt. This sample suggests a very close 

linkage of this chert with a hydrothermal source (Thurston et al., 2012). Note that this high 

Eu/Eu* sample does not display the most likely contaminating phases based on geochemical 

filtering for sulfides, felsic ash and phosphates (Thurston et al., 2012). The Eu/Sm and Sm/Yb 

ratios are quantitative measures of the strength of the positive Eu anomaly and the flatness of the 

pattern that characterizes the hydrothermal fluid (Fig. 2.5).  

According to Shibuya et al. (2010), Archean hydrothermal fluid was highly alkaline due to 

presence of calcite in the sea floor alteration minerals based on a high-CO2 concentration in 

seawater/hydrothermal fluid. Among other factors, the hydrothermal fluid chemistry is controlled 

by oceanic crust composition, pH and redox conditions. The Great Oxygenation Event at ca. 2.4 

Ga would have rendered seawater more oxic (e.g., van Kranendonk et al., 2012).  

Most of the samples in this study fall on the mixing line despite some exhibiting high Sm/Yb 

ratios (Fig. 3.8). The Sm/Yb ratio is particularly sensitive to the presence of high-pressure 

residual metamorphic phases, such as amphiboles and garnets, which may overprint the primary 

geochemical signature of the BIFs. For example, in the Meadowbank area (Fig. 3.8A), three 

samples are located above the mixing line (i.e., AMB-126231 from Central BIF; AMB-128330, 

AMB-128331 and AMB-128332 from West IF) and correspond to samples selected in the 

southern part of the property affected by amphibolite-facies metamorphism. In the Musselwhite 

area (Fig. 3.8C), samples from the 4F and 4EA facies also lie above the mixing line and are 

explained by presence of garnets. For most of the samples, the position of samples along the 

mixing line reflects the strength of the seawater signature. 



34 
 

In the Meadowbank area, samples from the Central BIF suggest an input from the high-T 

fluid of 1-11%, versus 3-16% for the East BIF and 0-16% for the West IF (Fig. 3.8A). It is noted 

that samples from the southern part of the West IF show a very low component of hydrothermal 

fluid based on their flat REE patterns. In the Meliadine gold district, most samples record a 

moderate hydrothermal influence (2-3% for the Discovery zone, 4-28% for the F-Zone, 3-22% 

for the Pump deposit) during chert precipitation (Fig. 3.8B). In the Musselwhite area, input from 

the high-T fluid was generally low during chert formation at 0-15% for the 4B facies, 4-7% for 

the 4E facies, 2-11% for the 4EA facies, and 0-5% for the 4F facies (Fig. 3.8C). The 4F samples 

seem to record more restricted influence of hydrothermal fluids, which is consistent with a 

slightly more positive Eu anomaly. And finally, in the Beardmore-Geraldton gold district, the a-

type BIF characterized by an iron oxide-rich character suggests 2-12.5% of high-T hydrothermal 

fluid whereas the b-type (i.e., siltstone-rich BIF) and c-type (i.e., sandstone-rich BIF) record 

respectively 0-5% and 0-6% (Fig. 3.8D). 

These mixing diagrams may provide an indication of the locus of the depositional site 

relative to the hydrothermal source vent: when the depositional site is near the hydrothermal 

source vent, samples will be qualitatively closer to the high-temperature hydrothermal fluid end-

member whereas when the depositional site is more distal, the samples will be qualitatively 

closer to the seawater end-member. In this study, most of the studied samples have values that 

�U�H�I�O�H�F�W���E�H�W�Z�H�H�Q���§�������W�R�����������R�I���D���K�L�J�K-temperature hydrothermal fluid input which may define a 

general lateral distance for the depositional site for Algoma-type BIF from the hydrothermal 

source vent. Kamber et al., (2014) have used the slope of the REE+Y plot (Pr/Yb) as a proxy for 

water depth but given the lack of persistent along-strike sampling, we do not attempt this sort of 

analysis. 
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3.7.3 Sources and influence of detrital contamination 

Most chert samples from the Meadowbank, Meliadine, Musselwhite and Beardmore-

Geraldton areas show the influence of detrital contamination, as illustrated by flatter MUQ 

normalized REE patterns (Pr/SmMUQ �§�����������F�K�R�Q�G�U�L�W�L�F���<���+�R���U�D�W�L�R�V�����L���H�������<���+�R���§�����������D�Q�G���Y�D�U�L�D�W�L�R�Qs 

of REE+Y concentration. Despite normalization to MUQ, which is used to minimize the detrital 

influence in chert, some samples clearly still reflect a detrital component, which indicates 

therefore, that an important part of chert genesis and its study is a key to understanding the 

depositional setting for Algoma-type BIF. Detrital contamination may be present in chert as 

single mineral phases, such as phosphates, clays, and/or resistant minerals (e.g., zircon, 

xenotime, etc.), all of which induce a range of effects on the REE+Y patterns depending on their 

modal abundances (Gourcerol et al., 2015a). In order to assess the various sources of detrital 

contamination, a combination of ternary (La-Th-Sc) and binary element (Cr/V and Y/Ni) plots 

are used (Fig. 3.8). The La-Th-Sc ternary diagram was introduced by Bhatia and Crook (1986) to 

distinguish different provenances for turbidite sequences, the metabasic contamination 

represented by higher Sc, and felsic volcanic and clastic contamination by higher La and Th. The 

Cr/V ratio reflects enrichment of Cr over other oxides, whereas Y/Ni reflects the level of 

ferromagnesian input compared to HREE. Ultramafic and tholeiitic sources tend to have higher 

Cr/V and lower Y/Ni ratios, whereas felsic- to mafic sources of calc-alkaline rocks in general 

have lower and higher values, respectively. In order to assess these diagrams, representative data 

for komatiitic and andesitic volcanic rocks are shown in the binary plots in Figure 3.8 for 

reference. 

In the Meadowbank area, the La-Th-Sc plot suggests most samples represent a metabasic 

source for the detrital contamination (Fig. 3.8A). For samples AMB-128330, AMB-128331 and 
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AMB-128332 from West IF, the flatter MUQ-normalized REE patterns suggest more felsic to 

mixed (i.e., felsic to mafic) sources. It should also be noted that sample AMB-126241 from East 

BIF is close to the mixed source domain and could also reflect bimodal contamination. Samples 

AMB-126223 and AMB-126231 from the Central BIF are located within or beyond the 

metabasic domain and could reflect metabasic clastic contamination associated with an external 

source and could reflect addition of volcanic ash during deposition. This hypothesis is supported 

by the high Zr concentration in these samples and also the positive correlation between Th and 

Zr in the Central BIF (r2 = 0.85). The Cr/V and Y/Ni plot confirms the presence of ultramafic 

clastic contamination for the bulk of samples from the Meadowbank area and a mixed source for 

AMB-126241, AMB-128330 and AMB-128332 and felsic to intermediate calc-alkaline source 

for sample AMB-128331 (Fig. 3.8B). For AMB-126231, which is also located in the mixed 

source region of the plot, this confirms the presence of volcanic ash in chert bands affected by 

ultramafic clastic contamination and suggests that the lower content of Zr in AMB-126223 was 

not enough to overprint the ultramafic clastic contamination. 

In the Meliadine gold district, the La-Th-Sc plot suggests a metabasic clastic contamination 

(Fig. 3.8C) for all the samples which is confirmed by the Cr/V and Y/Ni plot (Fig. 3.8D).  

In the Musselwhite area, the La-Th-Sc plot suggests a metabasic clastic contamination for all 

the samples except for one sample (E599667) which may reflect some felsic clastic 

contamination (Fig. 3.8E). It should also be noticed that a group of 4B samples differs from the 

majority of the other samples by their moderate La values. The Cr/V and Y/Ni plot confirms 

ultramafic clastic contamination for most of these samples and a felsic calc-alkaline clastic 

source for E599667 (Fig. 3.8F). However, for samples E599655 and E599668 from unit 4B, 

which exhibit moderate La enrichment in the La-Th-Sc plot, they show high Y/Ni ratios which 
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could suggest contamination by a mafic calc-alkaline source, such as basalt or gabbro, rather 

than ultramafic contamination for these two samples. 

In the Beardmore-Geraldton gold district, the La-Th-Sc plot suggests a metabasic 

contamination for most of the samples (Fig. 3.8G), with some exceptions: (1) sample BG004-C 

from the c-type BIF, which may reflect either granitic gneiss contamination or a mixed source of 

detrital contamination in the chert band. This observation is consistent with the enrichment in Th 

and Zr observed in this sample (cf. REE+Y systematics section); and (2) sample BG006B-J from 

the b-type BIF shows higher La and Th concentrations than other samples from this BIF and may 

reflect either a mixed source of detrital contamination which is consistent with Th and Ga 

enrichments in this sample or a metabasic source with high La (cf. REE+Y systematics study). 

However, these observations are not illustrated in the Cr/V and Y/Ni plot (Fig. 3.8H) which 

confirms a mixed source of detrital contamination for BG004-C, in which the felsic influence is 

much lower than the mafic contamination, and probably a metabasic source for BG006B-J with 

its high La, Th and Ga values.  

In general, a component of ultramafic clastic contamination is illustrated for the four 

deposits and is consistent with the Keewatin Stratigraphy (e.g., Lawson, 1885; Thurston and 

Chivers, 1990) for Algoma-type BIF deposition and therefore the most important clastic 

contamination is likely komatiite and tholeiitic material. Moreover, local volcanic ash and some 

felsic to intermediate calc-alkaline clastic material in addition to felsic to mafic calc-alkaline 

clastic contamination are suggested for the Meadowbank and Musselwhite samples, respectively. 
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3.7.3.1 Assessing the detrital contamination input 

 To estimate the degree of influence of the detrital component within BIFs, a conservative 

mixing line was calculated using seawater samples selected in the North Pacific from Alibo and 

Nozaki (1999) and the MUQ composite as end-members and using the (Pr/Nd)MUQ ratios as a 

measure of the flatness of the pattern and chondritic values of Y/Ho ratio characteristic of detrital 

contamination (Fig. 11). The MUQ end member represents a perfect example of the influence of 

detrital contamination within an Archean greenstone belt as the mud represents a basaltic 

provenance with minor felsic volcanic input. Before discussing these plots, it is noted that the 

bulk of the samples lie just below the calculated mixing line, which represents the high-

temperature hydrothermal input to the samples. In the following discussion, the percentage 

values should be considered to represent the relative influence of the end members rather than 

quantitative measures. 

 In the Meadowbank area, samples from the Central �%�,�)���V�X�J�J�H�V�W���§ 8-100%, the East BIF �§ 

50-�����������D�Q�G���W�K�H���:�H�V�W���,�)���§ 30-100% detrital influence during chert precipitation suggesting that 

East BIF and West IF are the BIFs most affected by detrital contamination in the Meadowbank 

area (Fig. 3.10A). The East BIF shows more hydrothermal influence than the Central BIF and 

West IF samples, which is consistent with where samples plotted in Figure 3.8A. All these 

samples are located either on the mixing line or below it, which suggests the influence of a 

detrital component, a seawater influence and also a high-temperature hydrothermal fluid input 

during precipitation of the chert bands.  

 In the Meliadine gold district, some samples differ from those from Meadowbank by their 

lower Y/Ho ratios, which are mainly observed in the Pump samples and MEL-025 and MEL-038 
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from Discovery (Fig. 3.10B). Considering only samples located on or directly below the mixing 

line, Discovery samples suggests 60-100%, F-Zone samples 65-100% and the �3�X�P�S���V�D�P�S�O�H�V���§��

85-95% detrital influence during chert precipitation. All the samples from the F-Zone and most 

from Discovery (except MEL-025 and MEL-038) are located either on or below the mixing line 

which suggests the significant influence of a detrital component, seawater influence and high-

temperature hydrothermal fluid input during precipitation of chert bands. 

 In the Musselwhite area, as in the Meliadine gold district, some samples differ by their low 

Y/Ho ratios mainly observed in the 4B, 4EA and 4F facies. Considering only samples located on 

or directly below the mixing line, the detrital influence during chert precipitations is estimated at 

40-100% for 4B, 80-100% for 4E, and 0-85% for 4EA (Fig. 3.10C). Based on these 

observations, the 4EA seems to be “relatively less affected” by detrital contamination than the 

other facies and 4B the most influence of hydrothermal fluids. 

 In the Beardmore-Geraldton gold district, samples from the a-type BIF suggest 60-90% 

detrital contamination, samples from the b-type BIF indicate 58-100% and finally samples from 

the c-type BIF suggest 65-100% detrital influence during chert and jasper precipitation (Fig. 

3.10D). The a-type BIF appears the least affected by detrital contamination and is consistent with 

the nature of b- and c-type BIF which are intercalated, respectively, with siltstone and sandstone 

layers. 

 The percentage of detrital contamination discussed is indicative of the general degree of 

contamination allowing a comparison of the different chert samples as most of the samples 

s�K�R�Z�L�Q�J���§�������������0�8�4���F�R�Q�W�D�P�L�Q�D�W�L�R�Q��on the mixing trends also show a seawater signature based 

on their positive La and Y anomalies and REE fractionation patterns. Thus, this treatment 
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confirms that a small amount of clastic detritus in the chert bands is sufficient to dominate the 

bulk REE signature of the cherts as proposed by Gourcerol et al. (2015a). We also note that we 

have previously documented the effects of small amounts of detrital apatite, xenotime, zircon, 

and garnet on REE+Y plots (Gourcerol et al., 2015a). 

 Focusing on samples from the Meliadine gold district and Musselwhite area that show low 

Y/Ho ratios (Figs. 3.10B, C), it is suggested that another factor and/or environmental control 

may be involved which is not considered in the mixing model above. In this case, we note that 

the fractionation between Y and Ho during particle scavenging by Fe-oxyhydroxides (rather than 

Mn-oxyhydroxides in an Archean context) may explain the Y/Ho ratios lower than chondritic 

values based on the experimental observations of Bau (1999). In this latter work it was shown 

that scavenging of REE+Y can occur in a restricted environment and Fe-oxyhydroxide REE+Y 

patterns can display less positive or even negative La and Y anomalies associated with a M-type 

lanthanide tetrad effect (Masuda et al., 1987). These observations are consistent with the good 

correlation noted in this study between the low Y/Ho and negative La and Y anomalies observed 

in the chert samples. Therefore, it is suggested the REE and trace element chemistry of the 

studied chert samples may illustrate the influence of coeval precipitation of Fe-oxyhydroxides in 

a restricted basin isolated from recharge from an open ocean. In such a case, the isolation of such 

a basin from open seawater influence is reflected in the chert chemistry that inherits a chemical 

signature which in part is due to scavenging of REE+Y by contemporaneous Fe-oxyhydoxides 

(e.g., Kawabe et al., 1999; Bau, 1999; Minami et al., 1998).  

3.7.4 Mechanical versus biological processes controlling chert precipitation 

As previously suggested, some of the Meliadine and Musselwhite samples may reflect a 
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primary signature derived by scavenging by Fe-oxyhydroxide particulate matter in a restricted 

basin isolated from seawater influence (i.e., low Y/Ho ratio associated with negative La and Y 

anomalies; Bau, 1999). The precipitation of Fe-oxyhydroxides in Archean seawater can be 

explained both by mechanical and biological processes considering that seawater was devoid of 

free oxygen (e.g., Konhauser et al., 2005; Shibuya et al., 2010; Fig. 3.11). In the mechanical-

process model of Shibuya et al. (2010), a dynamic pH modification during the mixing of 

alkaline, SiO2-rich and Fe-poor hydrothermal fluids with acidic to neutral, silica-saturated, Fe-

rich Archean seawater causes precipitation of Fe3+ from Fe2+-rich seawater as well as silica under 

anoxic conditions (Figs. 3.11A, 3.12). This process is illustrated by reaction 7:  

4Fe2+ + 8H2�2���:�����)�H�2�2�+���������+2 + 8H+ (7); 

In contrast to the former model, the biological-process model (Fig. 3.11B) of Konhauser et 

al. (2005) refers to biological oxidation of Fe2+ which occurs in ocean bottom waters near the 

seafloor by photoautotrophic bacteria. This model can be divided into two stages (i.e., 

photoautotrophic activity and sedimentation), described below. 

Initially, photoautotrophic Fe2+ is oxidized by bacteria, which results in formation of Fe-

hydroxide (reaction 8; Posth et al., 2013):  

4Fe2+ + CO2 + 11H2�2���:���&�+2O + 4Fe (OH)3 + 8H+ (8); 

Sedimentation of these Fe-hydroxides (e.g., ferrihydrite) occurs at the bottom of the water 

column and during formation of the oxide bands, the Fe:C ratio changes and produces an excess 

of Fe(III) in the sediments, which leads to preferential mobilization of fermentation products 

relative to Fe(III) and results in precipitation of hematite (reaction 9; Posth et al., 2013): 
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2Fe(OH)3 �:���)�H2O3 + 3H2O (9); 

Moreover, if a biomass is present in the environment, the hematite is transformed to siderite 

or magnetite through the reactions below (10) and (11): 

2Fe2O3 + CH2�2�������+���2���:���)�H�&�23 + 3Fe2+ + 6OH- (10); 

6Fe2O3 + CH2�2���:�����)�H3O4 + CO2 + H2O (11); 

In order to explore the potential role played by the presence of Fe-oxyhydroxides on chert 

geochemistry, mixing lines were calculated based on the Alibo and Nozaki (1999) seawater 

composition, Fe-oxyhydroxide precipitates, and graphitic mudstone from the Meliadine gold 

district (i.e., the KMG unit) as end members using the La/La*MUQ and Y/Y*MUQ ratios as their 

polarity reflects respectively seawater-dominated or Fe-oxyhydroxide-dominated precipitation. 

The results are summarized in Figure 3.13. In detail, Fe-oxyhydroxide precipitates produced 

under experimental conditions in both a restricted environment from acidic seawater (Bau, 1999) 

and from alkaline solutions (Kawabe et al., 1999) are used for comparison. The KMG samples 

are graphitic mudstones and may represent a carbon reservoir that reflects biological oxidation of 

Fe2+and which shows low Y/Ho ratios associated with negative La and Y anomalies, hence 

having a chemistry consistent with formation in a restricted basin (Table 6).  

The distribution of samples from the Meadowbank area (Fig. 3.13A) illustrates the 

domination of a primary seawater signature despite the fact that interaction with Fe-

oxyhydroxides is highlighted by positive variations of La and Y anomalies along the mixing 

lines. Within an open seawater system, it is difficult to attribute formation of Fe-oxyhydroxides 

to either pH variation or biological oxidation in an environment devoid of oxygen. Nonetheless, 
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pH variation is strongly suggested as a result of seawater and hydrothermal mixing (i.e., acidic 

versus alkaline; Figs. 3.8A, 3.12A). In contrast, the biological influence, as illustrated by the 

presemce of a carbonaceous argillite (i.e., the KMG samples), appears to have generated weak Y 

enrichment. Therefore, samples from Central BIF and East BIF suggest a combination of pH 

variation and biological processes, whereas the West IF suggests mainly pH variation for Fe-

oxyhydroxide precipitation. 

In the Meliadine gold district, the bulk of samples are also located in the seawater domain of 

Figure 3.13B (blue dashed box) except for samples showing negative La and Y anomalies (i.e., 

from Pump and MEL-025 and MEL-028), for which Fe-oxyhydroxide dominates the primary 

signature. In detail, three trends are observed: (1) interaction along or slightly below the mixing 

line with samples from Bau (1999), which reflects acidic pH with variable biological influence 

(i.e., mainly F-Zone); (2) interaction along a mixing line with samples from Kawabe et al., 

(1999) which reflect slightly-neutral to alkaline pH (i.e., Discovery); and (3) interaction along 

the mixing line with KMG samples in the purple dashed box (Fig. 3.13B). Thus, two 

mechanisms for precipitation of Fe-oxyhydroxide are proposed for these samples: (1) influence 

of dynamic pH between alkaline hydrothermal fluids and acidic-neutral seawater; and (2) 

biological oxidation of Fe2+. Moreover, samples associated with group (3) suggest deposition in 

a restricted basin under a biological influence. 

In the Musselwhite area, three groups are illustrated in Figure 3.13C: (1) a group of samples 

reflecting interaction of seawater with Fe-oxyhydroxides (i.e., positive La and Y anomalies); (2) 

a group of samples illustrating domination of Fe-oxyhydroxides on the primary signature (i.e., 

E599656 from 4B; E599660, E599665 and E599666 from 4EA) and which are closely associated 

with the KMG-seawater mixing line; and (3) a group of samples showing weak negative La and 
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Y anomalies associated with low Y/Ho ratios and which are similar to Fe-oxyhydroxide samples 

from Bau (1999) (i.e., E599670 and E599671 from 4B; E599657 and E599658 from 4F and 

E599652 from 4E). The first group of samples reflects interaction of seawater with Fe-

oxyhydroxide and domination of the primary signature by seawater as previously seen for 

Meadowbank and Meliadine and may reflect variable pH conditions. The second group of 

samples reflects domination of Fe-oxyhydroxide on the primary signature associated with 

biological oxidation. Finally, the third group of samples may represent domination of the 

primary signature by Fe-oxyhydroxides precipitated under conditions similar to those described 

by Bau (1999) and involving acidic pH. 

Samples from the Beardmore-Geraldton gold district, in which hematitic inclusions in jasper 

bands are presumed to reflect Fe-oxyhydroxide precipitation in chert bands, show interaction of 

seawater with Fe-oxyhydroxides (Fig. 3.13D) and domination of the seawater influence on the 

primary signature of chert and jasper. Most of these samples show correlation with the Fe-

oxyhydroxides from Bau (1999), which were obtained experimentally from acidic seawater. It is 

noted that three samples from the a- and b-type BIF fall below the mixing line of seawater with 

KMG which may reflect interaction of seawater with Fe-oxyhydroxide precipitated under 

biological influence. 

3.7.4.1 pH condition relationships 

 In modern hydrothermal systems, pH and redox conditions of high temperature 

hydrothermal fluids are strongly buffered by the mineral assemblage of plagioclase + epidote + 

anhydrite. This process maintains the value of pH around 5 (as confirmed by in-situ pH 

measurements of deep-sea high temperature hydrothermal fluid) (e.g., Ding et al., 2005). In the 
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Archean, it appears that calcite (rather than anhydrite) and igneous plagioclase precipitated due 

to extremely low sulfate concentration in the seawater (Kump and Seyfried, 2005) suggesting 

that CO2 concentration in the Archean hydrothermal fluid was high enough to precipitate calcite 

compared to modern basalt-hosted hydrothermal fluids which have CO2 up to 0.02 mol/kg. 

 By calculation, Shibuya et al. (2010) demonstrated that, in this mineral-buffered system, the 

minimum pH in-situ depends on CO2, and the CO2 of a hydrothermal fluid in the early Archean 

is considered to be at least 0.2 mol/kg. This condition gives highly alkaline pH in-situ (>10) 

because the presence of calcite keeps Ca2+ very low in the hydrothermal fluid as opposed to the 

modern equivalent. 

In parallel to what has been already discussed, several related studies have suggested that 

given the anoxic character of Archean seawater, the shale-normalized REE+Y patterns for 

Archean seawater differ from the modern seawater based on the behavior of Ce which shows a 

well-developed, negative Ce anomaly in the latter due to oxidation of Ce+3 to Ce+4 in the 

stratified water column resulting in preferential removal onto Mn-Fe-oxyhydroxides, organic 

matter, and clay particles (e.g., Kawabe et al., 1999; Bau and Koschinsky, 2009; Planavsky et al., 

2010). However, Bau (1999) experimented with the scavenging of dissolved REE+Y by 

precipitating Fe-oxyhydroxide in a restricted environment at pH values ranging from 3.6 to 6.2 

and ambient oxygen content (i.e., oxic conditions) and demonstrated that pH has a more 

important effect on Ce than oxygen in presence of Fe-�R�[�\�K�\�G�U�R�[�L�G�H�V�����7�K�X�V�����D�W���D���S�+���”�����R�[�L�G�D�W�L�Y�H��

scavenging of Ce is favored in the presence of Fe-oxyhydroxide and generates a positive Ce 

anomaly (Fig. 3.14�����D�Q�G���L�Q���S�+�•�������5�(�(���<���V�\�V�W�H�P�D�W�L�F�V���V�K�R�Z�V���D���Q�H�J�D�W�L�Y�H���&�H���D�Q�R�P�D�O�\���D�V�V�R�F�L�D�W�H�G��

with an M-type lanthanide tetrad effect (Fig. 3.14). Therefore, we only consider Ce anomalies to 

be significant with respect to oxygenation status when open basin conditions prevail.  
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 Based on the above, samples for Pump, MEL-025, MEL-028 and the second group of 

samples from Musselwhite (previously described in this section) reflect deposition in a restricted 

environment, and show negative Ce anomalies that may reflect precipitation at a pH >5. As the 

KMG samples also show negative Ce anomalies (Ce/Ce*MUQ = 0.14-0.47), this suggests their 

formation at pH >5 and, therefore, that samples from Pump, MEL-025, MEL-028 and the second 

group of sample from Musselwhite may reflect domination of the primary signature by Fe-

oxyhydroxides formed by biological processes. It is noted, however, that in an open system the 

Ce anomaly has to be used with some caution as biological processes appears to drive the binary 

mixing lines of pH variation to the right on Fig. 14, which suggests Y enrichment. 

3.7.5 Influence of post-depositional events on primary isotopic and trace element signature 

of the chert 

It is now recognized that post-depositional processes (i.e., diagenesis, metamorphism, 

hydrothermal fluids) have negligible influence on the REE+Y composition in BIF (e.g., Bau, 

1993; Bau and Duslki, 1996; Bolhar et al., 2004; Webb et al., 2009; Thurston et al., 2012), which 

is further supported by the results of this study. However, in contrast to this stability, the results 

of recent microanalysis of the oxygen isotopic signature of chert from BIF using in-situ SIMS 

measurements (e.g., Marin et al., 2010; Marin-Carbonne et al., 2011, 2012, 2013, 2014; Robert 

and Chaussidon, 2012) have demonstrated that post-depositional perturbation of the primary 

�/18O signal is variably developed in samples. In order to further evaluate such modification, we 

have also undertaken similar in-situ �6�,�0�6���/18O analysis of certain of our chert samples used for 

the trace element work to track such modification and assess its relevance to the present study. 

For the purpose of also assessing the influence of post-depositional processes on cherts, the 
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�/18O values were determined on three selected chert samples from the Meliadine area. The 

�U�H�V�X�O�W�V���R�I���W�K�H���R�[�\�J�H�Q���L�V�R�W�R�S�L�F���V�W�X�G�\���V�X�J�J�H�V�W�������������P�R�G�L�I�L�F�D�W�L�R�Q���R�I���W�K�H���/18O values caused by 

oxygen isotopic fractionation due to dissolution of precursor amorphous silica during diagenesis; 

and (2) an open system until sealing of the chert-system occurred which avoids an increase of the 

�/18O chert through the combined effects of dissolution-precipitation and isotopic fractionation 

(as discussed earlier in this section). 

The fractionation of oxygen isotopes is temperature-sensitive and thus it may be used as a 

means to assess the temperature of the fluids mediating the reaction process whereby opal is 

converted to chert. Thus, in order to address the potential influence of post-depositional fluids 

and to define the intensive parameters associated with the replacement process, we have 

undertaken modeling using the equations of Taylor (1998). For this, we have assumed the 

primary amorphous silica had a �/18O = +27‰ (Marin et al., 2010) and that it reacted to form 

�F�K�H�U�W���Z�L�W�K���I�L�Q�D�O���/18Ovalues between +6.6 to +19.1‰ by interacting with fluids. For the latter, we 

use �I�R�X�U���G�L�I�I�H�U�H�Q�W���U�H�D�F�W�L�Q�J���I�O�X�L�G�V�����L���H�������/18OH2O = 0, 5, 10 and 15‰) to represent seawater through 

to metamorphic fluid values at variable temperature (30° to 400°C; Hoefs, 2009). These results 

are summarized in Figure 3.15 and form the basis of the following discussion.  

�)�R�U���D���I�O�X�L�G���Z�L�W�K���/18OH2O = 0‰ (i.e., ocean water), the modelling suggests high-temperature 

(>100°C) interaction of fluid with amorphous silica is required to obtain �W�K�H���R�E�V�H�U�Y�H�G���F�K�H�U�W���/18O 

values (i.e., +6.6 to +19.1‰). It is accepted that the Archean oceanic temperature was around 

70°C (e.g., Knauth and Lowe, 1978, 2003), but higher values are not realistic. Thus, for the 

parameters discussed above, it is unlikely that Archean seawater interacting with original opal 

could produce the observed �/18O values in the chert samples (Fig. 3.15A).  
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�)�R�U���D���I�O�X�L�G���Z�L�W�K���/18OH2O values of +5 and +10‰, the modelling suggests that temperatures 

>200°C and >250°C, respectively (Figs. 3.15�%�����&�����D�U�H���U�H�T�X�L�U�H�G���W�R���D�F�F�R�X�Q�W���I�R�U���W�K�H���R�E�V�H�U�Y�H�G���/18O 

chert values of between +11 to +19‰, which represent 80% of the dataset. These temperatures 

would equate to the onset of metamorphic conditions (i.e., zeolite facies) and require deep burial. 

�)�L�Q�D�O�O�\�����I�R�U���D���I�O�X�L�G���Z�L�W�K���/18OH2O = +15‰, the parameters used in the modelling do not 

provide any plausible scenarios to explain �W�K�H���R�E�V�H�U�Y�H�G���/18Ochert values (Fig. 3.15D). The higher 

�W�H�P�S�H�U�D�W�X�U�H�����L���H�������•�������ƒ�&�����D�Q�G���L�V�R�W�R�S�L�F���S�D�U�D�P�H�W�H�U�V�����/18OH2O = +15‰) equate to a typical 

metamorphic fluid, as documented for regional metamorphism or orogenic gold mineralization 

(e.g., Taylor, 1974; Goldfarb et al., 2005), which has been implicated by Marin et al. (2010) 

where chert has the appropriate �/18O values.  

�,�Q���V�X�P�P�D�U�\�����D�O�W�K�R�X�J�K���W�K�H���O�R�Z�H�U���/18O values recorded by cherts (i.e., from +6.6 to +11‰) 

may be interpreted as evidence for a hot Archean seawater, it is unlikely that such fluids could 

penetrate the crust and be heated to the necessary temperatures (i.e., 100° to 400°C) and not 

exchange with the host rocks and thus have their �/18O signature modified to higher values. For 

these reasons, such a singular fluid model is not considered a viable explanation for the observed 

�U�D�Q�J�H�V���L�Q���W�K�H���/18Ochert�����$�W���W�K�H���R�W�K�H�U���H�[�W�U�H�P�H�����D���V�L�Q�J�X�O�D�U���P�R�G�H�O���X�V�L�Q�J���/18OH2O = +15‰ would 

�U�H�T�X�L�U�H���Y�H�U�\���K�L�J�K���W�H�P�S�H�U�D�W�X�U�H�V�����$���F�R�P�S�U�R�P�L�V�H���L�V���W�K�H�U�H�I�R�U�H���I�R�X�Q�G���I�R�U���D���I�O�X�L�G���R�I���/18OH2O = +5‰ 

which may represent fluid present during diagenesis, essentially an isotopically modified down-

�Z�H�O�O�L�Q�J���D�Q�G���K�H�D�W�H�G���V�H�D���Z�D�W�H�U���V�R�X�U�F�H�G���I�O�X�L�G���Z�L�W�K���D�Q���R�U�L�J�L�Q�D�O���/18OH2O = 0‰. In this model, the 

�/18Ochert records both a change in the reacting fluid as it interacts with the crust and also as it 

heats up. This fluid chert interaction would proceed until the system was essentially sealed. This 

hypothesis is also supported by the fact that REEs and trace element concentrations in chert 

bands do not show resetting of their primary signature (as seen previously in this paper) 
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suggesting that a fluid with very low concentration of REEs and trace elements was responsible 

for conversion of opal to chert. The chemical data for the ambient seawater, which show a range 

of REE concentration normalized to MUQ between 10-7to10-8 (Fig. 2.5), would therefore satisfy 

�W�K�L�V���U�H�T�X�L�U�H�P�H�Q�W���D�Q�G���L�V���Z�K�\���W�K�H���/18O values for chert change whereas their REE+Y systematic do 

not.  

3.8 Conclusions 

Chert bands sampled from BIF horizons in four gold deposit settings in Canada 

(Meadowbank, Meliadine, Musselwhite and Beardmore Geraldton) were used to validate the 

restricted basin model for BIF proposed by Barrett et al. (1988a) in which seawater is not 

considered to have been of uniform chemistry. The use of in-situ LA ICP-MS analyses obtained 

via a traverse mode on carefully selected chert bands within the BIF using appropriate analytical 

protocols provide quantitatively meaningful data at low detection limits (i.e., to 0.0001 to 0.001 

shale-normalized values). The consistency of the patterns noted in this study indicates, 

importantly, that primary chemical signatures have been retained within the selected chert 

material despite several post-formation deformation and metamorphic events, in some cases to 

amphibolite facies. In contrast to the trace element chemistry, in-situ �D�Q�D�O�\�V�L�V���R�I���/18O indicates 

the cherts record extensive oxygen isotopic exchange during conversion of primary opal to 

microcrystalline silica. Based on detailed REE+Y geochemistry and petrographic studies, the 

chert bands are interpreted to reflect the following: 

1. Most samples from the four deposits record the influence of seawater 

during precipitation, as illustrated by depletion in the LREE relative to the MREE 

and HREE with associated positive La and Y anomalies. These chemical features 
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suggest deposition in either a partially closed basin under the constant influence of 

seawater or within an open seawater system. 

2. The influence of high-temperature (>250ºC) hydrothermal vent fluid 

during deposition is reflected by a positive Eu anomaly. Importantly, it is suggested 

here that this anomaly may provide indirect information about proximity to the vent 

and thus important information about the deposition site for BIF; thus, the stronger 

the Eu anomaly, the closer to the vent site. The influence of a detrital input is 

illustrated from petrographic and SEM-EDS imaging by the presence of apatite, 

xenotime and zircon grains that occur disseminated in chert bands, in addition to the 

enrichment in the REE, elevated chondritic Y/Ho values and variably elevated values 

for Th, Ga, Zr, Sc and Sr. Furthermore, an evaluation of chemical contamination 

from ultramafic (i.e., komatiite or tholeiite) and minor volcanic ash and felsic to 

intermediate calc-alkaline clastic material is consistent with the stratigraphic 

proportions in a Keewatin sequence model for Algoma-type BIF deposition (e.g., 

Thurston et al., 2008).  

3. Domination of the primary signature by particle scavenging by Fe-

oxyhydroxide phases, as revealed by negative La, Gd and Y anomalies in some 

samples from the Meliadine and Musselwhite areas, suggest BIF deposit occurred in 

a restricted basin environment, involving no REE+Y recharge from the open ocean 

to re-equilibrate the REE+Y budget. The Fe-oxyhydroxides, rather than Mn-

oxyhydroxides, are favoured due to the presumably anoxic deep Archean seawater 

setting, as Mn-oxyhydroxides precipitate in the presence of oxygen and dissolve 

through the anoxic water column; the latter is common in modern oceans which are 
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more oxic than their Archean precursors (e.g., Kawabe et al., 1999; Bau and 

Koschinsky, 2009). 

4. The negative Ce anomalies in some of the chert samples indicates 

precipitation of Fe-oxyhydroxide occurred at a pH >5, most of the cherts from the 

four deposits studied have positive Ce anomalies and may reflect precipitation at a 

pH <5. This conclusion suggests that Archean high-temperature hydrothermal vent 

fluids from which oxyhydroxides originate may represent an alkaline hydrothermal 

fluid, as proposed by Shibuya et al. (2010). 

5. Lastly, an in-situ detailed study of �/18O for three chert samples from the 

Meliadine gold district suggests the �L�Q�I�O�X�H�Q�F�H���R�I���D���I�O�X�L�G���/18OH2O = 0 to 5‰ at high-

temperature (>100°C) during diagenesis within an open system, as illustrated by 

�P�R�G�L�I�L�F�D�W�L�R�Q���R�I���W�K�H���S�U�H�F�X�U�V�R�U���D�P�R�U�S�K�R�X�V���V�L�O�L�F�D���/18O value caused by oxygen isotopic 

fractionation due to dissolution-precipitation processes. However, it is noted that 

�F�R�Q�W�U�D�U�\���W�R���W�K�H���/18O values, the REEs and trace elements are not modified as the 

reacting fluid, of sea water origin, is characterized by very low-REE concentrations. 
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3.10 Figures and captions 

Figure 3.1: 

Field and 

laboratory 

photographs of 

BIF to show 

the nature of 

sampling used 

in the study: 

(A) Outcrop of 

BIF in the 

Meadowbank 

gold area. The 

inset is a close 

up to illustrate 

the nature of 

the chert and 

magnetite layering; (B) Polished thin section of chert (Qtz) and magnetite (Mt) layers made from 

the previous sample. The black solid line represents the line traverse done during LA ICP-MS 

study; and (C) Back-scattered electron image from the SEM illustrating the line traverse (upper 

right corner) done in the chert (Qtz) band.  
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Figure 3.2: MUQ - normalized REE+Y patterns for BIF-hosted cherts from samples in different 

parts of the Meadowbank area: (A) Central BIF, (B) East BIF, and (C) West IF. 
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Figure 3.3: MUQ - normalized REE+Y patterns for BIF-hosted cherts from samples in different 

parts of the Meliadine gold district: (A) Pump, (B) F-Zone, and (C) Discovery. 
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Figure 3.4: MUQ - normalized REE+Y patterns for BIF-hosted chert from samples in different 

parts of the Musselwhite area: (A) 4B - Oxide dominant facies excluding sample E599656, (B) 

4E - garnetiferous amphibolite samples, (C) 4EA - garnet-grunerite samples excluding samples 

E599660, E599665 and E599666, and (D) 4F - biotite-garnet schist samples. 
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Figure 3.5: MUQ - normalized REE+Y patterns for BIF-hosted chert from samples in different 

parts of the Beardmore-Geraldton gold district: (A) a-type - iron oxide-rich type, (B) b-type - 

siltstone-rich type, and (C) c-type - sandstone-rich type. Note that the lettering refers to chert (C) 

and jasper (J) types of silica layers. 
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Figure 3.6: Variation �L�Q���W�K�H���/18Ovalues versus analysis number for chert samples from Meliadine 

gold district: (A)MEL-008, (B)MEL-016, and (C) MEL-033. 
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Figure 3.7: Back-scattered electron image from the SEM for different BIF-hosted chert samples 

from the Meadowbank and Musselwhite: (A) an example of line traverse done in a chert band 

during LA ICP-MS analysis (from E599668); (B) example of mineral inclusions in a chert band 

which includes anhedral apatite (Ap), euhedral pyrite (Py) and variable subhedral to anhedral 

amphibole (Amp) (from AMB-126247); (C) subhedral chlorite (Chl) and amphibole (Amp) 

grains surrounding subhedral to euhedral zircon (Zrn) grains in chert band (from AMB-126231); 

(D) subhedral to euhedral grains of chlorite (Chl) with an inclusion of euhedral zircon (Zrn) in 

chert band (from AMB-126223); (E) traverse line in centre of the image done in a chert band at 

the edge of a garnet (Gr) band (from AMB-126232); and (F) ankerite (Ank) surrounding 

subhedral apatite (Ap) grains in a chert band (from E599655). 
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Figure 3.8: Binary plots of elemental ratio data (Eu/Sm and Sm/Yb) for chert samples in BIFs 

from Meadowbank (A), Meliadine (B), Musselwhite (C), and Beardmore-Geraldton (D). These 

plots are used to assess the potential influence of high-T hydrothermal fluids on the chert 

chemistry, as illustrated with the conservative mixing line. The data for the high-T hydrothermal 

fluid is from Thurston et al., (2012) and data for seawater is from Alibo and Nozaki (1999). 
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Figure 3.9: 

Trace element 

plots (La-Th-

Sc and Cr/V 

and Y/Ni) used 

to constrain 

the provenance 

of detrital 

contamination 

in chert bands 

from the BIF 

localities 

(respectively 

modified from 

Bhatia and 

Crook, 1986; 

and modified 

from 

McLennan et 

al., 1993): (A) 

and (B) from 

the 

Meadowbank 

area, (C) and 

(D) from 

Meliadine gold 

district, (E) 

and (F) from 

the 

Musselwhite area, and (G) and (H) from the Beardmore-Geraldton gold district. 
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Figure 3.10: Binary plots of Y/Ho versus and (Pr/Sm)MUQ for chert samples from the 

Meadowbank area (A), the Meliadine gold district (B), the Musselwhite area (C) and the 

Beardmore-Geraldton gold district (D) BIFs. These plots are used to assess the potential 

influence of detrital contamination in the chert layers, as illustrated with the conservative mixing 

line. The data for the MUQ and seawater are from Kamber et al. (2005) and Alibo and Nozaki 

(1999), respectively. The dashed arrow represents the influence of a high-T hydrothermal fluid 

and the grey square presented in Meliadine and Musselwhite represents the influence of Fe-

oxyhydroxides. 
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Figure 3.11: Model of Algoma-type BIF deposition on Archean seafloor: a) the mechanical-

process model illustrated by progressive decrease of pH from the silica-chimney through the 

seawater column; b) the biological-process model illustrated by oxidation of photoautotrophic 

produced Fe(II) follow by sedimentation of Fe-hydroxide leading to fermentation and release of 

Fe(III). Several meters away from the vents, the emissions become white and turbid by 

precipitation of the oversaturated silica; while with increasing distance from the vent, a cloud of 

reddish brown particles of iron oxyhydroxides dominates hydrothermal plumes. In the vicinity of 

the hydrothermal vent systems, the silica particles are predominant in the hydrothermal 

sediments, but the iron oxyhydroxides are abundant with increasing distance from the vent 

systems (modified from Konhauser et al., 2005 and Shibuya et al., 2010). 
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Figure 3.12: Redox path for precipitation of Fe-oxyhydroxide by mixing of acidic to neutral 

seawater and alkaline hydrothermal fluids in a low temperature seawater setting. The black arrow 

represents the mixing of acidic seawater with Fe2+ in solution with alkaline hydrothermal fluids 

which leads to precipitation of Fe(OH)3 (modified from Pufahl et al., 2013). 
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Figure 3.13: Binary plots of Y/Y* and La/La* that illustrate the effect of Fe-oxyhydroxide 

precipitation on the primary seawater signature of cherts from the Meadowbank area (A), the 

Meliadine gold district (B), the Musselwhite area (C), and the Beardmore-Geraldton gold district 

(D). The blue dashed box represents the open seawater environment, whereas the purple dashed 

box a restricted basin where the primary signature is dominated by particle scavenging. The data 

for the Fe-oxyhydroxides are from Bau (1999) and illustrate Fe- oxyhydroxide precipitates from 

experimental condition in acidic pH (purple rhombs) whereas the data from Kawabe et al. (1999) 

reflect experimental results from solutions with neutral to alkaline pH with a variable influence 

of NaCl solution (purple triangles). KMG samples (turquoise rhombs) from Meliadine illustrate 

microbial Fe3+ reduction. Note that sample E599664 from 4F in Musselwhite is omitted due to its 

low REE values which preclude calculating the Y/Y* parameter. 
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Figure 3.14: Plot of MUQ - normalized REE+Y patterns for experimentally produced Fe-

oxyhydroxide precipitates at variable pH values (data from Bau, 1999). The black arrow 

indicates the increasing pH values. 
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Figure 3.15: Diagram summarizing the variation of calculated values of �/18Ochert, using the 

equations of Taylor (1978) and variety of appropriate silica-H2O 18O fractionation factors 

(Kawabe, 1978; Matsuhisa et al., 1979; Kita et al., 1985), as a function of temperature (30º to 

300ºC) and water/rock ratios for four reacting �I�O�X�L�G�V���K�D�Y�L�Q�J���/18OH2O = 0, +5, +10 and +15‰ 

(respectively A, B, C, and D). The shaded area represents the range of �/18O values (i.e., +6.6 to 

+19.1‰) obtained for chert from the Meliadine gold district. Note that the value of the initial 

�/18Ochert was assumed to be +27‰, which is the value of precursor amorphous silica in Archean 

BIF settings (Marin et al., 2010). 
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Table 3.1: Abundances of elements and REE+Y for samples from Pump in the Meliadine gold 

district

 

Samples MEL001 MEL002 MEL003 MEL004 MEL006 MEL007 MEL008 MEL009 MEL010 MEL011 MEL012
Si (ppm) 346900 397500 401100 338500 341200 430500 380800 395100 409800 330700 410800
Li (ppm) 0.114 0.219 0.564 0.433 0.233 0.219 0.377 0.205 0.110 0.405 0.261
Be (ppm) 0.019 0.026 0.033 0.048 0.023 0.028 0.025 0.021 0.000 0.066 0.024
Sc (ppm) 3.072 3.425 2.909 2.733 3.030 2.643 2.390 2.259 2.488 2.158 2.187
Ti (ppm) 6.900 3.170 4.770 2.920 3.040 2.720 4.030 2.590 2.430 3.480 2.660
V (ppm) 0.394 0.333 0.299 0.440 0.436 0.223 0.601 0.189 0.209 0.285 0.365
Cr (ppm) 2.750 3.470 4.100 4.730 4.650 4.130 3.020 2.550 3.880 4.130 6.670
Mn (ppm) 333 540 629 566 108 48.200 9.470 172 217 647 234
Fe (ppm) 5710 5690 5140 8450 2330 1240 335 402 1100 19240 1860
Co (ppm) 0.434 0.301 0.235 0.256 0.387 0.630 0.317 0.198 0.415 0.225 0.191
Ni (ppm) 10.000 7.200 2.520 3.110 5.900 10.100 9.400 7.900 6.900 3.800 2.780
Cu (ppm) 22.000 25.400 13.800 12.500 22.800 23.200 19.800 19.200 19.100 8.500 10.800
Zn (ppm) 40.600 54.600 46.800 64.300 72.000 48.400 37.300 37.400 32.000 34.500 39.800
Ga (ppm) 0.119 0.182 0.321 0.219 0.196 0.201 0.468 0.118 0.188 0.147 0.161
As (ppm) 78.400 68.980 48.890 52.170 30.640 19.100 8.880 12.700 7.780 5.600 6.690
Rb (ppm) 0.061 0.162 0.062 0.074 0.058 0.069 1.830 0.076 0.049 0.035 0.037
Sr (ppm) 0.407 0.418 4.560 6.270 3.460 0.390 0.343 2.180 9.300 0.995 0.430
Y (ppm) 0.150 0.142 1.310 0.699 0.238 0.308 0.106 0.124 0.306 0.663 0.105
Zr (ppm) 3.970 0.160 0.492 0.173 0.394 4.960 6.280 2.640 0.561 0.381 0.342
Nb (ppm) 0.031 0.035 0.059 0.055 0.027 0.033 0.059 0.045 0.024 0.025 0.025
Mo (ppm) 0.085 0.165 0.143 0.146 0.111 0.192 0.169 0.169 0.760 0.095 0.123
Ag (ppm) 0.109 0.138 0.168 0.193 0.083 1.800 0.332 0.540 0.320 0.280 0.192
Cd (ppm) 0.747 1.285 1.536 1.490 0.933 1.630 1.041 1.830 0.830 0.552 0.834
In (ppm) 0.067 0.090 0.121 0.138 0.082 0.100 0.059 0.115 0.053 0.050 0.068
Sn (ppm) 0.192 0.276 0.274 0.278 0.237 0.339 1.203 0.271 0.245 0.262 1.070
Sb (ppm) 0.294 0.454 0.339 0.403 0.267 0.490 0.404 0.492 0.347 0.226 0.350
Cs (ppm) 0.040 0.066 0.068 0.093 0.036 0.049 0.108 0.060 0.025 0.022 0.038
Ba (ppm) 0.136 0.278 0.162 0.172 0.384 0.168 2.370 0.207 0.524 0.191 0.155
La (ppm) 0.022 0.062 0.145 0.220 0.067 0.051 0.024 0.021 0.203 0.119 0.144
Ce (ppm) 0.088 0.173 0.386 0.582 0.204 0.159 0.123 0.085 0.450 0.312 0.346
Pr (ppm) 0.016 0.026 0.072 0.093 0.029 0.028 0.014 0.022 0.065 0.043 0.040
Nd (ppm) 0.029 0.067 0.263 0.325 0.096 0.072 0.024 0.028 0.293 0.199 0.134
Sm (ppm) 0.018 0.018 0.105 0.111 0.034 0.027 0.018 0.018 0.106 0.055 0.036
Eu (ppm) 0.012 0.020 0.188 0.110 0.054 0.018 0.014 0.028 0.055 0.052 0.023
Gd (ppm) 0.018 0.018 0.149 0.136 0.037 0.042 0.018 0.018 0.108 0.077 0.030
Tb (ppm) 0.005 0.007 0.031 0.028 0.009 0.009 0.005 0.009 0.015 0.013 0.007
Dy (ppm) 0.027 0.020 0.189 0.126 0.042 0.049 0.015 0.022 0.082 0.077 0.022
Ho (ppm) 0.009 0.009 0.047 0.033 0.011 0.012 0.006 0.011 0.016 0.020 0.006
Er (ppm) 0.024 0.019 0.115 0.085 0.027 0.038 0.016 0.019 0.038 0.068 0.014
Tm (ppm) 0.008 0.007 0.019 0.022 0.007 0.008 0.006 0.008 0.007 0.012 0.004
Yb (ppm) 0.043 0.029 0.079 0.123 0.033 0.036 0.035 0.027 0.036 0.078 0.017
Lu (ppm) 0.009 0.008 0.016 0.026 0.008 0.008 0.008 0.008 0.007 0.014 0.005
Hf (ppm) 0.035 0.008 0.014 0.008 0.008 0.065 0.027 0.041 0.008 0.008 0.012
Ta (ppm) 0.006 0.008 0.011 0.014 0.005 0.005 0.005 0.011 0.003 0.002 0.006
W (ppm) 0.131 0.176 0.179 0.223 0.105 0.184 0.205 0.260 0.217 0.142 0.135
Au (ppm) 0.011 0.019 0.017 0.011 0.011 0.319 0.630 0.291 0.168 0.093 0.079
Tl (ppm) 0.078 0.097 0.105 0.126 0.061 0.106 0.250 0.121 0.055 0.030 0.068
Pb (ppm) 2.540 2.840 3.400 3.420 2.190 4.280 4.940 3.490 2.690 2.240 2.510
Th (ppm) 0.007 0.006 0.017 0.012 0.004 0.007 0.011 0.012 0.011 0.036 0.012
U (ppm) 0.047 0.050 0.064 0.082 0.044 0.065 0.059 0.115 0.035 0.024 0.032

Y/Ho 17.241 16.573 27.872 21.054 22.517 24.779 17.755 11.439 18.773 32.532 16.778
Eu/Eu* 2.249 3.499 6.131 3.598 5.728 2.175 2.705 4.440 2.276 3.456 2.568
La/La* 0.083 0.270 0.468 0.499 0.460 0.222 0.089 0.027 1.106 1.012 0.709
Y/Y* 0.658 0.705 1.126 0.833 0.892 0.903 0.685 0.537 0.774 1.123 0.698

Ce/Ce* 0.314 0.519 0.602 0.668 0.737 0.466 0.472 0.152 0.960 1.019 0.896
Gd/Gd* 0.673 0.558 0.917 0.891 0.756 0.906 0.721 0.475 1.077 1.041 0.721
Pr/Sm 0.689 1.150 0.532 0.652 0.662 0.790 0.610 0.961 0.476 0.612 0.872
Nd/Yb 0.061 0.215 0.305 0.244 0.269 0.184 0.064 0.095 0.752 0.235 0.729
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Table 3.2: Abundances of elements and REE+Y for samples from F-Zone in the Meliadine gold 

district 

 

Samples MEL013 MEL014 MEL015 MEL016 MEL017 MEL018 MEL019 MEL020 MEL021
Si (ppm) 402400 418400 387500 426200 449000 347900 373100 383800 393000
Li (ppm) 0.250 0.154 0.271 0.131 0.122 0.139 0.178 0.475 0.295
Be (ppm) 0.045 0.018 0.068 0.058 0.018 0.040 0.018 0.018 0.052
Sc (ppm) 8.849 8.554 8.112 8.366 7.716 8.093 8.414 7.729 7.536
Ti (ppm) 5.620 5.330 6.580 4.990 4.731 6.550 4.563 6.740 5.780
V (ppm) 0.327 0.160 0.591 0.227 0.097 0.265 0.119 0.618 0.368
Cr (ppm) 5.350 3.740 5.830 3.700 3.960 13.100 4.110 22.100 5.460
Mn (ppm) 370 365 569 622 8.110 752 557 1990 1000
Fe (ppm) 1770 2560 7940 2980 84 10690 1440 5040 3320
Co (ppm) 0.286 0.206 0.764 0.148 0.153 0.351 0.135 0.266 0.183
Ni (ppm) 4.730 5.240 3.390 3.930 5.230 5.640 4.320 5.400 5.120
Cu (ppm) 9.820 11.100 7.290 6.310 9.140 23.600 6.900 8.330 8.150
Zn (ppm) 44.200 60.500 104.000 32.800 31.900 42.900 21.900 60.600 33.700
Ga (ppm) 0.178 0.175 0.356 0.187 0.260 0.158 0.136 0.381 0.539
As (ppm) 54.100 46.100 34.500 29.200 34.500 20.200 20.400 27.200 21.400
Rb (ppm) 0.063 0.056 0.065 0.059 0.041 0.037 0.035 0.064 0.305
Sr (ppm) 11.500 0.750 6.500 6.360 1.480 15.300 8.500 30.600 16.200
Y (ppm) 0.850 0.175 1.700 0.724 0.102 1.181 0.482 2.570 0.577
Zr (ppm) 2.140 0.549 0.175 0.373 0.027 4.930 0.213 0.416 0.436
Nb (ppm) 0.031 0.024 0.041 0.032 0.026 0.035 0.024 0.035 0.028
Mo (ppm) 0.253 0.274 0.232 0.181 0.211 0.277 0.340 0.219 0.229
Ag (ppm) 0.640 0.470 0.380 0.450 0.360 0.150 0.292 0.390 0.300
Cd (ppm) 1.794 1.390 0.928 1.512 1.065 0.776 1.146 1.222 1.080
In (ppm) 0.067 0.062 0.093 0.063 0.048 0.067 0.050 0.057 0.063
Sn (ppm) 0.189 0.368 0.618 0.178 0.297 0.196 0.112 0.257 0.370
Sb (ppm) 0.658 0.398 0.280 0.463 0.519 0.514 0.333 0.622 0.276
Cs (ppm) 0.041 0.034 0.020 0.041 0.040 0.025 0.032 0.026 0.040
Ba (ppm) 0.334 0.355 0.234 0.155 0.970 0.172 0.141 0.630 3.880
La (ppm) 0.365 0.037 2.800 0.106 0.295 0.323 0.181 0.337 0.112
Ce (ppm) 0.828 0.108 4.800 0.338 0.920 0.672 0.388 0.752 0.264
Pr (ppm) 0.112 0.015 0.670 0.048 0.133 0.099 0.055 0.087 0.033
Nd (ppm) 0.483 0.052 2.000 0.208 0.610 0.461 0.230 0.402 0.142
Sm (ppm) 0.134 0.018 0.590 0.084 0.080 0.115 0.054 0.141 0.048
Eu (ppm) 0.102 0.020 0.260 0.102 0.041 0.118 0.061 0.188 0.109
Gd (ppm) 0.165 0.024 0.530 0.123 0.051 0.145 0.065 0.235 0.071
Tb (ppm) 0.026 0.004 0.066 0.019 0.005 0.024 0.011 0.042 0.012
Dy (ppm) 0.148 0.021 0.326 0.114 0.017 0.144 0.067 0.316 0.073
Ho (ppm) 0.030 0.006 0.060 0.024 0.004 0.033 0.016 0.075 0.017
Er (ppm) 0.088 0.015 0.171 0.067 0.005 0.094 0.043 0.226 0.050
Tm (ppm) 0.016 0.004 0.023 0.011 0.002 0.015 0.007 0.035 0.009
Yb (ppm) 0.076 0.019 0.154 0.056 0.008 0.095 0.035 0.226 0.049
Lu (ppm) 0.013 0.004 0.023 0.010 0.002 0.016 0.009 0.039 0.010
Hf (ppm) 0.021 0.013 0.006 0.006 0.006 0.071 0.006 0.006 0.010
Ta (ppm) 0.005 0.003 0.006 0.004 0.005 0.005 0.004 0.004 0.004
W (ppm) 0.540 0.550 0.183 0.212 0.550 0.840 0.116 0.390 0.250
Au (ppm) 2.400 3.700 3.800 0.580 2.200 0.440 0.380 3.400 0.500
Tl (ppm) 0.113 0.094 0.055 0.108 0.074 0.079 0.074 0.060 0.082
Pb (ppm) 3.000 1.610 2.310 2.120 2.480 2.690 1.251 4.840 2.530
Th (ppm) 0.020 0.011 0.011 0.004 0.138 0.019 0.004 0.004 0.007
U (ppm) 0.046 0.030 0.023 0.055 0.034 0.048 0.029 0.049 0.032

Y/Ho 28.716 30.919 28.333 30.042 25.248 36.339 30.315 34.358 33.353
Eu/Eu* 3.000 3.946 2.117 4.535 2.809 3.971 4.361 4.585 8.136
La/La* 1.056 0.482 0.649 0.741 0.813 1.233 1.003 1.431 1.100
Y/Y* 1.052 1.195 1.063 1.145 1.331 1.350 1.174 1.251 1.241

Ce/Ce* 0.981 0.738 0.658 0.954 0.976 0.972 0.907 1.223 1.065
Gd/Gd* 1.052 0.968 1.123 1.128 1.085 1.042 0.995 1.083 1.060
Pr/Sm 0.648 0.649 0.881 0.440 1.290 0.668 0.790 0.480 0.530
Nd/Yb 0.588 0.246 1.194 0.340 7.210 0.446 0.611 0.164 0.264
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Table 3.3: Abundances of elements and REE+Y for samples from Discovery in the Meliadine 

gold district  
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Table 3.4: Abundances of elements and REE+Y for samples from the 4B and 4E facies in the 

Musselwhite area 

 

Samples E599655 E599656 E599661 E599668 E599669 E599670 E599671 E599672 E599651 E599652
Si (ppm) 4170 436900 379900 170300 122700 314200 196400 342100 430300 443600
Li (ppm) 0.068 1.084 1.052 0.158 0.379 0.199 1.853 0.249 0.569 1.259
Be (ppm) 0.061 0.061 0.293 0.301 0.061 0.061 0.107 0.061 0.061 0.000
Sc (ppm) 0.489 3.757 3.382 1.514 1.124 2.584 1.627 2.950 4.745 4.295
Ti (ppm) 11.600 3.250 55.300 1.850 17.200 2.011 1.356 4.660 11.000 15.400
V (ppm) 1.330 0.240 5.300 0.176 1.490 0.146 0.054 0.229 0.860 0.940
Cr (ppm) 11.570 3.760 2.290 12.850 22.390 4.540 5.630 2.000 6.260 3.150
Mn (ppm) 3355 16 1308 3470 2090 467.400 628.100 159.000 129 39
Fe (ppm) 6330 216 19600 10180 45500 22480 38270 4920 3170 1000
Co (ppm) 0.340 0.514 4.490 0.441 0.769 0.587 1.126 0.193 2.060 2.330
Ni (ppm) 1.800 21.000 7.700 4.100 5.000 3.100 1.290 5.900 47.800 26.800
Cu (ppm) 3.870 81.000 33.300 12.300 10.200 7.300 3.730 28.700 106.000 328.000
Zn (ppm) 10.100 131.000 63.100 21.300 28.700 22.200 18.700 50.600 189.000 72.000
Ga (ppm) 0.186 0.252 0.924 0.644 0.627 0.136 0.056 0.161 0.387 0.148
As (ppm) 0.233 3.590 1.570 0.625 1.480 0.352 0.301 0.838 5.600 1.850
Rb (ppm) 0.028 0.124 5.820 0.055 0.584 0.024 0.039 0.085 0.089 0.140
Sr (ppm) 848.800 1.570 8.160 150.800 2.270 0.196 0.191 4.200 13.200 1.380
Y (ppm) 19.500 0.070 1.800 21.500 1.066 0.112 0.565 0.552 0.984 0.180
Zr (ppm) 0.104 0.202 0.323 0.086 0.339 0.065 0.103 0.059 0.620 0.477
Nb (ppm) 0.018 0.042 0.179 0.033 0.074 0.021 0.027 0.039 0.075 0.023
Mo (ppm) 0.016 1.280 0.165 0.096 0.072 0.058 0.038 0.134 0.460 0.950
Ag (ppm) 0.012 0.321 0.105 0.067 0.070 0.028 0.018 0.128 0.457 0.414
Cd (ppm) 0.499 2.330 0.925 1.123 0.374 0.245 0.220 1.470 3.120 0.871
In (ppm) 0.009 0.198 0.098 0.053 0.033 0.027 0.023 0.087 0.202 0.059
Sn (ppm) 0.140 0.476 0.262 0.143 0.281 0.196 0.078 0.200 0.486 0.435
Sb (ppm) 0.099 1.550 0.594 0.244 0.297 0.386 0.591 0.980 1.681 0.503
Cs (ppm) 0.002 0.057 1.042 0.039 0.254 0.013 0.019 0.046 0.038 0.016
Ba (ppm) 2.354 0.523 5.900 7.440 1.770 0.204 0.230 0.196 0.529 0.444
La (ppm) 0.190 0.106 1.650 0.792 0.506 0.156 0.082 0.383 1.020 0.087
Ce (ppm) 0.510 0.207 2.970 2.228 1.650 0.339 0.280 0.460 1.610 0.179
Pr (ppm) 0.095 0.033 0.302 0.402 0.141 0.034 0.047 0.054 0.153 0.025
Nd (ppm) 0.782 0.069 1.190 2.554 0.767 0.121 0.240 0.209 0.576 0.083
Sm (ppm) 0.591 0.020 0.249 0.861 0.183 0.018 0.077 0.042 0.118 0.018
Eu (ppm) 0.689 0.023 0.154 0.711 0.114 0.013 0.053 0.035 0.073 0.014
Gd (ppm) 1.451 0.018 0.266 1.285 0.175 0.018 0.097 0.058 0.147 0.027
Tb (ppm) 0.251 0.007 0.040 0.220 0.026 0.004 0.015 0.011 0.023 0.006
Dy (ppm) 1.881 0.016 0.255 1.870 0.169 0.019 0.099 0.048 0.122 0.030
Ho (ppm) 0.443 0.007 0.055 0.517 0.035 0.005 0.022 0.015 0.030 0.007
Er (ppm) 1.467 0.009 0.171 2.060 0.110 0.013 0.067 0.038 0.086 0.019
Tm (ppm) 0.221 0.006 0.028 0.394 0.019 0.003 0.013 0.008 0.015 0.003
Yb (ppm) 1.621 0.011 0.166 3.470 0.130 0.021 0.102 0.031 0.076 0.020
Lu (ppm) 0.260 0.005 0.028 0.685 0.023 0.006 0.022 0.009 0.013 0.004
Hf (ppm) 0.008 0.008 0.011 0.008 0.008 0.008 0.008 0.008 0.019 0.008
Ta (ppm) 0.003 0.009 0.013 0.005 0.003 0.003 0.003 0.008 0.008 0.004
W (ppm) 0.060 0.387 0.339 0.178 0.582 0.079 0.078 2.187 1.030 0.630
Au (ppm) 0.004 0.076 0.030 0.011 0.011 0.011 0.011 0.025 0.082 0.035
Tl (ppm) 0.011 0.226 0.125 0.053 0.036 0.020 0.017 0.096 0.291 0.121
Pb (ppm) 7.290 12.500 4.820 14.800 1.680 1.590 0.725 3.340 18.450 6.280
Th (ppm) 0.004 0.008 0.038 0.008 0.035 0.004 0.006 0.007 0.007 0.008
U (ppm) 0.005 0.054 0.076 0.035 0.031 0.014 0.010 0.053 0.042 0.023

Y/Ho 44.008 9.790 32.550 41.586 30.284 22.126 25.450 37.808 32.800 25.714
Eu/Eu* 3.608 3.705 2.622 3.031 2.751 2.599 2.651 2.975 2.426 2.595
La/La* 2.358 0.242 1.482 1.384 1.868 0.990 0.800 1.836 1.660 0.710
Y/Y* 1.526 0.512 1.173 1.299 1.084 0.874 0.932 1.493 1.225 0.983

Ce/Ce* 1.358 0.401 1.194 1.084 1.965 1.076 0.940 1.007 1.221 0.761
Gd/Gd* 1.274 0.521 1.047 1.085 1.022 0.724 1.047 0.981 1.061 0.920
Pr/Sm 0.125 1.297 0.941 0.362 0.597 1.442 0.470 1.013 1.006 1.075
Nd/Yb 0.044 0.561 0.660 0.068 0.542 0.521 0.217 0.618 0.697 0.385

4B 4E
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Table 3.5: Abundances of elements and REE+Y for selected samples from the 4EA and 4F facies 

in the Musselwhite area 

 

Samples E599654 E599659 E599660 E599665 E599666 E599667 E599657 E599658 E599664
Si (ppm) 362400 381200 328600 395600 364100 1760 418000 423500 450200
Li (ppm) 1.477 0.277 1.361 0.920 0.132 0.098 4.290 3.390 1.189
Be (ppm) 0.061 0.061 0.104 0.061 0.061 0.061 0.061 0.061 0.061
Sc (ppm) 3.257 2.519 2.258 2.765 2.677 0.340 3.499 3.542 3.251
Ti (ppm) 9.370 3.150 17.100 5.460 3.470 4.000 43.000 185.000 15.200
V (ppm) 0.920 0.178 1.660 0.220 0.323 0.233 5.530 11.300 2.770
Cr (ppm) 2.920 2.810 4.020 2.750 2.380 11.140 2.770 6.200 2.840
Mn (ppm) 31.400 8.900 105.000 11.100 23.900 6890 59.600 7.400 30.500
Fe (ppm) 1920 173 4250 710 1380 9654 1840 3030 1020
Co (ppm) 1.330 0.265 0.930 0.440 0.407 0.346 1.630 4.300 1.730
Ni (ppm) 19.800 9.800 16.100 11.200 7.700 3.550 13.700 46.000 15.300
Cu (ppm) 115.000 95.000 42.400 46.500 34.900 12.500 55.000 82.000 45.800
Zn (ppm) 280.000 141.000 82.000 94.300 87.000 17.400 125.000 59.000 83.800
Ga (ppm) 0.404 0.590 0.664 0.144 0.233 0.791 0.763 1.610 1.036
As (ppm) 3.160 1.320 3.220 1.301 1.170 1.260 1.205 1.190 1.740
Rb (ppm) 0.080 0.049 3.070 0.141 0.122 0.059 3.140 8.100 1.410
Sr (ppm) 2.700 12.200 1.620 0.374 1.030 783.400 1.600 1.380 0.730
Y (ppm) 0.259 0.212 0.340 0.020 0.095 16.650 0.154 0.097 0.173
Zr (ppm) 0.123 0.084 0.166 0.111 0.164 0.070 0.164 0.156 0.142
Nb (ppm) 0.027 0.019 0.185 0.049 0.038 0.016 0.084 0.275 0.114
Mo (ppm) 0.320 0.249 0.445 0.224 0.190 0.560 0.210 0.330 3.900
Ag (ppm) 0.255 0.127 0.374 0.154 0.144 0.117 0.182 1.000 0.187
Cd (ppm) 2.170 0.864 2.780 1.263 1.095 0.880 0.993 0.900 1.333
In (ppm) 0.126 0.081 0.375 0.122 0.098 0.074 0.084 0.063 0.162
Sn (ppm) 0.490 0.389 0.645 0.318 0.273 0.308 0.665 0.990 0.422
Sb (ppm) 0.833 0.442 1.318 0.571 0.703 0.570 0.775 0.880 1.260
Cs (ppm) 0.026 0.020 1.228 0.083 0.066 0.022 0.118 0.234 0.144
Ba (ppm) 0.553 8.600 5.680 0.462 1.190 15.070 2.160 13.600 2.030
La (ppm) 0.550 0.497 0.199 0.045 0.025 7.800 0.163 0.151 0.126
Ce (ppm) 0.830 1.030 0.456 0.128 0.121 8.900 0.368 0.710 0.360
Pr (ppm) 0.086 0.078 0.083 0.022 0.015 1.023 0.041 0.111 0.063
Nd (ppm) 0.366 0.288 0.163 0.024 0.031 4.883 0.144 0.710 0.268
Sm (ppm) 0.064 0.049 0.047 0.009 0.012 1.048 0.038 0.470 0.150
Eu (ppm) 0.033 0.035 0.047 0.011 0.010 1.025 0.020 0.076 0.051
Gd (ppm) 0.054 0.041 0.054 0.007 0.018 1.428 0.045 0.350 0.124
Tb (ppm) 0.008 0.006 0.019 0.004 0.004 0.199 0.009 0.019 0.015
Dy (ppm) 0.040 0.029 0.053 0.009 0.014 1.373 0.032 0.040 0.050
Ho (ppm) 0.008 0.007 0.021 0.005 0.006 0.298 0.008 0.004 0.011
Er (ppm) 0.020 0.018 0.039 0.006 0.012 0.869 0.020 0.008 0.017

Tm (ppm) 0.003 0.004 0.018 0.005 0.005 0.110 0.003 0.003 0.006
Yb (ppm) 0.011 0.011 0.038 0.011 0.018 0.666 0.011 0.011 0.011
Lu (ppm) 0.003 0.003 0.014 0.004 0.005 0.108 0.003 0.002 0.005
Hf (ppm) 0.008 0.008 0.015 0.008 0.008 0.008 0.008 0.008 0.008
Ta (ppm) 0.004 0.004 0.027 0.010 0.008 0.003 0.008 0.020 0.014
W (ppm) 0.510 0.360 0.584 0.304 0.238 0.234 0.300 0.470 0.374
Au (ppm) 0.108 0.061 0.062 0.042 0.035 0.011 0.035 2.700 0.034
Tl (ppm) 0.206 0.090 0.328 0.125 0.093 0.029 0.105 0.104 0.135
Pb (ppm) 8.760 5.600 11.100 4.040 3.380 21.000 5.720 14.300 6.810
Th (ppm) 0.004 0.004 0.022 0.007 0.005 0.004 0.006 0.007 0.014
U (ppm) 0.034 0.025 0.211 0.053 0.046 0.017 0.024 0.065 0.093

Y/Ho 31.205 29.859 15.962 4.113 16.522 55.910 20.424 22.558 15.175
Eu/Eu* 2.341 3.191 3.106 3.488 2.546 3.971 1.944 1.085 1.669
La/La* 2.035 1.510 0.161 0.040 0.120 3.025 0.842 0.962 0.631
Y/Y* 1.264 1.199 0.730 0.216 0.712 2.073 0.790 1.002 0.753

Ce/Ce* 1.269 1.505 0.332 0.189 0.510 1.277 0.960 1.252 0.748
Gd/Gd* 0.986 0.945 0.606 0.364 0.835 1.209 0.904 1.822 1.094
Pr/Sm 1.042 1.240 1.385 2.026 0.954 0.757 0.832 0.183 0.325
Nd/Yb 2.982 2.340 0.397 0.192 0.158 0.674 1.170 5.757 2.178

4EA 4F
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Table 3.6: Abundances of elements and REE+Y for samples from the a-type facies in the 

Beardmore-Geraldton gold district 

 

Samples BG001-C BG001-J BG002-C BG002-J BG009B-J BG009C-J BG010A-J BG010B-J BG010D-J BG015-J
Si (ppm) 302700 243700 259200 122300 122900 162500 130000 210600 293800 258600
Li (ppm) 19.800 0.172 1.101 0.712 0.132 7.960 0.828 1.270 1.700 1.430
Be (ppm) 0.424 0.145 0.158 0.119 0.115 1.674 0.358 0.580 0.255 0.078
Sc (ppm) 6.480 5.435 5.200 2.855 2.395 5.790 2.455 4.116 6.750 5.011
Ti (ppm) 11.400 10.020 18.180 39.770 47.270 197.600 57.830 70.300 16.770 23.600
V (ppm) 1.480 3.705 1.253 3.507 4.332 3.429 3.562 2.004 1.842 1.735
Cr (ppm) 4.700 1.470 1.560 2.417 2.714 49.800 3.839 6.060 3.250 1.990
Mn (ppm) 98 80 54.200 5.730 13.500 57.700 7.750 227 61 69.500
Fe (ppm) 19500 67420 38500 83970 72620 38900 64200 62390 47200 65200
Co (ppm) 2.030 0.665 0.284 0.070 0.132 0.784 0.234 0.623 0.540 0.231
Ni (ppm) 9.400 2.610 3.030 1.030 1.360 6.800 1.530 2.910 4.580 3.790
Cu (ppm) 86.000 27.700 51.000 2.150 15.100 6.700 14.700 10.800 65.000 32.000
Zn (ppm) 72.000 18.200 35.600 3.390 6.120 6.660 7.400 10.010 47.500 16.900
Ga (ppm) 14.400 3.040 3.400 0.716 3.150 54.700 11.460 17.360 2.268 0.577
As (ppm) 37.900 21.900 28.400 6.800 10.170 10.390 5.470 11.560 33.300 14.300
Rb (ppm) 9.900 4.000 6.130 0.112 2.253 56.100 9.350 6.030 7.830 0.085
Sr (ppm) 6.910 2.850 2.220 2.730 1.927 30.000 3.740 26.300 3.700 17.100
Y (ppm) 0.313 0.854 0.606 1.140 0.601 3.810 0.517 2.070 0.660 1.990
Zr (ppm) 0.312 0.533 0.430 1.321 1.378 29.600 2.280 2.220 0.660 0.662
Nb (ppm) 0.053 0.065 0.135 0.096 0.122 0.151 0.151 0.072 0.080 0.086
Mo (ppm) 0.232 0.778 0.441 0.089 0.318 11.850 0.129 0.216 0.279 0.422
Ag (ppm) 0.215 0.066 0.094 0.010 0.024 0.032 0.016 0.027 0.231 0.041
Cd (ppm) 0.750 0.252 0.463 0.036 0.045 0.067 0.024 0.333 0.485 0.221
In (ppm) 0.030 0.015 0.015 0.003 0.006 0.016 0.005 0.006 0.029 0.017
Sn (ppm) 0.790 0.427 0.410 0.135 0.194 0.500 0.114 0.170 0.850 0.324
Sb (ppm) 6.430 13.670 7.340 8.120 10.530 10.530 7.680 13.740 11.750 5.140
Cs (ppm) 0.619 0.236 0.517 0.037 0.123 3.550 0.683 0.360 0.416 0.089
Ba (ppm) 183.000 39.900 44.000 3.000 34.230 539.000 145.000 248.500 30.800 3.600
La (ppm) 0.241 2.200 1.200 2.540 0.178 0.880 0.209 0.670 0.490 1.490
Ce (ppm) 0.405 2.560 1.380 2.520 0.349 1.840 0.450 1.420 0.800 2.530
Pr (ppm) 0.055 0.261 0.124 0.253 0.047 0.229 0.058 0.159 0.092 0.304
Nd (ppm) 0.185 1.030 0.470 1.210 0.245 1.160 0.258 0.675 0.351 1.350
Sm (ppm) 0.045 0.182 0.089 0.226 0.072 0.365 0.069 0.166 0.070 0.295
Eu (ppm) 0.051 0.080 0.052 0.108 0.033 0.176 0.035 0.103 0.036 0.126
Gd (ppm) 0.055 0.182 0.111 0.251 0.091 0.481 0.090 0.210 0.080 0.341
Tb (ppm) 0.009 0.020 0.015 0.030 0.014 0.071 0.013 0.032 0.012 0.043
Dy (ppm) 0.048 0.120 0.078 0.169 0.083 0.488 0.079 0.235 0.083 0.256
Ho (ppm) 0.011 0.025 0.017 0.032 0.018 0.108 0.017 0.054 0.020 0.051
Er (ppm) 0.028 0.066 0.046 0.084 0.050 0.350 0.050 0.174 0.061 0.146
Tm (ppm) 0.005 0.011 0.007 0.011 0.008 0.059 0.009 0.028 0.010 0.021
Yb (ppm) 0.028 0.067 0.045 0.069 0.045 0.455 0.063 0.196 0.072 0.130
Lu (ppm) 0.007 0.012 0.008 0.011 0.008 0.080 0.011 0.033 0.013 0.025
Hf (ppm) 0.010 0.011 0.013 0.036 0.038 0.760 0.056 0.051 0.019 0.018
Ta (ppm) 0.011 0.003 0.006 0.006 0.008 0.028 0.012 0.008 0.006 0.004
W (ppm) 5.210 15.700 19.200 18.400 29.100 9.160 24.600 8.580 26.700 2.970
Au (ppm) 0.058 0.019 0.028 0.007 0.022 0.012 0.010 0.017 0.067 0.016
Tl (ppm) 0.091 0.032 0.051 0.002 0.012 0.226 0.035 0.025 0.054 0.014
Pb (ppm) 10.800 10.200 9.900 0.490 1.663 10.050 1.010 2.599 7.800 2.390
Th (ppm) 0.013 0.023 0.020 0.113 0.090 0.492 0.101 0.082 0.033 0.034
U (ppm) 0.034 0.070 0.037 0.025 0.030 0.229 0.047 0.051 0.039 0.026

Y/Ho 28.198 34.857 36.287 35.294 34.343 35.245 30.412 38.262 33.673 38.867
Eu/Eu* 4.402 2.117 2.419 2.161 1.817 1.920 1.988 2.461 2.101 1.864
La/La* 0.859 2.287 2.423 4.001 1.782 1.718 1.242 1.323 1.351 1.684
Y/Y* 1.121 1.349 1.383 1.386 1.287 1.237 1.127 1.348 1.207 1.458

Ce/Ce* 0.759 1.191 1.298 1.465 1.186 1.252 1.062 1.166 1.020 1.137
Gd/Gd* 1.018 1.258 1.193 1.242 1.085 1.137 1.109 1.083 1.032 1.201
Pr/Sm 0.954 1.113 1.081 0.868 0.510 0.487 0.652 0.743 1.020 0.799
Nd/Yb 0.601 1.407 0.967 1.622 0.498 0.234 0.379 0.317 0.448 0.955

a-type BIF
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Table 3.7: Abundances of elements and REE+Y for samples from the b-type facies in the 

Beardmore-Geraldton gold district 

 

Samples BG003-J BG005-C BG005-J BG006B-C BG006B-J BG008B-J BG012B-J BG020-J
Si (ppm) 242300 236700 183200 153300 39800 75200 130700 368500
Li (ppm) 0.153 16.230 0.964 0.611 0.849 1.790 0.938 0.683
Be (ppm) 0.080 0.230 0.203 0.768 0.923 0.253 0.827 0.145
Sc (ppm) 4.147 5.290 3.756 5.510 3.390 2.695 4.953 8.180
Ti (ppm) 22.740 97.300 41.270 25.400 591.000 1072.000 402.000 25.100
V (ppm) 2.596 2.341 4.417 1.360 21.690 31.910 10.220 3.110
Cr (ppm) 1.512 5.920 2.371 3.490 15.500 19.290 16.870 9.900
Mn (ppm) 9 261 19.600 2339 42.400 53.500 73.800 551
Fe (ppm) 51820 42000 54180 36200 118000 94100 117900 9990
Co (ppm) 0.109 1.727 0.176 18.900 2.892 4.016 2.190 1.260
Ni (ppm) 2.130 6.630 1.520 4.550 12.480 16.860 10.700 8.820
Cu (ppm) 7.400 49.000 16.700 94.000 8.170 9.400 13.800 314.000
Zn (ppm) 6.700 38.500 8.400 43.200 13.710 17.700 35.300 78.000
Ga (ppm) 1.835 1.990 7.120 4.700 24.300 3.499 4.360 1.990
As (ppm) 11.320 17.600 11.400 28.000 5.260 5.840 6.110 28.300
Rb (ppm) 2.407 2.500 3.690 6.190 26.100 0.134 8.320 2.920
Sr (ppm) 1.139 4.080 2.310 295.000 10.490 23.880 32.400 94.000
Y (ppm) 0.469 1.300 0.545 5.070 3.260 4.990 4.280 2.710
Zr (ppm) 0.705 3.750 1.020 0.504 11.540 16.070 13.850 0.550
Nb (ppm) 0.068 0.097 0.118 0.134 1.404 2.420 0.805 0.116
Mo (ppm) 0.194 0.239 0.142 0.270 0.215 0.296 0.560 0.313
Ag (ppm) 0.019 0.055 0.029 0.111 0.019 0.017 0.044 0.181
Cd (ppm) 0.075 0.536 0.073 0.359 0.016 0.021 0.071 0.664
In (ppm) 0.006 0.017 0.008 0.024 0.016 0.011 0.055 0.027
Sn (ppm) 0.270 0.650 0.269 0.343 1.090 0.935 1.008 0.396
Sb (ppm) 9.649 11.080 12.810 0.908 1.418 9.270 1.356 2.320
Cs (ppm) 0.153 0.270 0.285 0.279 0.999 0.054 2.194 0.205
Ba (ppm) 20.330 22.600 92.000 72.900 275.000 5.620 39.300 26.500
La (ppm) 0.277 0.830 0.203 2.020 5.800 1.590 1.550 1.520
Ce (ppm) 0.468 0.970 0.455 4.290 10.800 3.150 3.380 4.000
Pr (ppm) 0.052 0.113 0.053 0.501 1.120 0.362 0.434 0.280
Nd (ppm) 0.218 0.509 0.242 2.270 4.700 1.590 2.160 1.350
Sm (ppm) 0.045 0.122 0.061 0.624 0.810 0.453 0.559 0.440
Eu (ppm) 0.017 0.065 0.027 0.418 0.241 0.240 0.263 0.165
Gd (ppm) 0.056 0.155 0.077 0.751 0.680 0.708 0.686 0.580
Tb (ppm) 0.009 0.022 0.011 0.119 0.077 0.117 0.094 0.079
Dy (ppm) 0.055 0.144 0.072 0.787 0.525 0.811 0.645 0.466
Ho (ppm) 0.013 0.033 0.016 0.160 0.096 0.169 0.130 0.098
Er (ppm) 0.041 0.112 0.050 0.457 0.263 0.500 0.391 0.235
Tm (ppm) 0.006 0.021 0.008 0.069 0.036 0.073 0.057 0.035
Yb (ppm) 0.036 0.164 0.056 0.477 0.226 0.479 0.381 0.235
Lu (ppm) 0.006 0.033 0.010 0.078 0.035 0.072 0.062 0.037
Hf (ppm) 0.021 0.095 0.028 0.013 0.306 0.389 0.336 0.015
Ta (ppm) 0.004 0.011 0.008 0.004 0.102 0.140 0.057 0.006
W (ppm) 30.210 16.550 38.000 9.800 4.240 8.350 25.500 0.507
Au (ppm) 0.007 0.023 0.011 0.026 0.006 0.011 0.011 0.059
Tl (ppm) 0.012 0.030 0.020 0.042 0.119 0.002 0.073 0.042
Pb (ppm) 1.394 3.970 2.270 5.200 1.028 1.939 2.890 5.450
Th (ppm) 0.042 0.116 0.093 0.135 1.160 0.591 0.485 0.065
U (ppm) 0.022 0.073 0.062 0.064 0.174 0.210 0.180 0.035

Y/Ho 37.222 39.755 34.494 31.767 33.958 29.527 32.898 27.653
Eu/Eu* 1.504 2.165 1.789 2.699 1.513 1.926 1.972 1.536
La/La* 1.641 2.597 1.384 1.442 1.589 1.476 1.541 2.199
Y/Y* 1.303 1.353 1.223 1.189 1.299 1.087 1.201 1.128

Ce/Ce* 1.165 1.189 1.201 1.193 1.245 1.176 1.192 2.119
Gd/Gd* 1.043 1.158 1.131 1.058 1.172 1.121 1.169 1.202
Pr/Sm 0.905 0.719 0.678 0.623 1.073 0.620 0.602 0.494
Nd/Yb 0.558 0.285 0.397 0.438 1.912 0.305 0.521 0.528

b-type BIF
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Table 3.8: Abundances of elements and REE+Y for samples from the b-type facies in the 

Beardmore-Geraldton gold district  

 

Samples BG004-C BG004-J BG014-J BG016-C BG016-J BG017-J BG018-J BG019-J BG022-J
Si (ppm) 257100 147400 42900 366000 375100 194200 115000 103500 117500
Li (ppm) 34.200 5.660 5.910 4.580 1.940 3.720 2.700 0.596 0.359
Be (ppm) 0.273 0.043 0.125 0.089 0.496 0.210 0.387 0.336 0.233
Sc (ppm) 5.890 3.350 4.260 6.738 7.262 4.880 4.510 5.920 3.061
Ti (ppm) 209.500 86.500 581.000 50.300 122.300 525.000 406.000 528.000 216.400
V (ppm) 3.640 4.950 41.620 9.120 6.520 26.870 37.680 75.100 32.080
Cr (ppm) 40.150 5.340 12.400 5.870 7.840 9.710 17.150 14.760 8.290
Mn (ppm) 161 120.500 70.200 46 12.900 23.500 60 267 57.800
Fe (ppm) 18920 75400 149400 15230 30420 72300 144600 138900 165100
Co (ppm) 1.670 1.384 0.660 0.595 0.270 1.103 1.927 3.260 1.004
Ni (ppm) 11.800 5.370 8.480 9.120 5.940 11.410 15.140 12.940 3.990
Cu (ppm) 28.500 29.500 8.000 53.000 41.000 24.300 12.400 22.300 5.900
Zn (ppm) 25.200 15.800 23.700 36.400 18.300 15.670 7.440 43.800 29.500
Ga (ppm) 8.700 1.201 3.191 1.880 15.260 7.890 38.300 8.450 2.399
As (ppm) 21.600 15.200 5.760 20.100 14.870 10.700 5.770 3.880 5.930
Rb (ppm) 3.390 0.575 0.567 0.113 5.080 5.610 22.010 1.265 0.486
Sr (ppm) 23.700 8.140 19.800 13.600 15.910 6.210 11.370 31.460 24.890
Y (ppm) 8.410 4.710 1.502 1.390 2.250 1.610 1.940 5.830 2.960
Zr (ppm) 19.000 3.320 8.350 3.450 7.290 8.990 9.170 8.390 5.960
Nb (ppm) 0.248 0.415 0.748 0.096 0.350 2.050 1.054 1.036 0.665
Mo (ppm) 0.440 0.495 0.154 0.418 0.531 0.180 0.950 1.000 0.680
Ag (ppm) 0.060 0.040 0.014 0.074 0.043 0.032 0.010 0.056 0.013
Cd (ppm) 0.220 0.170 0.031 0.317 0.177 0.122 0.036 0.060 0.026
In (ppm) 0.016 0.013 0.022 0.023 0.012 0.011 0.016 0.024 0.013
Sn (ppm) 0.617 0.933 1.840 0.730 0.600 0.485 1.251 0.941 0.723
Sb (ppm) 4.820 5.320 6.960 3.120 4.684 7.670 8.450 3.079 3.307
Cs (ppm) 0.274 0.085 0.086 0.134 0.339 0.581 1.944 0.296 0.094
Ba (ppm) 170.000 4.630 6.380 12.300 280.500 97.400 498.000 88.400 6.860
La (ppm) 35.000 3.800 4.000 1.850 2.950 1.140 1.140 4.670 2.980
Ce (ppm) 46.300 5.400 7.700 3.580 6.800 2.580 2.200 9.700 5.300
Pr (ppm) 4.300 0.580 0.840 0.376 0.760 0.347 0.260 1.190 0.640
Nd (ppm) 16.100 2.420 3.600 1.880 3.090 1.610 1.050 5.200 3.240
Sm (ppm) 2.250 0.633 0.690 0.377 0.650 0.364 0.314 1.200 0.820
Eu (ppm) 1.380 0.449 0.213 0.131 0.236 0.100 0.089 0.294 0.269
Gd (ppm) 2.080 0.960 0.521 0.403 0.653 0.363 0.387 1.250 0.841
Tb (ppm) 0.236 0.135 0.062 0.044 0.075 0.048 0.056 0.180 0.111
Dy (ppm) 1.249 0.773 0.303 0.243 0.401 0.301 0.361 1.120 0.687
Ho (ppm) 0.223 0.142 0.053 0.039 0.073 0.059 0.072 0.210 0.122
Er (ppm) 0.599 0.369 0.154 0.098 0.186 0.174 0.207 0.545 0.304
Tm (ppm) 0.078 0.048 0.023 0.014 0.026 0.025 0.032 0.069 0.038
Yb (ppm) 0.496 0.284 0.147 0.071 0.154 0.166 0.234 0.410 0.216
Lu (ppm) 0.078 0.041 0.022 0.012 0.025 0.026 0.034 0.056 0.030
Hf (ppm) 0.516 0.078 0.214 0.076 0.184 0.232 0.246 0.201 0.163
Ta (ppm) 0.030 0.018 0.080 0.007 0.021 0.053 0.065 0.067 0.037
W (ppm) 5.670 53.000 6.120 1.920 24.420 0.887 53.000 12.400 8.960
Au (ppm) 0.019 0.019 0.008 0.025 0.023 0.013 0.007 0.015 0.007
Tl (ppm) 0.022 0.010 0.002 0.020 0.034 0.031 0.070 0.007 0.004
Pb (ppm) 3.880 2.200 1.290 3.290 2.230 1.600 1.557 1.589 1.018
Th (ppm) 1.800 0.076 0.363 0.100 0.396 0.407 0.485 0.668 0.464
U (ppm) 0.181 0.083 0.255 0.066 0.146 0.231 0.462 0.905 0.312

Y/Ho 37.713 33.169 28.555 36.010 30.696 27.288 26.833 27.762 24.242
Eu/Eu* 3.050 2.756 1.598 1.641 1.732 1.247 1.157 1.076 1.483
La/La* 1.988 1.987 1.524 2.143 1.118 1.232 1.246 1.306 2.079
Y/Y* 1.457 1.302 1.058 1.430 1.219 1.006 1.004 1.091 0.972

Ce/Ce* 1.240 1.195 1.208 1.464 1.119 1.061 1.051 1.096 1.290
Gd/Gd* 1.222 1.239 1.095 1.297 1.237 1.119 1.120 1.080 1.131
Pr/Sm 1.483 0.711 0.944 0.774 0.907 0.740 0.642 0.769 0.605
Nd/Yb 2.984 0.783 2.247 2.441 1.845 0.892 0.413 1.166 1.379

c-type BIF
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Table 3.9: Oxygen isotope compositions of microquartz determined by ion microprobe on chert 

from the Meliadine gold district  

 

 

 

Sample Mineral �/����OV-SMOW (‰) ���1 Sample Mineral �/����OV-SMOW (‰) ���1
MEL-008-1 Chert 13.7 0.5 MEL-016C-6 Chert 16.7 0.4
MEL-008-2 Chert 13.6 0.5 MEL-016C-7 Chert 15.5 0.4
MEL-008-3 Chert 14.0 0.5 MEL-016C-8 Chert 15.7 0.4
MEL-008-4 Chert 6.6 0.5 MEL-016C-9 Chert 14.5 0.4
MEL-008-5 Chert 8.1 0.5 MEL-016C-10 Chert 14.6 0.4
MEL-008-6 Chert 18.1 0.5 MEL-033A-1 Chert 14.0 0.6
MEL-008-7 Chert 16.8 0.5 MEL-033A-2 Chert 13.2 0.6
MEL-008-8 Chert 15.8 0.5 MEL-033A-3 Chert 12.9 0.6
MEL-008-9 Chert 19.1 0.5 MEL-033A-4 Chert 15.5 0.6
MEL-008-10 Chert 15.8 0.5 MEL-033A-5 Chert 15.3 0.6
MEL-016A-1 Chert 12.7 0.6 MEL-033A-6 Chert 16.3 0.6
MEL-016A-2 Chert 14.7 0.6 MEL-033A-7 Chert 15.2 0.6
MEL-016A-3 Chert 11.4 0.6 MEL-033A-8 Chert 11.0 0.6
MEL-016A-4 Chert 12.3 0.6 MEL-033A-9 Chert 15.8 0.6
MEL-016A-5 Chert 11.7 0.6 MEL-033A-10 Chert 16.3 0.6
MEL-016A-6 Chert 14.2 0.6 MEL-033B-1 Chert 13.8 0.6
MEL-016A-7 Chert 11.8 0.6 MEL-033B-2 Chert 15.1 0.6
MEL-016A-8 Chert 13.4 0.6 MEL-033B-3 Chert 14.8 0.6
MEL-016A-9 Chert 12.0 0.6 MEL-033B-4 Chert 12.7 0.6
MEL-016A-10 Chert 11.3 0.6 MEL-033B-5 Chert 10.0 0.6
MEL-016B-1 Chert 9.1 0.4 MEL-033B-6 Chert 10.3 0.6
MEL-016B-2 Chert 7.0 0.4 MEL-033B-7 Chert 15.3 0.6
MEL-016B-3 Chert 8.1 0.4 MEL-033B-8 Chert 13.3 0.6
MEL-016B-4 Chert 9.1 0.4 MEL-033B-9 Chert 13.5 0.6
MEL-016B-5 Chert 8.0 0.4 MEL-033B-10 Chert 14.6 0.6
MEL-016B-6 Chert 8.3 0.4 MEL-033C-1 Chert 13.2 0.5
MEL-016B-7 Chert 9.0 0.4 MEL-033C-2 Chert 15.8 0.5
MEL-016B-8 Chert 9.6 0.4 MEL-033C-3 Chert 14.9 0.5
MEL-016B-9 Chert 9.0 0.4 MEL-033C-4 Chert 14.7 0.5
MEL-016B-10 Chert 7.1 0.4 MEL-033C-5 Chert 16.4 0.5
MEL-016C-1 Chert 16.5 0.4 MEL-033C-6 Chert 14.5 0.5
MEL-016C-2 Chert 17.3 0.4 MEL-033C-7 Chert 13.4 0.5
MEL-016C-3 Chert 14.0 0.4 MEL-033C-8 Chert 12.8 0.5
MEL-016C-4 Chert 15.1 0.4 MEL-033C-9 Chert 12.8 0.5
MEL-016C-5 Chert 16.1 0.4 MEL-033C-10 Chert 13.9 0.5
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Table 3.10: Abundances of elements and REE+Y for KMG samples from the Meliadine gold 

district  

 

Sample KMG1 KMG2
Si (ppm) 378400 380800
Li (ppm) 2.090 0.377
Be (ppm) 0.146 0.025
Sc (ppm) 3.185 2.390
Ti (ppm) 6.190 4.030
V (ppm) 0.212 0.601
Cr (ppm) 3.340 3.020
Mn (ppm) 19.200 9.470
Fe (ppm) 1050 335
Co (ppm) 0.262 0.317
Ni (ppm) 5.300 9.400
Cu (ppm) 9.600 19.800
Zn (ppm) 41.400 37.300
Ga (ppm) 3.360 0.468
As (ppm) 29.850 8.880
Rb (ppm) 3.530 1.830
Sr (ppm) 1.650 0.343
Y (ppm) 0.017 0.106
Zr (ppm) 0.131 6.280
Nb (ppm) 0.176 0.059
Mo (ppm) 0.125 0.169
Ag (ppm) 0.212 0.332
Cd (ppm) 1.790 1.041
In (ppm) 0.157 0.059
Sn (ppm) 5.000 1.203
Sb (ppm) 0.565 0.404
Cs (ppm) 0.464 0.108
Ba (ppm) 65.800 2.370
La (ppm) 0.026 0.024
Ce (ppm) 0.098 0.123
Pr (ppm) 0.025 0.014
Nd (ppm) 0.029 0.024
Sm (ppm) 0.018 0.018
Eu (ppm) 0.022 0.014
Gd (ppm) 0.018 0.018
Tb (ppm) 0.007 0.005
Dy (ppm) 0.009 0.015
Ho (ppm) 0.008 0.006
Er (ppm) 0.008 0.016
Tm (ppm) 0.007 0.006
Yb (ppm) 0.010 0.035
Lu (ppm) 0.006 0.008
Hf (ppm) 0.013 0.027
Ta (ppm) 0.025 0.005
W (ppm) 0.210 0.205
Au (ppm) 0.011 0.630
Tl (ppm) 0.263 0.250
Pb (ppm) 25.300 4.940
Th (ppm) 0.015 0.011
U (ppm) 0.085 0.059

Y/Ho 2.115 17.755
Eu/Eu* 3.889 2.705
La/La* 0.026 0.089
Y/Y* 0.115 0.685

Ce/Ce* 0.144 0.472
Gd/Gd* 0.550 0.721
Pr/Sm 1.080 0.610
Nd/Yb 0.256 0.064
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 Chapter 4: Gold and trace element distribution in sulfides from mineralized 

Algoma-type BIFs; Implications for nature of mineralizing fluids, metal 

sources and deposit models 

4.1 Abstract 

Quantitative laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 

element distribution maps combined with traverse and spot analyses have been performed on 

various sulfides (i.e., pyrite, pyrrhotite, arsenopyrite) from three Canadian Algoma-type BIF-

hosted gold deposits ���L���H�������W�K�H���a�����0�R�]���$�X���0�H�D�G�R�Z�E�D�Q�N���G�H�S�R�V�L�W���D�Q�G���W�K�H���•���������0�R�]���$�X���0�H�O�L�D�G�L�Q�H��

district, and the ~6 Moz Au Musselwhite deposit) in order to examine trace element zoning, 

evaluate gold distribution, and identify element associations characterizing gold event(s) in these 

Algoma-type BIFs. These data demonstrate that the main gold event in the three deposits is 

characterized by a coupling of elements, namely As-Se-Te-Ag, which establishes the trace metal 

association for this mineralization associated with intense stratabound sulfide-replacement of the 

Fe-rich material. Furthermore, the data reveal the presence of a later remobilization event 

responsible for upgrading of gold tenor along fracture networks due to ingress by a subsequent 

generation of base metal-bearing fluids (mainly Pb-Bi-rich) assumed to be metamorphic in origin 

based on their paragenesis and the element association.  

This study confirms the epigenetic origin of BIF-hosted gold mineralization and supports a 

model whereby metamorphic/hydrothermal orogenic processes were responsible for the 

devolatilization of a common source area. The latter process resulted in the source rock 

liberating gold-bearing fluid along with a specific element suite noted above which was 

channelled into Algoma-type BIF at higher crustal levels via major crustal faults and/or shear 
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zones. Due to the high iron content, BIF acts as a favorable chemical trap reducing the gold-

bearing fluid via sulfidation of a pre-existing Fe-rich material to generate iron-bearing sulfides. 

Moreover, the data reveal that stratigraphy contributes to the fluid chemistry and may influence 

the nature of the sulfide (e.g., arsenopyrite versus pyrite). In addition, the enrichment of gold, as 

either nonrefractory or refractory type, along networks of fractures suggests a role for later 

deformation and metamorphic events on gold remobilization and hence upgrading in the deposits 

consistent with the deformation history of the deposits. 

4.2 Introduction 

Algoma-type BIFs, which are thinly bedded, chemical sedimentary rocks comprising 

alternating layers of iron-rich minerals and chert, represent a significant host-rock for gold 

mineralization in Precambrian terranes (e.g., Homestake and Musselwhite deposits; Frei et al., 

2009; Oswald et al., 2015). The timing of the mineralizing event (syngenetic versus epigenetic) 

and the origin of gold within BIF-hosted gold deposits have been subject of research and genetic 

debates over the last few decades (e.g., Groves et al. 1998; Goldfarb et al., 2001, 2005; Dubé et 

al., 2015). In the 1970s, some authors suggested a syngenetic model whereby gold was 

concentrated in arsenian pyrite within the host BIFs by hydrothermal fluids during chemical 

sedimentation and/or early diagenesis (e.g., Fripp et al., 1976; Kerswill, 1993, 1996). However, 

recent work on the depositional setting of Algoma-type BIFs establishing their primary signature 

using REE+Y systematics (e.g., Bolhar et al., 2005; Thurston et al., 2012; Gourcerol et al., 

2015c) combined with the presence of replacement features (e.g., sulfide facies) and the 

discordant nature of veining systems typically observed in BIF-hosted gold deposits do not 

support the syngenetic model. Lately, the consensus has been that gold mineralization is 

epigenetic, produced by potential metamorphic/hydrothermal processes in which the BIF 
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represents an efficient chemical trap by virtue of its high iron content and thus potential 

reactivity for metal- and H2S-rich fluids migrating via structural channels into favorable 

structural traps (e.g., fold hinges, shear zones) (e.g., Poulsen et al., 2000; Dubé et Gosselin, 

2007; Phillips and Powell, 2010). This latter scenario is therefore more representative of an 

orogenic model for the gold mineralization (e.g., Phillips et al., 1984; Phillips and Powell, 2010; 

Poulsen et al., 2000; Goldfarb et al. 2001, 2005). However, the initial source of the gold and 

nature of the mineralizing fluids are still debated with components of magmatic, metamorphic 

and diagenetic sources suggested (e.g., Phillips and Powell, 2010; Large et al., 2011).  

In recent years Large et al. (2007, 2009, 2011), based on detailed LA-ICP-MS mapping 

studies, suggested that gold in sediment-hosted gold deposits (e.g., the Sukhoi Log in Siberia, 

Bendigo in Victoria, Spanish Mountain in British Columbia, North Carlin Trend in Nevada) 

likely originated from the mobilization of gold out of syn-sedimentary to early-diagenetic, fine-

grained and/or framboidal pyrite hosted by carbonaceous sediments such as black shales. These 

sulfides originally precipitated at the bottom of basins as a result of oxygen depletion (Scholtz 

and Neuman, 2007) combined with the mediating influence of sulfate-reducing bacteria (e.g., 

Schieber, 2002; Folk, 2005; Large et al., 2014) and in doing so, were enriched in a specific suite 

of trace elements present in Archean seawater (As, Mo, Co, Ni, Pb, Zn, Te, V, Se). The 

subsequent effects of deformation and metamorphism, (likely greenschist facies) and/or intrusive 

activity, resulted in recrystallization of the host sulfide and conversion to coarse-grained pyrite 

and/or pyrrhotite with commensurate release of any contained gold and other metals into the 

fluid phase. The transport and structural focusing of these metalliferous fluids is considered to 

then result in the formation of a variety of quartz-sulfide veins and disseminated sediment-hosted 

gold deposits (e.g., Wagner et al., 2007; Large et al., 2011, Cook et al., 2013; Bull et al., 2015). 
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In this context, an important question is whether the gold mineralization in BIF-hosted gold 

deposits originates from similar source rocks (e.g., black shale) with early metal enrichment in 

diagenetic sulfide phases which is released into an ore forming fluid that is responsible for the 

ore, in much the same manner as discussed above (e.g., Steadman et al., 2014; Gao et al., 2015).  

In this study, we examine the textures and trace-element zoning of various sulfides such as 

pyrite, pyrrhotite and arsenopyrite in order to identify element associations characterizing gold 

event(s) and evaluate the source of sulfides and metals within three Canadian BIF-hosted gold 

deposits (Fig. 4.1): (1) the ~4 Moz Au Meadowbank deposit, hosted by the 2.71 Ga Woodburn 

�/�D�N�H���J�U�H�H�Q�V�W�R�Q�H���E�H�O�W�������������W�K�H���•���������0�R�]���$�X���0�H�O�L�D�G�L�Q�H���G�L�V�W�U�L�F�W�����K�R�V�W�H�G���E�\���W�K�H�����������*�D���5�D�Q�N�L�Q���,�Q�O�H�W��

greenstone belt; and (3) the ~6 Moz Au Musselwhite deposit, hosted by the 2.9-3 Ga North 

Caribou greenstone belt. These deposits are hosted by Algoma-type BIFs within moderately to 

strongly deformed and metamorphosed (i.e., greenschist to amphibolite facies) greenstone belts 

and are considered to best fit with the orogenic gold deposit model (e.g., Dubé et al., 2015). In 

detail, this study investigates: (1) the distribution of gold and various trace elements structurally 

bound within the sulfide phases in order to identify similarities and differences in gold 

mineralization from the three deposits; and (2) compares these features to other orogenic 

deposits, such as clastic sediment-hosted gold deposits, in order to examine the potential for a 

similar source for the gold and associated elements.  

4.3 Geological setting of the selected BIFs 

4.3.1 The Meadowbank deposit 

Located in the Rae Domain of the Churchill Province (Fig. 4.1), the Meadowbank deposit is 

hosted by the Pipedream-Third Portage area of the Woodburn Lake greenstone belt (ca. 2.71 Ga) 
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consisting of tholeiitic and komatiitic metavolcanic rocks with minor calc-alkaline, intermediate 

to felsic tuffs and flows with intercalated BIF and clastic metasedimentary rocks that include 

quartzite and conglomerates (Armitage et al., 1996; Sherlock et al., 2001a, b, 2004; Hrabi et al., 

2003; Pehrrson et al., 2004; Janvier et al., 2015). The regional metamorphic grade ranges from 

middle greenschist to amphibolite facies (Pehrrson et al., 2004) and rocks were deformed by at 

least by six regional-scale deformation events during the Proterozoic Trans-Hudson orogeny 

(e.g., Pehrrson et al., 2013; Janvier, et al., 2015). 

Numerous units of oxide-, silicate- and locally sulfide-facies Algoma-type BIF have been 

identified in the deposit area. These BIFs include the West IF, Central BIF and East BIF which 

are all interlayered with the volcanic rocks and locally with a quartzite unit (Gourcerol et al., 

2015a; Sherlock et al., 2001a, b; 2004). The BIFs display cm- to mm-thick laminated magnetite 

and white- to grey chert with associated layers (0.2 to 5 cm thick) of various assemblages of 

grunerite/biotite or cummingtonite/biotite or garnet/biotite which reflect variable metamorphic 

grades in the deposit area. Moreover, minor chlorite, sericite, ankerite, siderite, stilpnomelane 

and apatite form layers interbedded with the chert and magnetite or as inclusions in chert bands 

(Armitage et al., 1996; Hrabi et al., 2003; Sherlock et al., 2004; Gourcerol et al., 2015a). Further 

details of these BIFs are provided in detail in Gourcerol et al. (2015a).  

Despite their mineralogical and textural similarities, only the Central BIF contains economic 

gold concentrations (i.e., the Portage and Goose deposits; e.g., Janvier et al., 2015, Gourcerol et 

al., 2015a). Ore-bearing BIFs are characterized by high-strain zones associated with intense 

stratabound sulfide-rich replacement (e.g., pyrrhotite and pyrite with local chalcopyrite and 

arsenopyrite) of pre-existing magnetite bands and/or transposed quartz-sulfide stockworks in 

magnetite and chert bands (e.g., Janvier et al., 2015). The gold mineralization, which occurs 
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mainly as fracture-fills or as inclusions in sulfides with an elemental association, as determined 

by bulk ICP-MS analyses, of anomalous As, Cu, Pb, Ni, Co and Te, is considered to have been 

introduced into the BIF by a pre-D2 event (i.e., prior to 1.85 Ga; Janvier et al., 2015). 

4.3.1.1 Sulfide paragenesis at the Meadowbank deposit 

The Meadowbank deposit illustrates a complex sulfide paragenetic sequence characterized 

by several pyrite events and formation of metamorphic pyrrhotite in addition to minor 

chalcopyrite and arsenopyrite that are seen as inclusions and/or disseminated grains either in 

magnetite bands or in metamorphic pyrrhotite (Fig. 4.2). Pyrite mainly occurs as one of three 

types in the paragenetic sequence, from pyrite 1 (py1) to pyrite 3 (py3). The earliest pyrite (py1) 

consists of aggregates (<100 µm) of sooty, fine-grained “framboidal-like” texture (Fig. 4.3A, B, 

C, D) that suggests an early-diagenetic origin (e.g., Large et al., 2007). This pyrite is overgrown 

by coarser-grained (<200 µm), subhedral to euhedral pyrite (py2) characterized by its sieve-

texture due to abundant inclusions (Fig. 4.3D) that are oriented along the foliation. Pyrite 2 may 

have fine-grained internal domains and be zoned, which suggests that inclusions of py1 may be 

completely incorporated within py2 (Fig. 4.3A, B). It is noted that distinctive inclusions of py1 

in py2 are named py1’ (Fig. 4.3B). Finally, the latest pyrite (py3) is euhedral to subhedral and 

texturally “clean” compared to py1 and py2 and overprint locally previous pyrites. Coarse-

grained (>200 µm) metamorphic pyrrhotite appears to replace pre-existing magnetite bands and 

thereby has incorporated py1 and py2 as inclusions. Py3 overprints metamorphic pyrrhotite (Fig. 

4.3E) and appears to mimic a late magnetite event illustrated by euhedral disseminated grains. 

Moreover, local fine-grained anhedral to subhedral chalcopyrite and arsenopyrite occur as 

inclusions or disseminated grains in the margins of pyrrhotite grains, which suggests these 

phases are coeval with this event (Fig. 4.3F). It is notable that only samples from Central BIF 
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show combination of py1 and py2 grains. 

4.3.2 The Meliadine gold district 

The Meliadine deposit is hosted by the 2.6-2.7 Ga Rankin Inlet greenstone belt (Wright, 

1967; Aspler and Chiarenzelli, 1996a), which lies along the boundary between the Central and 

the Northwestern Hearne domains of the Churchill Province (Fig. 4.1; Tella et al., 2007; Davis et 

al., 2008). The Rankin Inlet greenstone belt consists of polydeformed massive and pillowed 

mafic flows, felsic pyroclastic rocks and associated interflow sedimentary units, gabbroic sills 

and oxide-facies BIFs. All of the aforementioned units are intruded by minor granite, 

undeformed biotite lamprophyre, as well as late gabbro and diabase dykes of Archean and 

Proterozoic age. These rock units have been metamorphosed from lower greenschist to lower-

middle amphibolite facies (Carpenter, 2004; Carpenter, et al., 2005).  

Several gold hosting Algoma-type BIFs are recognized along the structural hanging wall of 

the regional-scale Pyke Fault and include the Pump and F-Zone BIF. These mineralized BIFs are 

oxide-facies that are interbedded with mafic volcanic and volcanoclastic rocks. The BIFs are 

characterized by continuous, subparallel, medium-grey cherty beds interbedded with variable 

amounts of massive, mm- to cm-thick beds of magnetite and Fe-silicate minerals (e.g., grunerite, 

hornblende, chlorite), the latter of which are located at the margins of magnetite bands and 

radiate towards the chert bands (Lawley et al., 2015a,b).  

Gold mineralization in the Meliadine district consists of BIF-hosted replacement-style 

mineralization in addition to auriferous quartz-ankerite veins and their alteration selvages. In 

contrast to the Meadowbank area, the BIF hosted-gold mineralization here represents only a part 

of the mineralization and is characterized by intense stratabound sulfide-rich replacement (e.g., 
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pyrite, arsenopyrite and pyrrhotite) of pre-existing magnetite along with strong sericite-carbonate 

alteration. Lawley et al. (2015a) have shown that the gold mineralization occurs in two forms, as 

inclusions within and fracture fills cutting arsenopyrite. Furthermore, they suggest that the gold 

was introduced at either 2.27 Ga and/or 1.90 Ga, the latter time representing possible upgrading 

of the early gold event during the Trans-Hudson Orogeny. Furthermore, an elemental association 

of anomalous As, Te, Bi and Sb associated with the gold-mineralized BIF was proposed by 

Lawley et al. (2015a, b, c) based on whole-rock geochemical analyses coupled with LA-ICP-MS 

element mapping. 

4.3.2.1 Sulfide paragenesis at the Meliadine gold district 

The Meliadine gold district shows a complex paragenetic sequence with two generations 

arsenopyrite that are mainly associated with gold mineralization (Fig. 4.4). In addition, pyrrhotite 

and pyrite with lesser chalcopyrite, galena and rare sphalerite occur as inclusions or disseminated 

grains (Fig. 4.5). These sulfide phases all occur within quartz-carbonate veins or as randomly-

oriented grains within vein-selvages (Lawley et al., 2015a). In particular, two types of 

arsenopyrite can be distinguished, identified as aspy1 and aspy2. Aspy1 occurs as strongly 

fractured, coarse euhedral that have a sieve-texture (along main fabric) and is considered to 

represent the primary hydrothermal event in the area (Fig. 4.5A, B, C, D, E). In contrast, aspy2 is 

fine- to medium grained and is unfractured and inclusion-free. The latter features suggest aspy2 

may represent a later remobilization (Fig. 4.5F). Anhedral to subhedral and locally sieve-textured 

grains of pyrrhotite, pyrite, chalcopyrite, galena and minor sphalerite, as well as native gold, 

occur mainly in low-strain micro-textural sites in aspy1 and as fracture-fillings. These phases 

appear to locally overgrow aspy1 and thereby suggest a post-aspy1 and pre-aspy2 time of 

crystallization (Fig. 4.5A, B, C, D, E). Moreover, a minor sulfide-rich event may occur before 
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precipitation of aspy1, as some pyrrhotite and pyrite inclusions have been noted to occur in 

aspy1 (e.g., Carpenter, 2004).  

Elemental mapping of arsenopyrite grains (Carpenter, 2004; Lawley et al., 2015c) confirmed 

the above paragenetic interpretation. In assessing the timing of gold mineralization, Lawley et al. 

(2015c) suggested the early sulfide phases pre-date the regional 1.86 Ga deformation event and 

that this later event caused release of gold during progressive deformation and fluid-assisted 

recrystallization of sulfides. This latter process resulted in remobilization and precipitation of the 

paragenetically later gold, during the Trans-Hudson orogeny, in low-strain microstructures or as 

clusters at aspy1/aspy2 crystals boundaries (Fig. 4.4). Importantly, the timing of this later gold 

event was constrained by the proximity of gold to hydrothermal xenotime grains that were dated 

using in-situ LA ICP-MS at 1.86 Ga.  

4.3.3 The Musselwhite deposit 

Located in the North Caribou terrane of the Superior Province (Fig. 4.1), the Musselwhite 

deposit is hosted by the North Caribou greenstone belt, which is dominated by mafic to 

ultramafic metavolcanic rocks of the 2973<2967 Ma Opapimiskan-Markop metavolcanic 

assemblage and tholeiitic basalts and minor felsic volcanics of the 2980-2982 Ma South Rim 

Metavolcanic assemblage (Biczok et al., 2012; McNicoll et al., 2013). These rocks have been 

metamorphosed from lower greenschist to low-mid amphibolite facies (Breaks et al., 2001) and 

deformed by three deformation events (Hall and Rigg, 1986; Breaks et al., 2001). The 

Opapimiskan-Markop metavolcanic assemblage is composed, from the structural base to the top, 

of the “Lower Basalt” unit, the Southern Iron Formation, “Basement Basalt” unit and the 

Northern Iron Formation (Otto, 2002; Moran, 2008; Biczok et al., 2012).  
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The “Basement Basalt” unit lying between the Northern and Southern Iron Formations is a 

thick sequence of massive- and pillowed tholeiitic basalt (Moran, 2008). The “Lower Basalt” 

unit is composed of basalt and ultramafic rocks but includes extensive andesite (Hollings and 

Kerrich, 1999). 

The North Iron Formation, which is the main host to mineralization, is subdivided, from the 

structural base to top, into: pyrrhotite-rich mudstone (4H), chert-grunerite (4A), chert-magnetite 

(4B), clastic-chert-magnetite (“clastic”4B), garnet-grunerite-chert (4EA), garnetiferous 

amphibolite (4E) and garnet-biotite schist (4F) (e.g., Otto, 2002; Moran, 2008; Biczok et al., 

2012, Oswald et al., 2015, Gourcerol et al., 2015c). The Southern Iron Formation consists of two 

sub-parallel BIF horizons (Biczok et al., 2012).  

Gold mineralization is mainly confined to BIF, more particularly in silicate-facies (i.e., 4EA, 

4E and 4F) BIF within high-strain zones mainly along and immediately adjacent to the lower 

pressure areas such as steep limbs of the folded iron formation (Biczok et al., 2012). Ore-bearing 

BIF is characterized by intense stratabound sulfide-rich replacement (e.g., mainly pyrrhotite) of 

pre-existing Fe-rich minerals, such as grunerite and garnets, spatially related to zones of silica 

flooding with local discordant quartz-pyrrhotite veinlets (e.g., Oswald et al., 2015). Gold occurs 

mainly within pyrrhotite-filled fractures in coarse-grained, subhedral to euhedral almandine 

garnet porphyroblasts and/or in pressure-shadows developed along garnet crystals formed during 

the 2788 to 2703 Ga D2 event which is the dominant deformation style in the deposit (e.g., 

Oswald et al., 2015; Biczok et al., 2012; Kelly and Schneider, 2015). Oswald et al. (2015) 

proposed an elemental association of anomalous Ag, Cu, Se and Te with the Au mineralized 

BIFs based on bulk ICP-MS analyses of sulfide grains, whereas elemental mapping of pyrite 

nodules (Gao et al., 2015) from a carbonaceous argillite unit within the deposit vicinity provides 



33 
 

striking evidence for generation of Au-rich fluids during recrystallization along with As, Mo, Ag, 

Sb, Te, W, Tl, Pb, and Bi. Furthermore, Gao et al. (2015) also suggested that this unit may 

represent a possible source of gold for the deposit based on analogies with the model of Large et 

al., (2011).  

4.3.3.1 Sulfide paragenesis at the Musselwhite deposit 

The Musselwhite deposit illustrates a complex sulfide paragenetic sequence characterized by 

several generations of pyrite and formation of metamorphic pyrrhotite in addition to the presence 

of inclusions of minor amounts of chalcopyrite and arsenopyrite (Fig. 4.6). Two types of pyrite 

are recognized in the paragenetic sequence: (1) py1 is seen as very fine-grained (<25 µm), 

anhedral to subhedral annealed grains in metamorphic pyrrhotite (Fig. 4.7A, B); and (2) py2 

occurs as coarser-grained (>100 µm), euhedral grains overprinting pyrrhotite (Fig. 4.7C, D). 

Coarse- (>100 µm) to fine-grained (<100 µm) aggregates of metamorphic pyrrhotite appear to 

replace pre-existing Fe-rich material, such as magnetite or possibly also pyrite, and may also 

form veinlets and/or filling fractures in coarse-grained, almandine garnet porphyroblasts (Fig. 

4.7C). The relationship between annealed py1 and pyrrhotite suggest that pyrrhotite formed in 

response to increasing in metamorphic grade along with recrystallization of py1 rather than 

metamorphic conversion of pyrite to pyrrhotite (Tomkins, 2010), that is growth of new 

pyrrhotite. Chalcopyrite and rare arsenopyrite occur as inclusions in pyrrhotite (Fig. 4.7B, D). 

Notable, the presence of arsenopyrite inclusions do not correlate with gold mineralization 

(Oswald et al., 2015).  
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4.4 Analytical methods and data treatment 

4.4.1 LA -ICP-MS sulfide trace element chemistry 

Sulfide compositions were determined in the Geochemical Fingerprinting Lab at Laurentian 

University by LA ICP-MS using a 193 nm wavelength Resonetics RESOlution M-50 ArF 

excimer laser ablation system coupled to a Thermo X Series II quadrupole ICP-MS. A series of 

spot, traverse and map analyses were conducted on pyrite, pyrrhotite and arsenopyrite grains in 

thick sections. Beam diameters were typically chosen based on grain sizes of the selected 

minerals, thus this parameter varied from 9 to 40 µm. Traverse and map scan rates were 

approximately 1/3 the beam diameter per second. The laser pulse rate was 7 and 6 Hz for 

traverses and spots, respectively. In all cases, a fluence of ~5 J/cm2 was used. Ablation took 

place in ultra-pure He flowing at a rate of 650 ml/min, which was combined after the sample cell 

with Ar (750 ml/min) and N2 (6 ml/min; for added sensitivity). The RESOlution M-50 employs a 

Laurin Technic two-volume sample cell with excellent washout characteristics (Müller et al., 

2009), and therefore provides good spatial resolution for traverses and maps. For all analysis 

types, 30 seconds of washout/background was collected before each analysis and reference 

materials were typically analyzed bracketing and between every several unknowns. The maps 

were acquired by rastering the laser over the region of interest with successive lines offset by the 

beam diameter. The ICP-MS was operated with a forward power of 1450 W and oxide 

production rate of <0.5% as determined from ThO+/Th+ while ablating NIST 612. Dwell times 

were 10 ms for each analyte except Au, which was 30 ms. All data acquisition was done in time-

resolved mode to understand the spatial relationships between elements and mineral growth. 

Data quantification was carried out using the trace elements data reduction scheme of Iolite 
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(Paton et al., 2011) with NIST 610 and Fe acting as the external and internal references, 

respectively. Secondary reference materials BHVO2-G and Po725 (Sylvester et al., 2005) were 

also analyzed to verify the reasonable reproduction of known compositions. Considering the 

differences in ablation between silicate glass (NIST 610) and sulfides, it is expected that melting 

and fractionation limits the accuracy of the quantified data to ~20% (Wohlgemuth-

Ueberwasseret al., 2015). The limits of detection for integrated data were calculated according to 

Longerich et al. (1996) and Howell et al. (2013) (for analytes with no background counts) and 

were typically 0.01 to 1 ppm for trace elements depending primarily on beam diameter and the 

analyte background signal. The time-slice (i.e. not averaged) data used in binary plots and 

profiles are subject to higher detection limits, but were not quantified as it is the elemental 

associations that are of interest in these plots. Maps were originally stitched together using Iolite 

(e.g. Woodhead et al., 2007), but were also subjected to bilinear interpolation between adjacent 

lines and 3x3 mean pixel smoothing. This improves the visualization of the data, but can also 

reduce or eliminate spikes resulting from the ablation of tiny inclusions (e.g., Rittner and Müller, 

2012). The traverse and spot data used for all bivariate plots included herein were not smoothed 

in any way. 

4.4.2 Electron Backscattered Diffraction analysis  

Selected pyrite grains from the Meadowbank area were analyzed by electron backscattered 

diffraction (EBSC) using a JEOL JSM-6400 scanning electron microscope coupled to an energy 

dispersive spectrometer (EDS) housed in the Central Analytical Facilities (CAF) at Laurentian 

University, Sudbury, Ontario. This technique allows generation of diffraction patterns forming 

Kikuchi bands which correspond to each of the lattice diffracting crystal planes and 

identification of crystallographic orientation (Bestmann and Prior, 2003; Prior et al., 2002). 
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Pyrite samples were polished prior to analysis to remove any surface damage and covered by a 

thin carbon coat in order to reduce charging effects and maintain a strong crystallographic signal. 

Operating conditions were accelerating voltage of 20 keV, 3 �EA beam current. 

4.5 Results and interpretation 

Based on using data from three Algoma-type BIF-hosted gold deposits (e.g., the 

Meadowbank, Meliadine and Musselwhite deposits), this study aims to evaluate the sources of 

metals present in sulfides and to establish similarities or differences between potential processes 

of gold enrichment. Due to the highly variable level of knowledge and analyses available on 

these deposits (e.g., Janvier et al., 2015; Lawley et al., 2015c; Oswald et al., 2015), a 

combination of LA-ICP-MS mapping and traverse analyses were performed on pyrite and 

pyrrhotite for the Meadowbank deposit, whereas only LA-ICP-MS traverse analyses were 

performed on arsenopyrite and pyrrhotite from the Meliadine gold district, and LA-ICP-MS 

traverse and spot analyses on pyrrhotite and pyrite from the Musselwhite deposit.  

4.5.1 The Meadowbank deposit 

In order to evaluate gold distribution in variable sulfides (i.e., pyrite and pyrrhotite) and its 

relationship with other elements in the mineralized BIF (i.e., the Central BIF) and characterize 

gold event(s) within the Meadowbank deposit, LA-ICP-MS mapping of pyrite samples (py1, py2 

and py3) combined with LA-ICP-MS traverse analyses on metamorphic pyrrhotite were 

performed. EBSD analyses were performed on samples selected for LA-ICP-MS mapping in 

order to identify different domains and therefore to attribute element associations to variable 

pyrite domains.  
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4.5.1.1 LA -ICP-MS trace element chemistry 

Sample AMB-126223 from the Central BIF (e.g., Gourcerol et al., 2015a) was selected for 

elemental mapping of py1, py1 and py2 occurrences in local sulfide-facies BIF representing 

intense stratabound sulfide-rich replacement of pre-existing magnetite bands by late 

metamorphic pyrrhotite. In this sample, py1, which reflects an-early diagenetic origin (i.e., sooty, 

porous aspect, fine-grained and “framboidal” texture) is overgrown and locally incorporated as 

py1’ in a coarser-grained, sieve-textured py2 (Fig. 4.8). The images display metal zonation 

reflecting variation in metal availability during py1 and py2 formation and subsequent 

dissolution-precipitation processes: (1) the diagenetic py1 core is more enriched in Mo relative to 

py2, with lesser Co, Ni, and W and minor to traces of Sb, Pb, Ag, Bi and Au; (2) the py1’, 

incorporated in py2 (i.e., at interface of py2 domains), shows enrichment of Co, Ni, Pb, Ag, Bi 

and weak Sb; (3) the py2 is composed of two distinctive domains, as confirmed by EBSD 

imaging, with each domain either enriched in W or Tl compared to the other, but the cores of 

both are enriched in Co and Ni. The domains are notably depleted in Bi, Au, Mo and Cu; and 

finally (4) Mo, Au, Sb and minor Cu appear to be enriched on the margin of py2.  

Large et al. (2009) studied four sediment-hosted gold deposits (i.e., Sukhoi Log, Bendigo, 

Spanish Mountain, North Carlin Trend) and proposed chemical criteria to distinguish pyrites of 

early diagenetic versus metamorphic/hydrothermal orogenic and Carlin type settings (Fig. 4.9). 

These defined fields are integrated with the dataset herein using individual time-slices of the 

laser traverse data used to construct the pyrite trace element maps presented above. The fields 

defined in the Ag versus Ni plot are used therefore to define the nature of the pyrites analyzed 

and thus establish the origin of the contained metals during pyrite growth. In doing so this 

provides a means to also assess the type of gold event(s).  
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Distribution of individual time-slices of data in selected binary plots (Fig. 4.10) suggests the 

presence of two distinct pyrite types, these being early diagenetic and late 

metamorphic/hydrothermal, which is consistent with the petrographic observations (Fig. 4.8). 

Furthermore, by examining the element specific distribution in the context of pyrite types it is 

possible to relate the element enrichment/depletion in each of these pyrite types to a process. 

Thus, by integrating the element maps with the binary plots, it appears that py1 and py1’ 

correspond chemically to early diagenetic pyrite, which thus suggests that the associated element 

enrichments in Co, Ni, Pb, Ag, Bi, Mo, W and Sb are also of the same origin. These elements 

were remobilized during the conversion of py1 to py2 via dissolution-precipitation processes that 

resulted in formation of the metamorphic/hydrothermal orogenic-type py2. The binary plots in 

Figure 4.10 clearly highlight these elemental enrichments and in the case of Bi and Sb allow a 

clear subdivision of the data into two distinct groups designated by A and B (Fig. 4.10D, J), 

which can then be used to define other associations. Thus for gold, which overgrows py2 and 

occurs in py1 (Fig. 4.8I), it appears to have been introduced by late metamorphic/hydrothermal 

processes based on the distribution of data in Figure 4.10A and is seen to be associated with As, 

Se, Te, Bi, Sb (group B, Fig. 4.10D, J), Mo and low-Ag. The following points are also noted: (1) 

Au does not appear to have originated from the early diagenetic py1 (-py1’); and (2) the locally 

high content of Au in py1 (Fig. 4.8) may be attributed to late precipitation processes in porous 

py1 (-py1’). Moreover, considering the distribution of selected elements throughout the early 

diagenetic pyrite (Co, Pb, Ni, W, Mo) and the similar behavior of As-Se-Te to Au (Figs. 4.8, 

4.10), only one gold event is suggested in this sample based a compilation of the data in Figure 

4.10L, a composite elemental plot.  

A pyrrhotite grain was also analyzed from sample AMB-126231 using the traverse mode. 
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The results show relatively flat chemical patterns (i.e., chemically uniform) with low metal 

contents, except for Ni, across the analyzed grain (Fig. 4.11). Regarding the Au content, the 

values are mainly below the detection limit, except for one spot around t �§��16 s where Au = 2.4 

ppm. However, no specific elemental association is noted for this Au peak suggesting an erratic 

distribution and thus it is not possible to relate it to a specific gold event. 

A second sample (AMB-126231; Gourcerol et al., 2015a) was also selected for elemental 

mapping to further characterize the nature of py2 that occurred as disseminations along a chert 

band in silicate-facies BIF (Fig. 4.12). In this sample, an aggregate of three subhedral to euhedral 

py2 grains (confirmed by EBSD imaging) showed distinct metal enrichment: (1) two of the 

grains display Ni-As-Se enrichment in their cores, hence during the growth of the core zones, 

which are surrounded by distinctive Co (As) -rich and Ni-Se -rich outer growth zones; (2) one 

pyrite displays a Co-As(-Se) and Ni-As-Se enrichment during its initial formation with an 

associated Co-Ni-As-Se core growth zone and distinctive Co-As -rich and Ni-Se -rich outer 

growth zones (Fig. 4.12). The pyrite grains are overgrown by a later stage of pyrite growth that is 

enriched in Mo, Sb, Te, Bi and Ag (Fig. 4.12). Despite values close to detection limit, the 

elemental maps suggest the presence of gold mineralization as inclusions (Fig. 4.12L).  

Using selected Ag versus Ni plots (Fig. 4.13), as in the previous mapped grains, the 

elemental distributions show similar trends as for sample AMB-126223 despite the notable 

absence of an early diagenetic pyrite (i.e., py1). This latter feature may suggest therefore an 

orogenic metamorphic/hydrothermal affinity for the pyrites (i.e., py2) formed from 

dissolution/precipitation processes of an earlier diagenetic pyrite not preserved in the sample. 

Moreover, the distribution of trace elements in the grains (Fig. 4.13) indicates variable element 

associations: (1) Co, As and variable Se reflect the initial formation of the core zones that were 
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seen in the pyrite maps (Fig. 4.12); (2) Mo, Sb, Te, Bi, Pb and variable Se reflect the late-stage 

overgrowth on the py2 aggregate; and (3) minor inclusions of U randomly distributed through 

the host pyrites. Gold distribution reflects two distinct trace element associations: (1) Co, As, Se, 

a weak Bi, Pb and Te, along with low Ag contents, which was not clearly seen in Figure 4.12 due 

to the low Au content; and (2) Ag, As, Sb, Te, Se, Bi and Pb, which may reflect inclusions in py2 

based on the maps (cf. white arrows on Fig. 4.12). Considering the plot of Mo-Sb-Te-Bi-Pb 

versus Co-As (Fig. 4.13K), which correlates with, respectively, the metal-rich rim and core of 

pyrites, two distinct elemental gold associations are clearly seen, which confirms the presence of 

two distinct gold events in this sample.  

Finally, sample AMB-126228 from the Central BIF was selected based on the presence of 

py3 grains occurring along a chert band in the oxide-facies BIF. This euhedral py3, seen 

disseminated in a chert band, shows enrichment in Co, Ni, Pb and Bi (Fig. 4.14). In terms of the 

elemental distribution and associations using the Ag versus Ni plots, the data suggest the pyrite 

has chemical affinities with metamorphic/hydrothermal orogenic-type pyrite and is largely 

metal-poor (e.g., Au = <0.3 ppm). Furthermore, relative to py1 and py2 the sample is metal 

depleted despite the presence locally of galena inclusions as suggested by punctually high Pb 

values (Fig. 4.15C). In contrast to py2 from samples AMB-126223 and AMB-126231, py3 does 

not appear to have been formed from dissolution-precipitation of earlier diagenetic pyrite, as 

suggested by the data in Figure 4.15. Thus the results for these samples in context of the other 

data suggest two distinct metamorphic/hydrothermal events were responsible for the formation 

of sulfides (Figs. 4.10, 4.13 and 4.15).  
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4.5.1.2 Implications for gold mineralization 

Based on integration of petrographic observations with elemental mapping and element 

associations, it has been shown that pyrite rather than metamorphic pyrrhotite is associated with 

gold mineralization in selected samples from the Meadowbank deposit as previously suggested 

by Janvier et al. (2015). Two distinct gold events are demonstrated in this study: (1) the first 

event is represented by gold inclusions in py2 along with a Ag-Pb-Se-Bi-Te-As-Sb element 

association, previously recognized by Janvier et al. (2015) as a pre-D2 event (i.e., prior to 1.85 

Ga; Fig. 4.16); and (2) a second, newly recognized gold event represented in this study by late-

stage growth of pyrite around aggregates of py2; this pyrite has a Se-Bi-Te-As-Sb elemental 

association (Figs. 4.10, 4.16). It is also noted that the second gold event occurs locally associated 

with sulfide-rich replacement of pre-existing magnetite bands by late-stage metamorphic 

pyrrhotite. Furthermore, the gold does not appear to originate from early diagenetic, framboidal 

pyrite located in the BIFs. Also, py2 seems to form from dissolution/precipitation of framboidal 

pyrite (py1) due to an increase in the through put of a metamorphic/hydrothermal fluid, which 

was likely gold-bearing. 

4.5.2 The Meliadine gold district 

In order to evaluate gold distribution in various sulfide phases and its relationship with other 

elements in the mineralized Pump and F-Zone BIFs and to identify gold event(s) within the 

Meliadine gold district, LA-ICP-MS traverse analyses were done on well characterized grains of 

arsenopyrite and pyrrhotite. Traverses were done because the sulfide grains are characterized by 

having sieve-textured features associated with various inclusions and fractures. The results of 

this study are also compared to results of LA-ICP-MS sulfide mapping done on arsenopyrite 
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grains by Carpenter (2004) and Lawley et al. (2015c). 

4.5.2.1 LA -ICP-MS trace element chemistry 

Euhedral arsenopyrite grains from the Pump and F-Zone deposits (e.g., Gourcerol et al., 

2015c) located along the regional Pyke Fault in the Meliadine gold district were used for LA-

ICP-MS analysis. These samples (i.e., MEL-004 and MEL-018) are cut by several late-stage 

micro-fractures and, given their possible significance, are shown on both the petrographic images 

of the analyzed grains and their trace element profiles as dashed black lines (Figs. 4.17, 4.18, 

4.19). These fractures show significant enrichment in a variety of metals, such as Zn, Ag, Bi, Pb, 

Ni, Co, Te, Se, Sb and Mo, and are chemically associated with gold mineralization. Furthermore, 

the data suggests two distinct fracture sets based on element association: (1) a fracture set 

associated with Ag, Bi, Pb enrichments combined with variable Ni, Zn, Co, Sb and Mo observed 

in both deposits; and (2) a fracture set associated with enrichment in Se and Te with variable Ni 

and Zn. Significant depletion in Bi, Pb and Co was also observed, but only in arsenopyrite from 

the Pump deposit. Moreover, element profiles show that where the arsenopyrite cores are devoid 

of fractures and inclusions; they are depleted in Ni, Te, Se, Sb and Mo and the other base metals 

relative to the fractured and sieve-textured arsenopyrite. This observation suggests that metals 

have been introduced by later fluids that migrated along the fractures whereas zone refining type 

processes may be responsible for metal depletion.  

Examining the gold contents of the traverses, it appears that the arsenopyrite core shows a 

weak, uniform concentration signifying that invisible gold is present in these arsenopyrite grains. 

Moreover, the two fracture sets display enrichment in gold content relative to the core of the 

grain either as invisible gold (Figs. 4.17, 4.18, 4.19; Au >30 ppm) or as visible gold (Fig. 4.19; 
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Au = 38-156 ppm) suggesting either two distinct gold events: (1) one associated with 

precipitation of arsenopyrite grains; and (2) a second associated with base metal-rich fractures or 

remobilization of gold from the core of arsenopyrite grains into fractures by later stage metal-

rich fluids. It is noted that Sb and Mo show relatively similar patterns despite variable content, 

which locally appear to be antithetic to gold mineralization (Figs. 4.17, 4.18; illustrated by black 

arrows). Additionally, a traverse analysis on a fracture site filled by late-stage pyrrhotite and 

locally chalcopyrite was performed (Fig. 4.20) and demonstrates that gold and base metals, such 

as Bi, Pb, Co, Te and Sb, are higher in the bounding arsenopyrite grain rather than in pyrrhotite 

inclusion. However, for all the elemental profiles, except for Ni, there are diffusion-like shapes, 

which suggest there has been removal of elements along the fluid flow path, which is best seen 

for the bottom of the plots for Co and Sb and perhaps Au. Thus, the fluid was undersaturated in 

these elements and able to remove them, which resulted in the gradients observed. 

As done above, the nature of the gold event can be examined using the individual time-slices 

of data from the three line traverses (Figs. 4.17, 4.18, 4.19). Considering that the Ni-Te-Se-Sb-

Mo element association represents the arsenopyrite core, whereas Pb-Bi-Zn represents the late 

fracture event, it appears that only one event has introduced gold into the system, suggesting that 

material filling late fractures represents remobilization of gold from the arsenopyrite lattice and 

precipitation of invisible to visible gold into late fractures (Fig. 4.21A) as the gold content 

increases with Pb+Bi+Zn content. 

Based on element profiles (Figs. 4.17, 4.18, 4.19) and selected diagrams (Fig. 4.21B, C), it 

appears that fracture sets show multiple element associations and these fracture sets also show 

variable gold content: (1) enrichment of Te-Se along fractures associated with invisible gold in 

the Pump deposit sample (Fig. 4.17); (2) enrichment of Co along with Pb-Bi-Zn-Ag in fractures 
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associated with invisible gold (Fig. 4.21B); (3) the association of Pb-Bi-Zn-Ag with invisible 

gold (Fig. 4.21B, C); and (4) Pb-Bi-Zn-Ag associated with visible gold (Fig. 4.21B, C). These 

observations of elemental associations suggest a model for gold that involved a prolonged 

deformational and hydrothermal history with mobilization of earlier deposited gold, as proposed 

by Lawley et al. (2015c).  

Lastly, the results of elemental LA-ICP-MS mapping by Lawley et al (2015) on late-stage 

overgrowths of arsenopyrite devoid of inclusions and fractures showed this phase tends to be 

enriched in a Te-Co-Ni assemblage and depleted in Au-Se-Sb. Although not clearly observed in 

our element profiles, this statement is observable considering the compilation dataset (Fig. 

4.21D).  

4.5.2.2 Implic ations for gold mineralization 

The results of LA-ICP-MS elemental mapping of arsenopyrite by Carpenter (2004) and 

Lawley et al. (2015c) suggested that gold mineralization was introduced during the growth of 

coarse-grained arsenopyrite and was subsequently remobilized during 

deformation/metamorphism (Wagner et al., 2007) and pressure-solution processes accompanying 

the Trans-Hudson Orogeny (i.e., 1.86-1.85 Ga). These latter events resulted in the concentration 

of gold in later stage recrystallized arsenopyrite and in fracture-fills. These conclusions are 

compatible with the results presented here based from which it was possible to distinguish 

multiple mineralizing events, one contemporaneous with the sulfide event and another related to 

fluid, which infiltrated the arsenopyrite along multiple fracture sets. Our data indicate that an 

elemental association of As-Ag-Bi-Pb-Se-Te with Au characterizes the mineralized BIF. 

Furthermore, there is a significant Bi-Mo-Te association, perhaps due to micro-inclusions of 
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tellurides, that relates to gold mineralization (Fig. 4.21E, F) and which may reflect the late gold 

event. 

4.5.3 The Musselwhite deposit 

Several authors have reported that gold in the Musselwhite deposit is associated with the 

pyrrhotite grains that appear to replace pre-existing Fe-rich material and/or form in coarse-

grained, fractured almandine garnet porphyroblasts (e.g., Biczok et al., 2012; Oswald et al., 

2015). In order to evaluate this proposal, traverses were performed on several pyrrhotite grains to 

determine its trace element chemistry. The data were also used to compare to the enrichment of 

other elements in the silicate BIFs. Additionally, several py1 (referring to fine-grained, annealed 

grains disseminated as inclusions in metamorphic pyrrhotite) were analyzed using spot mode and 

one grain of py2 was analyzed via a traverse. The combination of these results is used to identify 

and chemically characterize the gold event(s) within the Musselwhite deposit. 

4.5.3.1 LA -ICP-MS trace element chemistry 

Euhedral to subhedral pyrrhotite grains either disseminated in chert bands or as fracture-

filling in euhedral garnets (Figs. 4.22, 4.23) display fairly similar features and gold element 

associations. In general, the core of pyrrhotite shows low base- and precious-metal contents that 

have been modified either by late fractures, illustrated by dashed black lines on element profiles, 

and/or local inclusions. Based on petrographic and geochemical studies, it appears that only one 

set of fractures observed in pyrrhotite grains contains significant base-metal enrichment that 

includes Zn, Pb, Bi, As, variable Cu, Te, Sb and Ag, along with Au. Local inclusions are also 

recorded based on selected profiles of trace element concentration (Figs. 4.22, 4.23) that 

illustrate local enrichment of Cu, Zn, Se, Ag and variable Te and As along with Au. In both 
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cases, the Au enrichment occurs mainly as micro-grains too small to be observed optically or 

with the SEM. Considering the Cu-Ag-Te-Se element association within the Au-rich pyrrhotite 

inclusions and Pb-Bi within late Au-rich fractures, a compilation of individual time-slices of data 

from ten line traverses on pyrrhotite grains was done and these data suggests there was only a 

single Au event (Fig. 4.24). Gold may be hosted in the pyrrhotite lattice to be later exsolved and 

remobilized into late fractures by later stage base-metal - rich fluids (i.e., Pb, Bi; Fig. 4.24) as 

observed in the Meliadine gold district (Fig. 4.21A).  

Traverses and spot analyses done on pyrite samples (i.e., py1 and py2) also detected 

significant contents of Au (i.e., b.d.l. to 11000 ppm) in py2, which illustrates a later stage sulfide 

event given that the pyrite locally overprints pyrrhotite (Fig. 4.7D). Typically, the euhedral to 

subhedral py2 has a core relatively enriched in base metals, such as Zn, Ni, Sc, Sb, Se, Te (Figs. 

4.25, 4.26, 4.27), which is cut by several micro-fractures that are also enriched in base- and 

precious metals such as Zn, Pb, Bi, Te, Se, Ag and Au with variable Sb. The latter data indicates 

a single set of fractures (Fig. 4.25) but that it shows a significant gold-rich inclusion along with 

Ag, Te and variable Cu, Zn, Bi, Pb enrichments. A compilation of time-slices datasets from py2 

suggest the presence of Ag- rich tellurides closely associated with the fracture set, as illustrated 

by a Zn-Pb-Bi element association (Fig., 4.26A, B) and Ag-Au- rich tellurides occurring mainly 

as inclusions in py2 (Fig. 4.26A, B, C) along with the highest Au and Ag concentrations (Fig. 

4.26C, D). 

Geochemically, py2 differs from the barren py1, which is characterized by annealed grains 

disseminated in pyrrhotite grains (Fig. 4.27) in addition to variable pyrites from the 

Meadowbank deposit (cf. Sec. 4.1.1). Selected criteria from the Large et al. (2009) data set 

cannot be applied to this py2 due to its high Ni and Ag contents (Fig. 4.27A) whereas the few 
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spot analysis data for py1 suggests a metamorphic/hydrothermal orogenic-type chemical affinity 

(Fig. 4.27B). Comparison of py1 and py2 data with two distinct pyrites from the Sukhoi Log 

deposit (Fig. 4.28; Large et al., 2007) show that py1 displays a pattern similar to pyrites formed 

from metamorphic/hydrothermal conversion of early diagenetic pyrite from sedimentary rocks 

within the Sukhoi Log deposit (data in Fig. 4.9) whereas py2 from the Musselwhite deposit 

shows a pattern similar to gold-telluride pyrite from bedding-parallel quartz veinlets from the 

Sukhoi Log deposit, which were generated by an externally derived fluid. These distinct 

geochemical relationships suggest therefore that py1 and py2 from the Musselwhite deposit may 

have formed from different fluids. Moreover, py1 may represent a proxy for metamorphic 

pyrrhotite as their relationship (py1 versus pyrrhotite) suggests an increase of metamorphic 

conditions leading to annealing and recrystallization of py1 and crystallization of pyrrhotite 

confirming that pyrrhotite may be formed from a metamorphic/hydrothermal orogenic-type fluid. 

4.5.3.2 Implications for gold mineralization 

The LA-ICP-MS trace element chemistry and petrography indicate that the metamorphic 

pyrrhotite is associated with gold mineralization along with a Cu-Ag-Te-Se-(As) element 

association reported by Oswald et al. (2015). Gold in this mineralizing event was later 

remobilized by subsequent fluids having a Pb, Bi signature into a fracture network representing a 

second gold event. In addition, a probable third gold mineralizing event is reported for the first 

time at this locality associated with late pyrite (i.e., py2) with an Ag-Te element association, as 

illustrated by an Au-Ag- rich telluride mineralization. This latter event differs from the gold-

bearing pyrrhotite event, thereby suggesting three different mineralizing fluids. It is noted also 

that py1 is probably formed from metamorphic/hydrothermal orogenic fluids whereas py2 

reflects a distinct fluid, which may represent either a metamorphic or magmatic component, as 
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documented by the isotopic analyses (i.e., �/15N, �/18O) of Isaac (2008), which suggest that S-type 

granite dykes located 1 kilometers west of the deposit may represent a potential fluid source. 

4.6 Discussion 

In this study, three Canadian Algoma-type BIF-hosted gold deposits (i.e., Meadowbank, and 

Meliadine districts from the Churchill Province, Musselwhite area from the Superior Province) 

were selected for detailed in-situ LA ICP-MS elemental mapping and point analysis of sulfide 

phases in order to assess potential sources for mineralizing fluids, assess elemental associations, 

determine the relative timing of metal and sulfide enrichment event(s), and to evaluate the gold 

enrichment processes.  

The complexity in element associations documented here for nominally similar BIF hosted 

Au deposits is a function of several aspects: (1) element coupling and decoupling; (2) elemental 

paragenesis; and (3) the nature of reactivation or overprinting events in orogenic deposits 

(Kontak, 2015). The variable complexity of mineral geochemistry in hydrothermal ore systems is 

consistent with longevity of the mineralizing systems (Kontak, 2015). Further, as is considered 

below, the stratigraphic associations at the level of the greenstone belts where mineralization 

occurs and the gold source are additional parameters that affect the chemical signal of the 

sulfides. 

4.6.1 LA -ICP-MS method: implications for identifying gold events and their chemical 

signature 

The element distribution maps as well as the traverse and spot analyses reported herein were 

determined by LA-ICP-MS on carefully selected, sulfide phases such as pyrite, arsenopyrite and 
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pyrrhotite characterized petrographically and by SEM. This method can provide meaningful 

quantitative distributions of major, minor and trace elements as maps or profiles in addition to 

concentrations by resolving the data as time domain slices. Importantly, this latter process then 

permits evaluating the data in terms of multi-element chemical associations.  

The major advantage of LA-ICP-MS maps and time-resolved traverses over various forms 

of bulk analysis is the ability to recognize precisely any element associations as well as their 

spatial distribution in the sulfide lattice (e.g., fracture networks, inclusions) as the laser beam 

scans across each sulfide sample, thus minimizing the averaging effect of more conventional 

bulk solution-based ICP-MS analyses (e.g., Janvier et al., 2015; Oswald et al. 2015). 

Furthermore, this study shows that quantitative traverses, when combined with careful 

petrographic observations, may provide observations similar to element distribution maps but in 

a shorter timeframe (e.g., elemental mapping of arsenopyrite grains in Lawley et al. (2015c) 

versus line traverses of arsenopyrite grains herein) and also for less cost (Note: also not 

discussed here, one of the limiting factors of LA ICP-MS mapping is the cost, which is time and 

lab dependent). Furthermore, the compilation of time-slice datasets from LA-ICP-MS analysis 

provide a means to assess both the number of gold events and the elemental signature of each, 

which has not been so easily available before, but with this method can be more routine. 

However, a limitation at present has to do with the size of the laser beam, which perhaps cannot 

analyze very small sulfide grains and during rastering and traversing will average data over small 

(relative to the beam diameter) inclusions and fractures. 
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4.6.2 Comparison of elemental association and implications for source reservoirs of gold 

mineralizing events 

At the Meadowbank deposit, analysis of sulfides indicates two distinct gold events, as 

represented by micro-inclusions and invisible gold within the overgrowth rim domain, both 

associated with the same pyrite generation (i.e., py2). This pyrite is considered to originate via a 

dissolution/precipitation process (e.g., Putnis, 2002; Putnis et al., 2007; Putnis and Putnis, 2010), 

which affected the early diagenetic framboidal pyrite (i.e., py1). The fluids, which mediated 

formation of the pyrite (py2), are considered to be of metamorphic/hydrothermal origin and 

generated by orogenic processes, hence similar to the origin of pyrites observed in the Sukhoi 

Log, Bendigo and Spanish Mountain sediment-hosted gold deposits (Large et al., 2007, 2009, 

2011). Analysis of the cores of these metamorphic pyrites from the latter localities showed they 

are enriched in a variety of elements including Mo, Pb, Ni, Co, W.  

Although the gold-bearing pyrite (py2) appears from petrographic observations to form after 

early diagenetic pyrite, Au, as well as Se, Te, As and some part of the Ag, Sb budget, appears to 

represent an external metamorphic/hydrothermal fluid, which precipitated coevally with/or 

during the late-stage growth of py2 as part of the sulfidization (i.e., replacement) of pre-existing 

stratabound magnetite bands. 

In the Meliadine gold district, one gold event along with later remobilization is recorded for 

arsenopyrite grains in the F-Zone and Pump deposits. The first gold mineralizing event is 

associated with an As-Ag-Se-Te element association as invisible grains in hydrothermal 

arsenopyrite grains. Late remobilization is illustrated by precipitation of gold into fracture 

networks or crosscutting veins either as native or invisible gold (Wagner et al., 2007) by base 
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metal-rich metamorphic fluids (e.g., Pb-, Bi-, Se- and Te- rich fluids). 

The Musselwhite deposit also displays three distinct gold events, which are associated with 

either metamorphic pyrrhotite or late pyrite grains. The first gold event shows a Cu-Ag-Se-Te 

(As) element association and, based on the data herein, may indicate this mineralization occurs 

as invisible gold within the pyrrhotite lattice. In contrast, the second event as evidenced by the 

presence of base metal-enrichment on fracture networks in pyrrhotite grains, presumably reflects 

a late, metal-rich metamorphic fluid (i.e. Cu-, Zn-, Bi- and Pb- rich fluid), which appears to have 

remobilized and concentrated gold in fracture sets. Finally, a third gold event, hosted in a late 

generation of pyrite, exhibits an Ag-Te element association and differs from the first event by its 

distinct gold source, which may be metamorphic/magmatic rather than 

metamorphic/hydrothermal orogenic (Isaac, 2008).  

These three BIF-hosted gold deposits, located in different geological provinces, exhibit 

similarities regarding the inferred source and relative timing of gold events based on the element 

associations (i.e., Au-As-Se-Te-Ag), textural and chemical evidence documented for late 

remobilization into fracture networks by base metal-rich metamorphic fluids (mainly Pb-Bi-rich) 

as observed in pyrite, pyrrhotite and arsenopyrite grains. The gold event associated with this 

element association appears to have been introduced by an external fluid as seen in pyrite at the 

Meadowbank deposit and in hydrothermal arsenopyrite in the Meliadine gold district or 

metamorphic pyrrhotite lattice in the Musselwhite deposit. This geochemical similarity among 

different deposits confirms the epigenetic origin of gold and suggests a common source from 

which these elements were leached and subsequently channeled along structural conduits (e.g., 

faults, shear zones) into Algoma-type BIF host rocks, at higher crustal levels. These BIF 



52 
 

horizons represent, in the context of the ore deposit setting, potential sinks as the iron content of 

these rocks acts as a favorable chemical trap through its highly reactive capacity with the 

reducing, sulfidic gold-bearing fluid which led to gold precipitation, as discussed by many (e.g., 

Poulsen et al., 2000; Dubé et Gosselin, 2007; Phillips and Powell, 2010). This process is 

analogous to that which would occur in other rock types, for example where a similar fluid 

would interact with carbon-bearing rocks (e.g., graphitic mudstone, black shale) and thereby 

reducing the gold-complex and precipitating gold within quartz-carbonate veining systems 

(Phillips and Powell, 2010). 

Regarding each constituent of the element association related to gold mineralization, Pitcairn 

et al. (2006) pointed out that Au, Ag, As, and Se are found in significantly lower concentrations 

in rocks of higher metamorphic rank compared to their unmetamorphosed protoliths. This 

observation has been interpreted to suggest the source rock for these elements may initially be 

unaffected or only weakly affected by a given metamorphic event before the liberation of these 

elements followed by a significant metamorphic event and transporation by a fluid phase. This 

process represents a devolatilization model in which the elements of interest may be removed 

from source rock at the greenschist-amphibolite transition during prograde metamorphism (e.g., 

Pitcairn et al., 2006; Phillips and Powell, 2010) and carried by a low-salinity, H2O-CO2-H2S rich 

fluid (Phillips and Powell, 2010). In this study, the metamorphic/hydrothermal orogenic 

processes appear to have driven fluids leading to the concentration of precious metals and 

associated elements into the BIF as illustrated by Figures 4.10, 4.13 and 4.27.  

This study does not, however, advocate for extraction of Au and other metals from gold-rich 

diagenetic pyrite hosted within carbonaceous black shale successions, as has been argued for 

several sediment-hosted orogenic gold deposit settings by Large et al. (2007, 2009, 2011). The 
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reason for this conclusion relates to the results presented above whereby elemental mapping of 

framboidal pyrite in the Central BIF from the Meadowbank deposit indicates a lack of significant 

Au content. In addition, we note that there is also a lack of any gold association with a specific 

suite of elements (e.g., Co, Ni, Pb, Zn, W, Mo) that are highly concentrated in the diagenetic 

pyrite (Figs. 4.8, 4.10). Furthermore, a similar argument is made based on data for the Meliadine 

gold district and Musselwhite deposit.  

Finally, the second gold event reported herein for the Musselwhite deposit does not share 

either geochemical or mineralogical similarities with the other deposits studied in that this gold 

event is characterized by an Au-Ag- telluride association. As explained previously, this later 

event may reflect the ingress of a new external Au-Ag-Te rich fluid suggesting a different fluid 

source than the first event and a different gold enrichment process. The latter is based on the 

observation that the gold-bearing pyrite does not show an element association typical of a 

metamorphic/hydrothermal process, as suggested for the Meadowbank deposit and the first gold 

event in the Musselwhite deposit. This second mineralization event appears, however, to 

represent a minor part of the Musselwhite deposit relative to first gold event. 

4.6.3 Influence of the stratigraphy 

Although the three deposits show similarities regarding potential fluid sources and timing of 

the main gold event, significant differences do exist however as to which sulfides are auriferous: 

pyrite in Meadowbank, arsenopyrite in Meliadine and pyrrhotite in Musselwhite. This difference 

in terms of a repository for gold may be influenced by the stratigraphy with which gold-bearing 

fluids reacted. For instance, formation of arsenopyrite requires As (e.g., Kretschmar and Scott, 

1976), which, for the case of sediment-hosted gold deposits, is commonly sourced from 
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sedimentary wallrocks (e.g., Kontak and Smith, 1993; Bierlein and Crowe, 2000; Thomas et al., 

2011). The fact that there is higher proportion of metasedimentary rock in the Meliadine gold 

district compared to the Meadowbank and Musselwhite deposits is consistent with this 

interpretation. Furthermore, the influence of stratigraphy is also illustrated by the elemental 

budgets in sulfides. For instance, pyrrhotite associated with gold mineralization at the 

Musselwhite deposit, is enriched in Ni, Co, Pd relative to pyrrhotite from the Meliadine gold 

district, which suggests the mineralizing fluids at the former deposit equilibrated to some extent 

with an ultramafic-mafic component in the stratigraphy, which is not prominent in the Meliadine 

gold district. Again, the geology of the settings is consistent with this interpretation.  

However, the influence of the stratigraphy on the mineralizing fluid emphasises an 

important problem regarding preservation of gold tenor during exchange with the wallrock, 

which may modify fluid pH as well as other parameters encouraging destabilization of the gold 

complex in the fluid. Of particular relevance in this regard is the suggestion by Phillips and 

Powell (2010) that a mineralized fluid with some internal buffering, as provided for example by 

the presence of CO2 in the mineralizing fluids, would allow interaction with stratigraphy without 

destabilization of the gold complex. 

4.6.4 Influence of late deformation and metamorphism on gold mineralization 

The influence of post-ore formation processes such as deformation and metamorphism is an 

important issue in gold deposits in the context of whether new gold is being introduced or pre-

existing gold is being remobilized internally. At two of the deposits studied, there is evidence for 

later stage events, which partially remobilize gold from earlier sulfide lattice (i.e., arsenopyrite 

and pyrrhotite) due to introduction of base metal-bearing fluids along fracture networks. This 
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process results in concentrating gold either as visible native gold or an invisible component 

within sulfide grains.  

Such remobilization and upgrading of gold is not a well-known phenomenon and has 

previously been studied in several deposit types, including VHMS (e.g., Wagner et al., 2007), 

sediment-hosted gold (e.g., Large et al., 2007, 2009), and orogenic gold (Tomkins et al., 2004). 

In these latter studies, these authors refer to a closed-system metamorphic event with gold 

internally redistributed. In contrast, for the Meliadine and Musselwhite deposits, the element 

associations of the metal-bearing fluids carrying Pb-Bi-Zn and Pb-Bi-Cu-Zn, respectively, 

suggest the influence of a similar stratigraphy in the fluid chemistry. Contrary to element 

associations with Au, such as Ag and As, the base metals do not exhibit variations related to 

metamorphic grade (Pitcairn et al., 2006) and may therefore represent weak sub-greenschist to 

amphibolite facies conditions. Furthermore, as pointed out by Lawley et al. (2015), 

remobilization of gold within a greenstone belt or within a deposit is an event of lesser 

magnitude relative to the original mineralizing event, thus the original nature of the primary 

event is retained. 

4.6.5 Source of Au  

There are many possible source reservoirs for gold in orogenic deposits and constraining 

their origins is challenging due to the equivocal nature of the fluid chemistry (e.g., isotopes, mass 

balances, fluid inclusions), as discussed extensively (McCuaig and Kerrich, 1994, 1998; Ridley 

and Diamond, 2000; Groves et al., 2003; Goldfarb et al., 2005; Pitcairn et al., 2006; Goldfarb 

and Groves, 2015). Included among the many models suggested are the older granite-greenstone 

terranes (Frimmel and Hennigh, 2015), clastic sediments in Phanerozoic belts (Pitcairn et al., 
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2006), sulfides (e.g., diagenetic) in black shales (Large et al., 2007; Thomas et al., 2011), 

VHMS-style sulfide precipitates in volcanic-related hydrothermal systems (Moss et al., 2001) or 

the subcontinental lithosphere (Bierlein et al., 2006) and the mantle (Yue and He, 2008). In the 

previous sections we have eliminated the possible role of arsenian pyrite hosted in clastic 

sediments and pyritic black shales associated with the studied BIF-hosted deposits, which may 

have contributed Au (cf. Sec. 2). However, several lines of evidence pointing to a mantle source 

for the gold are possible. Several authors proposed that mantle-derived material such as hydrated 

and carbonated mafic to ultramafic melts (e.g., Groves et al., 1987; Phillips and Powell, 2010) 

may contribute to precious metal enrichment and in several studies based on Re-Os sulfide 

geochronology there seems to be some support (e.g., the Witwatersrand, Homestake deposits; 

Frimmel et al., 2014; Caddey et al., 1991; Morelli et al., 2010). Of particular relevance here is 

the case for the Homestake gold deposit, as it is hosted by Algoma-type BIF and shows a similar 

gold-trace element association, this being Au-Ag-As-Te-Se (Caddey et al., 1991; Morelli et al., 

2010). Morelli et al. (2010) suggested that gold introduction is coincident with exhumation of 

crustal blocks. Thus, although not conclusive, there is a consistent element association with 

another BIF-hosted gold system which is at least suggestive that a common source may be 

represented for in the two settings.  

Therefore, a possible scenario is that the mantle supplied a component of heat to the deep 

crust to form mafic melts from which gold was extracted by metamorphism/hydrothermal 

processes. Within the Abitibi greenstone belt, there is a clear spatial association between 

extensional structures bounding successor basins and earlier Au-rich VMS deposits (Gibson pers. 

Comm. 2015) and it must be recalled that, whereas the proximal heat source for VMS systems is 

subvolcanic intrusive granitoids (e.g., Franklin et al., 2005), there is a very clear mantle 
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component seen in recent studies (Chen et al., 2015). Finally, the Au content of mantle sulfides is 

an adequate source for gold in mantle-derived systems (Yue and He, 2008). 

4.7 Conclusions 

In this study of three Canadian Algoma-type BIF-hosted gold we have integrated the results 

of quantitative element distribution maps and traverse and spot analyses produced by LA-ICP-

MS with detailed petrography of the same samples. The data provide the basis for the evaluation 

of gold distribution patterns in various sulfide phases (i.e., pyrite, pyrrhotite and arsenopyrite) 

present and determination of element associations and therefore the ability to assess the source 

and timing of gold event(s). The common gold mineralizing event for these deposits, which are 

epigenetic and associated with intense sulfide-replacement of stratabound, Fe-rich mineralogy 

typical of BIF, is characterized by an Au-As-Se-Te-Ag element association in addition to a later 

stage remobilization along fracture networks by a base metal-bearing metamorphic fluid (mainly 

a Pb-Bi bearing fluid). The results of this study suggest that gold events in these deposits are 

related to metamorphic/hydrothermal orogenic processes driven by devolatilization of an 

unmetamorphosed source rock leading to the generation of gold-bearing fluids which were 

structurally focused into oxide- and silicate-facies BIF. This latter rock type represents a sink for 

the gold-bearing fluid as its iron content acts as a favorable reactant for the sulfidic fluid 

transporting the gold which leads to destabilization of gold in solution assuming transport as a 

bisulfide complex. This study has also highlights the possible influence of the host stratigraphy 

which may act to stabilize the dominant sulfide in the system (e.g., arsenopyrite versus pyrite). 

Furthermore, subsequent deformation and metamorphic events may have acted to remobilize 

earlier gold which provides a means to upgrade gold tenor, as evidenced by the occurrence of 

gold along late fracture networks associated with Pb-Bi enrichment.  
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4.9 Figure captions 

 

Figure 4.1: Localization of the three deposits investigated in this study. The Meadowbank 

deposit and the Meliadine gold district are within the Churchill Province, west of the Hudson 

Bay whereas, the Musselwhite deposit is located within the Superior Province, south of the 

Hudson Bay (after Wheeler et al., 1996). 
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Figure 4.2: .Paragenetic chart for sulfides minerals and magnetite from BIFs in the Meadowbank 

deposit. 
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Figure 4.3: Reflected light photomicrographs of sulfide minerals from the Meadowbank deposit. 

A to D) Aggregates of fine-grained, sooty pyrite 1 and coarse-grained, sieve-textured pyrite 2 

hosted in metamorphic pyrrhotite and overprinted by later stage magnetite. Pyrite 2 may rarely 

show some internal zonation suggesting pyrite 1’ inclusions. E) Euhedral to subhedral grains of 

pyrite 3 overprinting magnetite and metamorphic pyrrhotite. F) Fine-grained, anhedral to 

subhedral chalcopyrite at the margin of metamorphic pyrrhotite. Abbreviations: Ccp = 

chalcopyrite, Mt = magnetite, Po = pyrrhotite, Py = pyrite, Qtz = quartz. 

 



63 
 

 

Figure 4.4: Paragenetic chart for sulfides minerals and magnetite from BIFs in the Meliadine 

gold district.  

 



64 
 

 

 



65 
 

 

 

 

 

 

Figure 4.5: Reflected light photomicrographs of sulfide minerals from the Meliadine gold 

district. A to E) Strongly fractured, coarse-grained, euhedral, sieve-textured arsenopyrite crystals 

showing anhedral to subhedral grains and aggregates of pyrrhotite, chalcopyrite and galena along 

late fractures and/or as inclusions with gold. F) Unfractured, inclusion-free, fined-grained 

euhedral arsenopyrite 2 that occurs along a foliation in a quartz matrix. Abbreviations: Am = 

amphiboles, Aspy = arsenopyrite, Au = gold, Ccp = chalcopyrite, Gn = galena, Mt = magnetite, 

Po = pyrrhotite, Py = pyrite, Qtz = quartz. 
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Figure 4.6: Paragenetic chart for sulfides minerals and magnetite from BIFs in the Musselwhite 

deposit.  
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Figure 4.7: Reflected light photomicrographs of sulfide minerals from the Musselwhite deposit. 

A, B) Anhedral to subhedral, annealed grains of pyrite and anhedral to subhedral chalcopyrite 

grains as inclusions and/or along late fractures in metamorphic pyrrhotite. C) Anhedral pyrrhotite 

inclusions along fractures in porphyroblasts of coarse-grained, almandine garnet along with 

euhedral to subhedral pyrite as dissemination in quartz matrix. D) Subhedral grains of 

metamorphic pyrrhotite with minor inclusions of pyrite 1, overprinted by late subhedral, coarse-

grained grains of pyrite showing possible pyrrhotite inclusions. Abbreviations: Ccp = 

chalcopyrite, Grt = garnet, Mt = magnetite, Po = pyrrhotite, Py = pyrite, Qtz = quartz. 
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Figure 4.8: LA ICP-MS maps showing the distribution of selected trace elements in pyrites from 

sample AMB-126223 (Meadowbank deposit). A) Reflected light photomicrograph of the 

mapped pyrite crystals (i.e., py1, py1’and py2) that occur in a matrix of metamorphic pyrrhotite. 

B to L) Element maps plotted as concentrations scaled between the data median +/- 3 standard 

deviations. This plotting was used to maximize the contrast for the majority of data while 

maintaining a linear scale and, therefore, the maximum concentrations of the scale are not the 

true maximums present in the sample. The maps illustrate elemental enrichment of Co, Ni, W 

and Mo with locally minor amounts of Sb, Pb, Ag, Bi and Au in pyrite 1, whereas pyrite 2 has an 

elemental association of W, Tl, Co and Ni, and finally Mo, Au, Sb and minor Cu appear to 

envelope pyrite 2. Abbreviations: Po = pyrrhotite; Py = pyrite. Note that white dashed lines on 

element maps illustrated distribution of py1, py1’ and py2. 
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Figure 4.9: Binary plot of Ag versus Ni (ppm) for selected pyrites from four different sediment-

hosted gold deposits (i.e., the Sukhoi Log, Bendigo, Spanish Mountain and North Carlin Trend; 

data from Large et al., 2007). The distribution of these trace elements within these pyrites allows 

their distinction among early diagenetic (red field), metamorphic/hydrothermal orogenic (blue 

field) and Carlin-type (green field) deposit settings. Abbreviations: Py = pyrite.
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Figure 4.10: Selected binary element plots (in ppm) illustrating the distribution of trace elements 

amongst variable pyrite events for sample AMB-126223 from the Meadowbank deposit. A to K) 

Binary element plots of Ag versus Ni grouped by selected trace elements, which show the 

distribution in the pyrite fields defined by Large et al. (2009). The red field corresponds to early 

diagenetic pyrite, the blue field corresponds to metamorphic/hydrothermal orogenic-type pyrite 

and the green field corresponds to metamorphic/hydrothermal Carlin-type pyrite (see Fig. 9 for 

further explanation). L) Plot of ��(Co+Pb+Ni+W+Mo) versus ��(As+Se+Te) grouped by Au 

content, which shows that one gold event is associated with high As+Se+Te contents. Note that 

the detection limit for Ag is at about 0.4 ppm. Groups A and B refer to remobilization of element 

during the conversion of py1 to py2 via dissolution-precipitation processes which resulted in 

formation of the metamorphic/hydrothermal orogenic-type py2. Abbreviation: Py = pyrite. 
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Figure 4.11: Summary of results for a LA ICP-MS traverse of a metamorphic pyrrhotite grain for 

sample AMB 126231 from the Meadowbank deposit. A) Reflected light photomicrograph of the 

pyrrhotite grain analysed with the black line showing the LA ICP-MS traverse. B) Concentration 

profiles (in ppm; note log scale) versus time (in seconds) for selected trace elements along the 

analysed traverse. It is noted that the only one spot at t = 16s shows gold mineralization, as 

indicated by the red field. 
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Figure 4.12: LA ICP-MS maps showing the distribution of selected trace elements in pyrites 

from sample AMB-126231 (Meadowbank deposit). A) Reflected light photomicrograph of 

mapped pyrite crystals (i.e., py2) disseminated in chert bands. B to L) Element maps plotted as 

concentrations scaled between the data median +/- 3 standard deviations. This plotting was used 

to maximize the contrast for the majority of data while maintaining a linear scale and, therefore, 

the maximum concentrations of the scale are not the true maximums present in the sample. The 

maps illustrate variable elemental enrichments of Co, Ni, As, Se in core of pyrite 2 and 

enrichments of Mo, Sb, Te, Bi and Ag enveloping the pyrite 2. Note that white arrows may 

represent possible inclusions. Abbreviation: Py = pyrite, Qtz = quartz. 
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Figure 4.13: Selected element binary plots (in ppm) illustrating the distribution of trace elements 

amongst variable pyrite events for sample AMB-126231 from the Meadowbank deposit. A to J) 

Binary element plots of Ag versus Ni grouped by selected trace elements, which show 

distribution in the pyrite fields defined by Large et al. (2009). The red field corresponds to early 

diagenetic pyrite, the blue field corresponds to metamorphic/hydrothermal orogenic-type pyrite 

and the green field corresponds to metamorphic/hydrothermal Carlin-type pyrite (see Fig. 9 for 

further explanation). K) Plot of ��(Mo+Sb+Te+Bi+Pb) versus �� (Co+As) grouped by Au content, 

which show that two distinct gold events, which are defined by distinct elemental associations, 

are represented with variable Co+As contents. Note that the detection limit for Ag is at about 0.4 

ppm. Abbreviation: Py = pyrite. 
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Figure 4.14: LA ICP-MS maps showing the distribution of selected trace elements in pyrite from 

sample AMB-126228 (Meadowbank deposit). A) Reflected light photomicrograph of the 

mapped pyrite crystal (i.e., py3) that occurs in a chert band. B to E) Element maps plotted as 

concentrations scaled between the data median +/- 3 standard deviations. This plotted was used 

to maximize concentrations for the majority of the data while maintaining a linear scale and, 

therefore, the maximum concentrations of the scale are not the true maximums present in the 

sample. The maps illustrate the variable elemental enrichments of Co, Ni, Pb and Bi in the core 

of pyrite 3. Abbreviation: Py = pyrite, Qtz = quartz. 
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Figure 4.15: Selected binary element plots (in ppm) illustrating the distribution of trace elements 

amongst variable pyrite events for sample AMB-126228 from the Meadowbank deposit. A to I) 

Binary element plots of Ag versus Ni grouped by selected trace elements, which show the 

distribution in the pyrite fields defined by Large et al. (2009). The red field corresponds to early 

diagenetic pyrite, the blue field corresponds to metamorphic/hydrothermal orogenic-type pyrite 

and the green field corresponds to metamorphic/hydrothermal Carlin-type pyrite (see Fig. 9 for 

further explanation). Note that the detection limit for Ag is at about 0.4 ppm.Abbreviation: Py = 

pyrite. 
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Figure 4.16: Binary element plot (in ppm) of Ag versus Pb using a compilation of individual 

time-slices of data from the pyrite trace element maps of samples AMB-126223 and AMB-

126231 from the Meadowbank deposit. This diagram illustrates the presence of two gold events 

in the pyrite grains, one indicated by inclusions in pyrite 2 that are associated with high Ag and 

Pb contents, and a second indicated by the metal-rich rim of pyrite 2 that is associated with weak 

Ag and variable Pb contents. Abbreviations: Py = pyrite. 
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Figure 4.17: LA ICP-MS trace element profiles for a traverse done on an arsenopyrite grain in sample MEL-004 from the Meliadine 

gold deposit. A) Reflected light photomicrograph of the analyzed arsenopyrite grain. The black solid line represents the traverse 

whereas the dashed black lines, numbered from 1 to 6, represent micro-fractures. B) Selected trace element profiles (concentrations in 

ppm) for the traverse shown in A). Note the following features highlighted in the figures: 1) the dashed black lines refer to the micro-

fractures observed in the previous image; 2) the grey fields highlight areas of significant elemental enrichments; 3) the black arrows 

(for Sb and Mo profiles) indicate significant depletions relative to the rest of the grain and correspond to Au enrichment; and 4) the 

red dashed line in the Au profile refers to the higher detection limit of the time-slice dataset (as each data has their own detection 

limit). It is noted that all element concentrations except Au, are on a logarithmic scale. Abbreviations: Aspy = arsenopyrite; Po = 

pyrrhotite. 
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Figure 4.18: LA ICP-MS trace element profiles for a traverse done on an arsenopyrite grain in sample MEL-018 from the Meliadine 

gold deposit. A) Reflected light photomicrograph of the analyzed arsenopyrite grain. The black solid line represents the traverse, 

whereas the dashed black lines, numbered from 1 to 5, represent micro-fractures. B) Selected trace element profiles (concentrations in 

ppm) for the traverse shown in A). Note the following features highlighted in the figures: 1) the dashed black lines refer to the micro-

fractures observed in the previous image or suggested by analyses; 2) the grey fields highlight areas of significant elemental 

enrichments; and 3) the red dashed line in the Au profile refers to the higher detection limit of the time-slice dataset (as each data has 

their own detection limit). It is noted that all element concentrations except Au, are on a logarithmic scale. Abbreviations: Aspy = 

arsenopyrite; Po = pyrrhotite. 
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Figure 4.19: LA ICP-MS trace element profiles for a second traverse done on an arsenopyrite grain in sample MEL-018 from the 

Meliadine gold deposit. A) Reflected light photomicrograph of analyzed arsenopyrite grain. The black solid line represents the 

traverse whereas the dashed black lines, numbered from 1 to 5, represent micro-fractures. B) Selected trace element profiles 

(concentrations in ppm) for the traverse shown in A). Note the following features highlighted in the figures: 1) the closely spaced 

dashed black lines refer to micro-fractures observed in the previous image, or suggested by analyses, the more spaced dashed black 

line refers to possible sphalerite inclusion; 2) the grey fields highlight areas of reflect significant elemental enrichments; and 3) the red 

dashed line in the Au profile refers to the higher detection limit of the time-slice dataset (as each data has their own detection limit). It 

is noted that all element concentrations except Au, are on a logarithmic scale. Abbreviations: Aspy = arsenopyrite; Gln = galena, Po = 

pyrrhotite, Sph = sphalerite. 
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Figure 4.20: LA ICP-MS trace element profiles for a traverse done on an arsenopyrite grain in sample MEL-018 from the Meliadine 

gold deposit. A) Reflected light photomicrograph of the analyzed arsenopyrite grain with its inclusions of pyrrhotite and chalcopyrite. 

B) A close up of the previous image showing the location of the of the laser ablation traverse across arsenopyrite and pyrrhotite, as 

represented by the solid black line. C) Selected trace element profiles (concentrations in ppm) for the traverse shown in B). Note the 

following features highlighted in the figures: 1) the grey fields highlight areas of significant elemental enrichments; and 2) the red 

dashed line in the Au profile refers to the higher detection limit of the time-slice dataset (as each data has their own detection limit). 

Note that all element concentrations are on a logarithmic scale (as each data has their own detection limit). Abbreviations: Aspy = 

arsenopyrite; Ccp = chalcopyrite; Po = pyrrhotite. 
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Figure 4.21: Selected binary plots (in ppm) illustrating distribution of Au and Te content in 

various element associations from the compilation of traverses analyses done on arsenopyrite 

grains from the Meliadine gold deposit. A) Binary plot of Ni+Te+Se+Sb+Mo versus Pb+Bi+Zn 

grouped by Au content. B) Binary plot of Co versus Pb+Bi+Zn+Ag, which reflects the presence 

of Co-rich and Co-poor areas in the arsenopyrite. Note that the areas enriched in Au occur in 

areas depleted in Co and near fractures. C) Binary plot of Pb+Bi+Zn versus Ag, which reflects 

two distinct domains based on Au content. D) Binary plot of Se+Sb versus Ni+Co+Te, which 

shows two domains based on the Au content with the late overgrowth enriched in Ni-Co-Te 

being relatively depleted in Au. E) Binary plot of Bi versus Mo grouped by Te content. The data 

reflect the formation of Bi-Mo rich tellurides. F) Binary plot of Bi versus Mo grouped by Au 

content. Note that the data show a similar trend as seen in the previous image suggesting Au is 

closely associated with Bi-Mo tellurides. 
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Figure 4.22: LA ICP-MS trace element profiles for a traverse done on a pyrrhotite grain in 

sample E599654 from the Musselwhite deposit. A) Reflected light photomicrograph of the 

analyzed pyrrhotite along with local chalcopyrite inclusion. The black solid line represents the 

traverse whereas the dashed black lines, numbered from 1 to 2, represent micro-fractures. B) 

Selected trace element profiles (concentrations in ppm) for the traverse shown in A). Note the 

following features highlighted in the figures: 1) the closely spaced dashed black lines refer to 

micro-fractures observed in the previous image, the more spaced dashed black lines refer to 

possible inclusions; 2) the grey fields highlight areas of significant elemental enrichments; and 3) 

the red dashed line in Au profile refers to the higher detection limit of time-slice dataset (as each 

data has his own detection limit). It is noted that As and Au concentrations are on a logarithmic 

scale. Abbreviations: Ccp = chalcopyrite; Po = pyrrhotite; Qtz = quartz. 
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Figure 4.23: LA ICP-MS trace element profiles for a traverse done on a pyrrhotite grain in 

sample E599658 from the Musselwhite deposit. A) Reflected light photomicrograph of 

pyrrhotite, pyrite and chalcopyrite inclusions along fractures in garnet grain disseminated in 

chert. B) A close up of the fracture filled of pyrrhotite in garnet grain. The black solid line 

represents the traverse whereas the dashed black line referring to 1 represents micro-fracture. C) 

Selected trace element profiles (concentrations in ppm) for the traverse shown in B). Note the 

following features highlighted in the figures: 1) the closely spaced dashed black lines refer to 

micro-fractures observed in the previous image or suggested by analyses, the more spaced 

dashed black line refers to a possible inclusion; 2) the grey fields highlight areas of significant 

elemental enrichments; and 3) the red dashed line in the Au profile refers to the higher detection 

limit of the time-slice dataset (as each data has his own detection limit). It is noted that all 

element concentrations except Sb and Au, are on a logarithmic scale. Abbreviations: Ccp = 

chalcopyrite; Grt = garnet; Py = pyrite; Po = pyrrhotite. 
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Figure 4.24: Binary plot (in ppm) of Cu+Ag+Te+Se, representing Au element association in the 

pyrrhotite core, versus Pb+Bi, which represents Au element association in the pyrrhotite 

fractures, using a compilation of individual time-slices of data from the pyrrhotite trace element 

traverse of samples E599651, E599654, E599658 and E599666 from the Musselwhite deposit 

(Gourcerol et al., 2015b). These data suggest that there is only one Au event. 
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Figure 4.25: LA ICP-MS trace element profiles for a traverse done on a pyrite grain in sample 

E599658 from the Musselwhite deposit. A) Reflected light photomicrograph of pyrrhotite, pyrite 

and chalcopyrite inclusions along fractures in garnet grain disseminated in chert. B) A close up 

of the fracture filled of pyrrhotite in garnet grain. The black solid line represents the traverse 

whereas the dashed black lines, numbered from 1 to 3, represent micro-fractures in the pyrite. C) 

Selected trace element profiles (concentrations in ppm) for the traverse shown in B). Note the 

following features highlighted in the figures: 1) the closely spaced dashed black lines refer to 

micro-fractures observed in the previous image, the more spaced dashed black line refers to 

possible sphalerite inclusion; 2) the grey fields highlight areas of significant elemental 

enrichment; and 3) the red dashed line in the Au profile refers to the higher detection limit of the 

time-slice dataset (as each data has his own detection limit). It is noted that all element 

concentrations are on a logarithmic scale. Abbreviations: Grt = garnet; Py = pyrite; Po = 

pyrrhotite; Qtz = quartz.
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Figure 4.26: Selected binary plots (in ppm) showing the distribution of Au and Te for pyrite data 

for sample E599658 from the Musselwhite deposit. Note that the data are also grouped by colour 

according to their Au and Te contents. A) Binary plot for Au versus Ag with Te content color 

coded, which shows the presence of Ag-Au- and Ag- rich tellurides. B) Binary plot of Zn+Bi+Pb 

versus Ag with Te color coded which shows Ag-rich and Ag-Au- rich tellurides. C) Binary plot 

of Zn+Bi+Pb versus Ag with Au colored coded which shows that Au is associated either in 

fractures or disseminated in pyrite but that the highest Au contents are associated with 

inclusions. D) Binary plot of Ag versus Se with Au color coded which shows a close relationship 

between Au and Ag content. 
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Figure 4.27: Binary element plots (in ppm) of Ag versus Ni for py1 and py2 from the 

Musselwhite deposit along with the fields for different pyrites, as defined by Large et al. (2009). 

Note that the data are also grouped by colour according to their Au contents. A) Distribution of 

data for py2 analyzed by traverse mode from samples E599658 (Fig. 21). Note that the detection 

limit for the Ag was 0.4 ppm. B) Distribution of data for py1 spot analyses for sample E599656. 
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Figure 4.28: Abundance of selected major and trace elements for py1 and py2 from the 

Musselwhite deposit shown in blue and red lines, respectively. These data are compared to gold-

telluride pyrite from bedding-parallel quartz veinlets and pyrite from sedimentary rocks, in green 

and purple lines, respectively. The latter data are from Large et al. (2007), as indicated in the 

legend. 
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 Chapter 5: Conclusions 

The study of the Algoma-type BIFs represents two distinct challenges: firstly, their 

characterization provides an important contribution to extending our understanding of the 

geochemical evolution of early Earth through the Archean to the early Proterozoic, and secondly, 

as many of them host world-class gold deposits (e.g., the Homestake, Lupin, Musselwhite 

deposits; Frei et al., 2009; Biczok et al., 2012.), understanding their chemistry potentially 

contributes to identification of new deposits. In this thesis project, four different Algoma-type 

BIF-hosted gold deposits from Canada (i.e., the ~4 Moz Au Meadow�E�D�Q�N���G�H�S�R�V�L�W�����W�K�H���•���������0�R�]��

Au Meliadine district; the ~6 Moz Au Musselwhite deposit; and the ~4 Moz Au Beardmore-

Geraldton district) were selected for study in order to : (1) define the depositional setting of the 

BIFs using REE+Y systematics of chert as proxy for their primary signature; (2) assess gold 

enrichment processes through examining the textures and trace element zoning of variable 

sulfides (i.e., pyrite, arsenopyrite and pyrrhotite); and (3) establish whether there is a particular 

geochemical type of Algoma-type BIF associated with gold mineralization. 

The initial approach illustrated in Chapter 2 and 3, was to analyze barren versus mineralized 

chert samples from the four Algoma-type BIFs by LA-ICP-MS method in order to define the 

depositional setting of the BIFs regarding their primary signature using REE+Y systematics. The 

study recognized a similar signature for the four different Algoma-type BIFs showing: (1) 

interaction of seawater with Fe-oxyhydroxides, as suggested by their heavy REE enrichment 

coupled with La and Y enrichments; (2) contributions from high-temperature (>250ºC) 

hydrothermal fluids, as suggested by positive Eu excursions; and (3) detrital contamination, 

suggested by relatively consistent REE concentrations and a chondritic Y/Ho �U�D�W�L�R�����L���H�������<���+�R���§��

27). Moreover, based on an in-situ SIMS oxygen isotopic study, the influence of seawater 
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reacting with cherts during the diagenesis was documented. These chemical indicators help to 

define the geodynamic setting for the BIFs (i.e., restricted basin versus open seawater) but also to 

better understand Archean processes (e.g., diagenesis). However, it appears from the results of 

this study that the primary signature of the chert does not record a chemical signature that may 

be used as a vector for potential gold mineralization, as barren and mineralized chert samples 

show similar primary signatures that suggest therefore an epigenetic gold mineralizing model for 

these deposits rather than an initial syngenetic gold enrichment event, which has long been 

suggested and debated.  

Several questions emerged from the findings in this thesis, among them is whether gold in 

the BIF-hosted gold deposits originates from the same source rock (e.g., black shale; Large et al., 

2007, 2009) and therefore might the gold represent a similar process of enrichment in this 

deposit type (e.g., Steadman et al., 2014; Gao et al., 2015). Based on quantitative element 

distribution maps of sulfide phases combined with line traverses and spot analyses on similar 

sulfides (i.e., pyrite, pyrrhotite, arsenopyrite) using LA-ICP-MS, the main gold event in the 

Meadowbank, Meliadine and Musselwhite gold deposits has been shown to be characterized by 

an Au-As-Se-Te-Ag trace metal association in chapter 4. This event is associated with intense 

stratabound sulfide-replacement of Fe-rich material with a later remobilization into fracture 

networks by late stage, base metal-rich metamorphic fluids (Pb-Bi-rich). The epigenetic origin of 

the gold mineralization is confirmed and the origin of the fluids is attributed to 

metamorphic/hydrothermal orogenic processes that were driven by devolatilization of weakly to 

unmetamorphosed source rocks of similar character in all the deposit sites studied. Generation of 

gold-bearing fluid along with the specific element suite was channelled via major crustal faults 

and/or shear zones within low tensile strength rocks reacting with stratigraphic units. Due to its 
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high iron content, Algoma-type BIF acts as a favorable chemical trap with a high efficiency for 

reducing gold-rich fluid due to sulfidation reactions in the pre-existing oxide, silicate and/or 

carbonate facies of the BIF to generate iron-bearing sulfides (e.g., pyrite, pyrrhotite and 

arsenopyrite). Therefore, it appears that precipitation of gold in Algoma-type BIF represents a 

confluence of favorable conditions (e.g., structural, lithogeochemical, fluid conditions, 

stratigraphic units, etc.) rather than a specific geochemical type of Algoma-type BIF associated 

with gold. 

5.1 Unreturned question and suggestion for future work 

Several questions have been raised from this thesis project, such as detrital contamination in 

BIF as well as the potential source of gold within Algoma-type BIF. Within chapter 2 and 3, 

some elements were used as proxies to identify apatite, zircon or various shale contaminations. 

However, elements such as Al, P and Ga were not included in the analyses, which may represent 

an oversight from us; therefore, we recommend including them in future work. As shown in 

chapter 4, it appears that gold originates from a broadly analogous source in all the studied areas 

which is consistent with the overall model of Large et al. (2007, 2009, 2011), which argues for a 

gold-rich diagenetic pyrite hosted within carbonaceous black shale successions. However, early 

framboidal pyrite from the Meadowbank deposit does not show a significant Au content, which 

would have been consistent with this hypothesis, nor is there a correlation of Au with a specific 

suite of elements (e.g., Co, Ni, Pb, Zn, W, Mo), which are highly concentrated in diagenetic 

pyrites. Moreover, this specific suite of elements is not related to gold in the Meliadine gold 

district or in the Musselwhite deposit (e.g., Gao et al., 2015) which suggests, therefore, another 

source for gold which has not been identified in this study. Proximity of this potential gold 

source may represent a vectoring tool in combination with structural study for mineralized 
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Algoma-type BIFs.  
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 Appendix A: The geochemistry of chert from the Banded Iron Formation-

type Musselwhite and Meadowbank gold deposits: Distinguishing primary 

and mineralization-related signatures of chert 

A.1 Abstract 

Algoma-type banded iron formations (BIFs) are generally Archean chemical sedimentary 

rocks comprised of alternating layers of iron-rich minerals and chert of that are stratigraphically 

associated with submarine volcanic rocks and localized within greenstone belts. Although much 

research has been done on Algoma-type BIFs, their depositional and overall geologic settings are 

contentious due to overprinting effects of post depositional deformation and metamorphism and 

the absence of modern analogues for comparative studies.  

Geochemical study of the gold-hosting Algoma-type BIFs at the Musselwhite and 

Meadowbank deposits provide comparable information on the depositional context for these 

Algoma-type BIFs. Geochemical tools, such as rare-earth elements REE+Y systematics, indicate 

that chert bands in Algoma-type BIF record contributions from: (1) seawater, characterized by 

enrichment in HREE relative to LREE, positive La, Gd and Y anomalies; (2) hydrothermal 

fluids, characterized by a positive Eu anomaly and a flat pattern; and (3) hydrogeneous 

contamination. A detailed study of each of the aforementioned deposits was undertaken to 

evaluate the origin of the chert in these BIF settings. A hydrothermal overprint on BIFs from the 

Musselwhite deposit is evidenced by negative Ce anomalies that may be due to late hydrothermal 

fluid circulation in the chert bands replacing the initial seawater component. This hydrothermal 

alteration phase may be associated with the gold mineralization. 
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A.2 Résumé 

Les formations de fer rubanées (FFR) de type Algoma sont généralement des roches 

sédimentaires Archéenne constituées d’alternance de minéraux riche en fer et de chert qui sont 

stratigraphiquement associés à des roches volcaniques de type sous-marines et localisées dans 

des ceintures de roches vertes. Bien que beaucoup de recherches ont été effectuées sur ces 

formations de fer, leurs paramètres de déposition et caractéristiques géologiques sont 

controversés en raison de la surimpression des différentes épisodes de déformations et 

métamorphiques mais également l'absence d'analogue moderne pour des études comparatives.  

L’étude géochimique des FFR de type Algoma dans les zones de Musselwhite et 

Meadowbank fournit des informations comparables sur le contexte de déposition pour les FFR 

de type Algoma. Les outils géochimiques, tels que des éléments de terres rares REE+Y, 

indiquent que les bandes de chert dans les FFR de type Algoma enregistre la ou les contributions 

de : (1) l'eau de mer, caractérisée par un enrichissement en terres rares lourdes par rapport à 

terres rares légères, des anomalies positives en La, Gd et Y ; (2) des fluides hydrothermaux, 

caractérisés par une anomalie positive en Eu et un spectre plat ; et (3) d’une contamination 

crustale. Une étude détaillée de chacun de ces dépôts précités a été entreprise pour évaluer 

l'origine du chert dans ces FIF. Une surimpression hydrothermale pour certain FFR localisés 

dans les zones de Musselwhite est démontrée par des anomalies négatives en Ce qui pourraient 

être associées à la circulation en fluides hydrothermaux tardifs dans les bandes de chert 

remplaçant la composante initiale de l'eau de mer. Cette altération hydrothermale pourrait être 

associée à la minéralisation aurifère. 
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A.3 Introduction  

Algoma-type BIFs are thinly bedded chemical sedimentary rocks comprising alternating 

layers of iron-rich minerals and chert (James, 1954), stratigraphically associated with submarine, 

volcanic rocks in Eoarchean to Paleoproterozoic greenstone belts (Goodwin, 1973; Bekker et al., 

2010). Studies of gold deposits associated with Algoma-type BIF in Archean cratons have shown 

that gold is associated with localized sulfide-facies zones within regionally extensive oxide-

facies units (e.g., Kaapvaal, Zimbabwe, Superior, Slave and Churchill; Phillips et al., 1984; 

Bleeker, 2006; Biczok et al., 2012). The depositional and geologic settings of these deposits are 

contentious due to post depositional overprinting and the absence of modern analogues. The 

iron-bearing minerals in iron formations precipitated from basin waters and hydrothermal vents; 

they include siderite or/and iron oxy-hydroxides diagenetically transformed to hematite, 

magnetite, iron silicates and sulfides. The origin of chert is controversial, but the consensus is 

that it, like the iron-bearing minerals, originated as a seawater precipitate (Bolhar et al., 2005; 

Thurston et al., 2011) or as a hydrothermal precipitate (Allwood et al., 2010; Thurston et al., 

2011) or by replacement (Hanor and Duchac, 1990). Because of the possibility of alteration 

during diagenesis, we examine the geochemistry of chert beds in that they more likely preserve 

their original chemistry. 

In regard to BIF-hosted gold deposits, do the gold mineralizing fluids prefer one 

geochemical type of iron formation versus another? Lode-gold and BIF-hosted gold deposits are 

widely conceded to be epigenetic (Goldfarb et al., 2001, 2005), thus, at a regional scale the 

geochemical signature of the chert component of BIFs may provide a vector towards zones with 

an enhanced potential to host gold mineralization. Consequently, a study of the geochemical 

characteristics of Algoma-type BIF, both barren and those associated with gold mineralization, 
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may address important issues regarding these deposits by: (1) providing insights on which type 

of iron formation makes a better host for gold mineralization by identifying and using the pre-

mineralized chemical signal; (2) allowing a better understanding of the mineralizing processes; 

(3) providing a geochemical footprint of the mineralized system; and (4) collectively providing a 

vectoring tool from least or unaltered to altered-mineralized zones. 

This article presents the results of in-situ laser ablation inductively coupled mass 

spectrometric (LA ICP-MS) analysis of chert from BIF-hosted lode-gold deposits in the Superior 

and Churchill cratons, namely: (1) the Musselwhite deposit (11.23 Mt proven/probable grading 

6.34 g/t gold in 2011), in the North Caribou greenstone belt of the Superior Province (Biczok et 

al., 2012), and (2) the Meadowbank deposit (24.5 Mt proven/probable ore reserve @ 2.8 g/t in 

2011), located in the Woodburn Lake Group of the Rae Domain (Churchill Province).  

A.4 Geological Setting 

A.4.1 The Superior Province 

The Archean Superior Province consists of east-west trending continental fragments 

interspersed with linear meta-sedimentary basins (Percival, 2007). The 2.9-3 Ga North Caribou 

Superterrane (NCS) was divided into multiple domains and terranes (Thurston et al., 1991). The 

NCS comprises granitoid basement (Thurston et al., 1991; Percival, 2007) and overlying 

volcanic belts (e.g., North Caribou greenstone belt), all cratonised at ca.2.87 Ga (Stott et al., 

1989).  

The North Caribou greenstone belt lies at the northern boundary of the North Caribou 

Terrane (Biczok et al., 2012). This greenstone belt comprises a core of metasedimentary rocks 
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flanked by metavolcanic units; all subdivided into eight supracrustal assemblages (Fig. A.1; 

Breaks et al., 2001). Recent geochronological work (Biczok et al., 2012; McNicoll et al., 2013) 

dated the units of the greenstone belt between 2980 and 2856 Ma. These results also indicate that 

the Opapimiskan Lake package in the vicinity of the Musselwhite mine is overturned (McNicoll 

et al., 2013) and likely thrust over the younger metasediments. Further complicating the picture 

is the recent discovery of volcanic units immediately south of the mine dated at ~2863 Ma and 

2734 Ma (V. McNicoll, pers. comm.). Similar BIFs are found in at least three of the volcanic 

units of very different ages and it is hoped that this study will help distinguish these various 

BIFs. The belt is bounded by metamorphosed felsic plutonic rocks, in particular the ~2.87 Ga 

North Caribou Lake batholith and the Schade Lake gneissic complex (ca. 2856-2857 Ma 

(DeKemp, 1987; Biczok et al., 2012)).  

A.4.1.1 The Musselwhite deposit 

Located in the North Caribou greenstone belt (Fig. A.1), the Musselwhite mine is a giant 

deposit with past production and current reserves and resources totaling 5.41 million ounces 

(Biczok et al., 2012). The lithostratigraphy is dominated by BIFs and mafic to ultramafic 

metavolcanic rocks of the 2973<2967 Ma Opapimiskan-Markop metavolcanic assemblage 

(OMU) plus tholeiitic basalts and minor felsic volcanics of the 2980-2982 Ma South Rim 

Metavolcanic assemblage (SRV) (Biczok et al., 2012; McNicoll et al., 2013). Recent 

geochronology and field mapping indicate that the mine stratigraphy is overturned. The deposit 

itself is composed of multiple ore-bodies within two main iron formations within the 

Opapimiskan Lake metavolcanic assemblage.  

The Opapimiskan-Markop metavolcanic assemblage is composed, from the structural base 
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to the top, of the “Lower Basalt” unit, the Southern Iron Formation, “Basement Basalt” unit and 

the Northern Iron Formation. The South Rim metavolcanic assemblage is composed, from base 

to top, of metamorphosed mafic volcaniclastic and flow units named the Bvol unit, and by 

dacitic to rhyolitic rocks named the Avol unit (Otto, 2002; Moran, 2008; Biczok et al., 2012).  

The North Iron Formation, the main host to mineralization, is subdivided, from the structural 

base to top, into: pyrrhotite-rich mudstone (4H), chert-grunerite (4A), chert-magnetite (4B), 

clastic-chert-magnetite (“clastic”4B), garnet-grunerite-chert (4EA), garnetiferous amphibolite 

(4E) and garnet-biotite schist (4F) (Otto, 2002; Moran, 2008; Biczok et al., 2012). The main 

mineralized horizons are the 4EA and 4B.The Southern Iron Formation consists of two sub-

parallel BIF horizons generally not mineralized (Biczok et al., 2012).  

The Basement Basalt unit lying between the Northern and Southern Iron Formations is a 

thick sequence of massive- and pillowed tholeiitic basalt (Moran, 2008). The “Lower Basalt” 

unit is the structural footwall (Otto, 2002) and is composed of basalt and ultramafic rocks but 

includes extensive andesite (Hollings and Kerrich, 1999). The presence of pillow structures 

suggests a submarine environment (Otto, 2002; Moran, 2008).  

A.4.1.1.1 Deformation 

Three deformation events were recognized in the North Caribou greenstone belt (Hall and 

Rigg, 1986; Breaks et al., 2001). The first deformation (D1) is seen in tight F1 folds up to several 

metres long with a well-developed S1 fabric in schistose ultramafic units, and the property-scale 

repetition of units (Oswald et al., 2014). The second deformation (D2) is the most important 

structural fabric, which produced a moderate to strong, subvertical north-trending S2 foliation 

axial-planar to mesoscopic F2 folds (Breaks et al., 2001). The third deformation (D3) is 
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relatively weak and is recognized by a crenulation cleavage overprinting D2 in grunerite-rich 

BIF.  

A.4.1.1.2 Metamorphism 

Regional metamorphism of the North Caribou greenstone belt varies from lower greenschist 

to low-mid amphibolite facies (Breaks et al., 2001). The Musselwhite area is affected by two 

events, one middle amphibolite prograde (>600ºC) and the other a chlorite retrograde (210º to 

250ºC; Otto, 2002; Isaac, 2008).  

A.4.1.1.3 Mineralization  

Mineralization consists of epigenetic gold associated with high-strain zones mainly along 

the steep limbs of the folded iron formation (Biczok et al., 2012). Gold mineralization developed 

under amphibolite conditions (i.e., 540º to 600ºC; Otto, 2002). 

The most important host of gold mineralization in the Musselwhite mine is the silicate-facies 

iron formation (4EA) composed mainly of grunerite-garnet interlayered with chert. Garnets in 

barren 4EA are anhedral to suhedral, medium-grained, and contain numerous inclusions of 

grunerite, and other silicates. The continuation of strain after the formation of brittle 

hydrothermal garnets within the relatively more ductile grunerite matrix led to the development 

of extensive fractures in the garnets, as well as pressure shadows, into which pyrrhotite and gold 

are deposited (Biczok et al., 2012; Kolb, 2010). Retrograde phases such as chlorite are developed 

locally (Otto, 2002). The 4B unit consists of finely laminated layers of quartz, magnetite with 

minor grunerite. The typical, “pure” 4B is relatively unaltered adjacent to any mineralized zone 

compared to the 4EA. Mineralized 4B is cut by quartz +/- pyrrhotite veins and may develop 

grunerite replacement of the quartz-magnetite layers. The “clastic” variety of 4B contains diffuse 
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layers of very fine-grained chart, magnetite, amphiboles +/- garnets. In the vicinity of the high-

strain zones on the limbs of the F2 folds, these silicate layers are prone to replacement by 

hydrothermal biotite, garnet +/- green amphiboles (Otto, 2002). 

A.4.2 The Churchill Province 

The Archean Churchill Province has been subdivided into the Hearne and Rae domains, 

(Fig. 2.1; Hoffman 1989). The Rae Domain consists of the ca. 2.7 Ga Woodburn Lake Group 

(Ashton, 1985; Roddick et al., 1992; Aspler and Chiarenzelli, 1996a) and the ca. 2.9 Ga Prince 

Albert Group (Schau, 1982; Aspler and Chiarenzelli, 1996a) which includes granitoids and 

mafic-ultramafic volcanic rocks, iron formation, shallow-water quartz arenite and minor felsic 

volcanic rocks (Miller and Tella, 1995). Aspler and Chiarenzelli (1996a) proposed the quartzites 

and komatiites of the Rae Domain were deposited during extension of “Nunavutia” a basement 

block (Pehrsson et al., 2013) that was later overlain by volcanic rocks of a back-arc sequence or 

an arc-trench system. 

The Hearne Domain is a granite-greenstone terrane composed of multi-cyclic, mafic- to 

felsic volcanic rocks intercalated with immature sandstones, pelites, and iron formation with rare 

quartz arenites and spinifex-textured ultramafic rocks (Miller and Tella, 1995; Aspler and 

Chiarenzelli, 1996a).  

A.4.2.1 The Meadowbank deposit 

The Meadowbank deposit in the Rae Domain is contained within the Woodburn Lake Group 

(ca. 2.71 Ga) consisting of tholeiitic and komatiitic metavolcanic rocks with minor calc-alkaline 

felsic tuffs and flows with intercalated iron formation and clastic metasedimentary rocks 

(Armitage et al., 1996; Pehrrson et al., 2004; Sherlock et al., 2001a, b, 2004; Hrabi et al., 2003). 
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All of these units are intruded by mafic and felsic plutonic rocks.  

The Meadowbank area (Fig. 2.2) contains two main gold deposits: the Meadowbank mine 

and the Vault deposit. The Meadowbank mine is mainly hosted within strongly altered and 

deformed, sulfide-bearing portions of the Central BIF (Sherlock et al., 2001a; Hrabi et al., 2003; 

Sherlock et al., 2004), whereas the Vault deposit is hosted by sericite-chlorite-pyrite and 

carbonate-altered intermediate- to felsic volcanic rocks (Hrabi et al., 2003; Sherlock et al., 2004).  

Numerous units of Algoma-type BIF, 0.2 to 10 m thick, have been identified. These BIFs 

include the Far West IF, West IF, Central BIF, East BIF, and Grizzly IF, all generally 

interlayered with the volcanic rocks and locally with a quartzite unit (Fig. 2.2; Gourcerol et al., 

2013; Sherlock et al., 2001a, b; 2004). These BIF are described more in detail in Gourcerol et al., 

2013.  

A.4.2.1.1 Deformation 

The structural setting of the Meadowbank area is complex, consisting of six regional-scale 

ductile deformation events spanning the Neoarchean to Paleoproterozoic (e.g., Henderson et al., 

1991; Ashton, 1985; Pehrsson et al., 2013). The D1 and D2 events had a significant effect on the 

geometry of the mineralized bodies in the Third Portage area (Ashton, 1985; Sherlock et al., 

2004; Janvier et al., 2013). Some relict bedding (S0) is preserved in the quartz arenite and in the 

iron formation (Armitage et al., 1996). D2 represents the main structural event in the 

Meadowbank area (Janvier et al., 2013). 

A.4.2.1.2 Metamorphism 

Three distinct regional metamorphic events are recognized in the Meadowbank area. The 
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M1 is greenschist grade event dated at <2.60 Ga- >1.8-1.9 Ga. The M2 varies across the property 

from a mid-greenschist to amphibolite grade illustrated. This event is dated coeval with D2. The 

M3 shows a mid-upper greenschist to amphibolite grade, characterized by a new generation of 

biotite, garnet, cummingtonite and actinolite and is dated post mineralization (ca. 1.8 Ga). 

A.4.2.1.3 Mineralization  

Five principal mineralized zones are defined (Armitage et al., 1996; Davis and Zaleski, 

1998; Pehrsson et al., 2000; Sherlock et al., 2001a, b; Pehrsson et al., 2004; Hrabi et al., 2003) 

and these are: Vault, North Portage, Third Portage, Bay Zone and Goose Island (Fig. 2.2). 

The orebodies of the Meadowbank Mine in the Central BIF consist of several sub-parallel 

bands of auriferous iron formation. Sherlock et al. (2001a, b) suggested that the orebodies are 

mostly developed at the contact between an ultramafic body and the volcano-sedimentary 

package. According to Armitage et al., (1996) and Sherlock et al., (2001a, b), epigenetic gold 

mineralization is closely associated with D1-D2 deformation and originated from the circulation 

of fluids enriched in Mg, K, Ca, S, As, Cu and Au (Janvier et al., 2013).  

A.5 Analytical methods and data treatment 

Twenty-three samples of iron formation from drill core and outcrop were collected from the 

Musselwhite deposit (i.e., chert-magnetite (4B), garnet-grunerite-(chert) (4EA), garnetiferous 

amphibolite (4E) and garnet-biotite schist (4F)), and thirty-nine from the Meadowbank deposit 

(i.e., the Far West, West IF, Central BIF, East BIF and Grizzly). These samples were selected for 

petrographic study with an emphasis on the chert or chert-carbonate phases. An effort was made 

to avoid BIF with chert bands <0.05 centimeters thick since analysis of such thin bands presents 
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challenges. In addition, chert bands were analyzed in preference to Fe-rich bands to minimize the 

effects of any diagenetic alteration. Polished thin sections from these samples were examined in 

detail, using both transmitted and reflected light microscopy followed by SEM-EDS imaging and 

analysis.  

Trace-elements and REE chemistry was obtained on 100 µm thick polished sections 

following petrographic study. Based on the latter observations, areas for analysis were selected 

to minimize the presence of phases other than silica replacing chert, alteration, and mineral 

inclusions. Analyses were made using a Resonetics Resolution M-50 laser ablation instrument 

coupled to a Thermo X-Series II quadrupole ICP-MS at the Geochemical Fingerprinting 

Laboratory of Laurentian University, in Sudbury, Ontario, using the protocol of Kamber and 

Webb (2007). Line traverses were made on the pre-selected areas using 140 and 190 µm beam 

diameters with a repetition rate of 10 Hz and an energy density of 7 J/cm2. The elemental 

concentrations reported herein represent, therefore, the integrated signal over the length of the 

traverse. The element list used for each analysis included the 14 REEs in addition to Li, Be, Si, 

Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Zr, Nb, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, 

Hf, Ta, W, W, Tl, Pb, Th and U. Silica was used as the internal standard and the NIST 612 glass 

standard was analyzed at the beginning and at the end of each line traverse. The final 

concentrations were determined by integration of the signals over the selected length of the 

traverse. 

Only data from samples where all the REE were above the detection limit are discussed 

below. In addition, the Queensland (MUQ) shale standard was used for normalizing the REE+Y 

values. This shale standard is commonly used for normalization of Archean BIF data due to its 

dominantly mafic volcanic provenance that is similar to the expected average terrigenous input 
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into the ocean from weathering of upper continental crust (e.g., Bolhar et al., 2005; Thurston et 

al., 2011). Furthermore, where discussed below, La, Ce, Eu, Gd anomalies are calculated 

following the procedure of Lawrence and Kamber (2006) and Pr using the procedure of Bau and 

Duslki (1996):  

(La/La)*MUQ = La/(PrMUQ* (PrMUQ/NdMUQ)2) (1) 

(Ce/Ce)*MUQ = Ce/(PrMUQ * (PrMUQ/NdMUQ)) (2) 

(Pr/Pr)*MUQ = Pr/(0.5CeMUQ + 0.5NdMUQ) (3) 

(Eu/Eu)*MUQ = Eu/(SmMUQ
2 * TbMUQ)1/3 (4) 

(Gd/Gd)*MUQ = Gd/(TbMUQ
2 * SmMUQ)1/3 (5) 

(Lu/Lu)*MUQ = Lu/(YbMUQ * (YbMUQ/TmMUQ)) (6) 

A.6 Review of REE+Y systematics in BIF 

The abundance of REE+Y in chert is controlled by three possible processes: (1) precipitation 

from open marine seawater (e.g., Bau and Dulski, 1996); (2) precipitation from hydrothermal 

(i.e., vent sourced) fluids (e.g., Allwood et al., 2010; Danielson et al., 1992); and (3) replacement 

(e.g., Hanor and Duchac, 1990). All of these processes can be influenced by terrigenous input 

(Alexander et al., 2008) and oceanographic processes, such as phosphate precipitation. It is 

customary to normalize samples using a shale standard to minimize the influence of terrigenous 

input. Yttrium is a rare-earth element with a valence of 3+, though not a lanthanide, thus it is 

inserted into the conventional rare-earth diagram between Dy and Ho based on its geochemical 

behavior. Given the large beam size used for the analysis, if other phases were present, they 
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would affect the REE+Y pattern and values for elements such as Ga (i.e., clay mineral 

contamination), Zr (felsic ash contamination), and Th/U (phosphate contamination). In a modern 

setting, the shale normalized REE+Y pattern for material precipitated from seawater shows: 

a. Depletion in light rare-earth elements (LREE) relative to heavy rare-earth elements 

(HREE); 

b. A strongly super-chondritic Y/Ho ratio (i.e., >27), which produces a positive Y anomaly 

that is often between 40-90; 

c. A slightly positive La anomaly (La/La* between 1.15 and 1.3); 

d. A positive Gd anomaly (Gd/Gd* between 1.3 and 1.5); 

e. A well-developed negative Ce anomaly resulting from the oxidation of Ce+3 to Ce+4 in 

the water column;  

f. A minor positive Lu anomaly where analysis of Lu at an appropriate level is available. 

Due to the anoxic character of Archean seawater, the shale-normalized REE+Y patterns for 

Archean seawater is very similar to modern seawater except that Ce shows a negative anomaly 

(Planavsky et al., 2010).  

Based on the above criteria, samples with an Archean seawater pattern should be 

characterized by the following in shale-normalized REE+Y plots: 

a. Depletion in LREE relative to middle (M) and HREE; 

b. A strongly super-chondritic Y/Ho ratio between 50 and 65; 
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c. Positive La and Gd anomalies (0.3 to 0.5 and 0.15 to 0.3, respectively); 

d. Variable, but well-developed positive Eu anomalies (Kamber et al., 2004); 

Positive La, Y and Gd anomalies indicate precipitation from seawater under anoxic 

conditions (absence of a negative Ce anomaly) with the presence of a positive Eu anomaly 

indicating the influence of high temperature (>250°C) hydrothermal fluids (Kamber et al., 2004; 

Bau and Dulski, 1996).  

Hydrothermal precipitates are characterized by the lack of LREE depletion, absence of both 

La and Gd anomalies, and the presence of a variably developed Eu anomaly. Crustal 

contamination may include mineral phases, such as phosphates, clays, and/or resistant minerals 

(e.g., zircon, xenotime, etc.), all of which induce cause a range of effects upon the REE+Y 

patterns depending on their modal abundances.  

A.7 Results  

A.7.1 Musselwhite 

Samples from the chert-magnetite (4B), garnet-grunerite-(chert) (4EA), garnetiferous 

amphibolite (4E) and garnet-biotite schist (4F) were normalized to MUQ (Tables 3.4, 3.5 and 

A.1, and Figs. A.2A, A.3A, A.4A, A.5A).  

REE+Y normalized data for the 4B, 4EA and 4E samples show, with some minor 

exceptions, relatively uniform patterns. The data include a moderate enrichment in the HREEs 

relative to both the LREE and the MREE and La, Gd and Eu positive anomalies (Tables 3.4, 3.5 

and A.1; Figs. A.2A, A.3A, A.4A, A.5A). The garnet-biotite schist (4F) facies samples illustrate, 

however, a different pattern signature and very slightly positive to no Eu anomaly (Fig. A.5A). 
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Due to the low concentrations of the REE+Y, the Y/Ho ratios of samples are weakly positive 

(i.e., chondritic values) and are carefully used in this study. 

The chert-magnetite (4B) facies (Fig. A.2) shows moderate enrichment in the HREE relative 

to both the MREE and the LREE (Nd/YbMUQ = 0.04-0.67), positive La, Gd and Eu anomalies 

(La/La*MUQ = 1.5-2.6, Gd/Gd*MUQ = 0.9-1.2 and Eu/Eu*MUQ = 1.7-3.5; Table 3.4). Samples 

E599668 and E599655 (Fig. A.2A) show, however, stronger enrichment in the MREE relative to 

LREE (Pr/SmMUQ = 0.12-0.36 (Fig. A.2A) relative to the majority of samples. The chert-

magnetite facies illustrates, therefore, both a seawater and hydrothermal component. To 

�X�Q�G�H�U�V�W�D�Q�G���W�K�H���G�L�I�I�H�U�H�Q�F�H���L�Q���W�K�H�����5�(�(���R�I���W�K�H���S�D�W�W�H�U�Q�V�����3�U���6�PMUQ ratios and the Sr, Mn and Ga 

contents are plotted in Figures A.2B, C, and D. The elevated Sr and Mn values (Fig. A.2C and B, 

respectively) suggest samples E599668 and E599655 may be influenced by a source having 

enrichment in Mn and also to some extent Sr (i.e., proxy of calcium). Observations made with 

the SEM-EDS confirmed the presence of iron-amphiboles (grunerite-cummingtonite), but also 

the occurrence of calcium-rich amphiboles (actinolite) and iron-carbonate around the line 

traverse and overprinting the chert that could explain the higher concentrations of both Mn and 

Sr in these samples. 

The data for the garnet-grunerite-(chert) (4EA) (Fig. A.3) indicate the samples can be sub-

divided into two distinct groups: 

(a) Samples E599660, E599662, E599663, E599665 and E599666 show 

enrichment in the HREE relative to both the MREE and the LREE (Nd/YbMUQ = 

0.15-0.46), and negative La, Gd and strong positive Eu anomalies (La/La*MUQ = 0.02-

0.51, Gd/Gd*MUQ = 0.3-0.8, and Eu/Eu*MUQ = 2.1-3.48; Table 3.5). 
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(b) Samples E599654, E599659 and E599667 show variable enrichment in the 

HREE relative to both the MREE and the LREE (Nd/YbMUQ = 0.6-2.97), and positive 

La, Gd and Eu anomalies (La/La*MUQ = 1.5-3.02, Gd/Gd*MUQ = 0.94-1.2, and 

Eu/Eu*MUQ = 2.3-3.9; Table 3.5).  

The first group reflects a strong hydrothermal component without the presence of seawater 

input and the second group reflects a hydrothermal and seawater combination for the formation 

of chert. Based on Pr/SmMUQ ratios and the Mn, Ga and Sr content, these data suggest sample 

E599667 may be influenced by a source enriched in Mn, Sr and Ca (Fig. A.3). Enrichment of 

these elements could be explained by the presence of iron-rich (i.e., grunerite-cummngtonite) 

and aluminium- and calcium-rich (actinolite) (due to high correlation between the two elements) 

amphiboles occurring as inclusions in the chert and around the line traverse as was also 

suggested for the chert-magnetite facies. 

The garnetiferous amphibolite (4E) facies (Fig. A.4) shows enrichment in the HREE relative 

to both the MREE and the LREE (Nd/YbMUQ = 0.16-0.71), and variably developed positive La, 

Gd and Eu anomalies (La/La*MUQ = 0.71-1.6, Gd/Gd*MUQ = 0.92-1.05 and Eu/Eu*MUQ = 2.42-

2.59; Table 3.4). For this facies, both a seawater and hydrothermal contribution are suggested 

from the data. Based on the Pr/SmMUQ ratios and Sr and Ga contents, a correlation is observed 

between Sr and Ga contents for sample E5996551 which suggests the sample may be influenced 

by a Sr-, Ga- rich source (i.e., proxies of Ca and Al; Fig. A.4B, C). This source could be 

explained by presence of aluminium- and calcium-rich (actinolite) amphiboles in the chert 

around the line traverse which would also exp�O�D�L�Q���W�K�H���G�L�I�I�H�U�H�Q�F�H���L�Q�����5�(�(���F�R�Q�W�H�Q�W�V���I�R�U���W�K�H��

samples. However, the low concentration of Ga and particularly Sr in the other samples could be 

due to analytical error. Therefore this discrimination has to be used carefully. 
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Finally, the garnet-biotite schist (4F) facies (Fig. A.5) shows variable enrichment in the 

MREE relative to both the HREE and LREE (Pr/SmMUQ = 0.18-0.8) and only moderate positive 

Eu anomalies (Eu/Eu*MUQ = 1.08-1.94; Table A.1). This unit is distinguished from the other 

units by its REE+Y signature and, furthermore, is similar to the argillite studied by Thurston et al 

(2011) which illustrated only weak hydrothermal influence. Based on Pr/SmMUQ ratios and the Sr 

and Ga contents (Fig. A.5B, C), sample E599657 could be affected by the presence of garnet 

which would explain the Ga/Sr ratios. The other samples show a strong correlation among Sr, Ga 

and Ta content relative to Pr/SmMUQ ratios (Fig. A.5B, C, D), which could be explained by the 

presence of plagioclase and biotite (e.g., Moran, 2008). 

To define the environment of precipitation for the garnet-grunerite-(chert) (4EA) and the 

garnet-biotite schist (4F) facies which only show the hydrothermal influence, the Th/U ratio is 

used. This ratio in epiclastic sedimentary rocks does not vary much and falls close to the Th/U 

ratio of average upper continental crust (i..e., 3.9; Bau and Alexander, 2009). Therefore, in river 

water draining continental areas the ratio will be close to 3.9 (or within a 15% error margin); 

whereas in seawater it will be closer to 1 if it is considered that the Archean seawater is anoxic 

(Fig. A.6A). However, for the Musselwhite samples, all the data plot far from the field for river 

water, hence it is suggested that the initial seawater signature expected in all the BIFs was 

completely overprinted/or replaced due to the influence of a hydrothermal fluid either during or 

post diagenesis in these samples. 

All of the BIF facies in the Musselwhite area show a variable seawater component and 

positive Eu anomalies (Figs. A.2A, A.3A, A.4A, A.5A) which suggest that these samples have 

been influenced by both seawater and hydrothermal fluids. In order to evaluate the contribution 

of end-member seawater and hydrothermal fluids, a conservative mixing calculation was done 
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(Fig. A.7A) which indicates that a high-T hydrothermal fluid contribution of less than 20% is 

needed to produce the observed Eu/Sm ratios (Fig. A.7A). 

A.7.2 Meadowbank 

The data set from the Meadowbank area was reported and discussed by Gourcerol et al. 

(2013). The Far West, West IF, Central BIF, East BIF and Grizzly were analyzed and normalized 

to MUQ (Fig. 2.7) and with some minor exceptions; seawater and hydrothermal inputs were 

observed in each deposit. The West BIF and East IF showed a detrital component, as indicated 

by relatively flat REE patterns, particularly for the LREE. Using a conservative mixing 

calculation, an estimate of the detrital input is calculated for each sample using MUQ as a shale 

reference. 

For the West IF, sample AMB-128328 was used as an initial composition lacking any 

hydrogeneous input which was then mixed incrementally with detritus. The detrital input has the 

effect of producing flatter REE patterns commencing with 0.1% contaminant (Fig. A.8A). The 

contamination is very efficient at modifying the primary REE pattern and, therefore, can account 

for most of the patterns observed for samples from this area. The mixing calculations suggest 

that the majority of samples were affected by less than 5% shale contamination (Fig. A.8B).  

For the East BIF, sample AMB-126246 is used as the initial composition to assess 

contamination. In this case, contamination with shale does not appear to account for the REE 

patterns as well as observed for the West IF (Fig. A.8C) as only four samples (i.e., AMB-

126245, AMB-126247, AMB-126248 and AMB-126250) are located on/or close to the mixing 

trend (Fig. A.8D). Thus it appears that samples from the West IF have been more affected than 

the East BIF by shale contamination, as constrained by the composition used for the mixing 
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calculations. 

For the samples of Meadowbank deposit area, the Th/U versus (Ce/Ce*)MUQ diagram is used 

to further test the importance of seawater (Fig. A.6B). The data confirm the dominance of 

seawater, as suggested previously using the positive La, Gd, Y anomalies and enrichment in 

HREE relative to MREE and LREE. The samples from the West BIF show a larger dispersion 

relative to the other Meadowbank data and, even more so to that observed for the Musselwhite 

samples. This dispersion of data may be produced by the more extensive shale contamination 

postulated for the Meadowbank BIF. This is supported by the conservative mixing calculations 

shown in Figure A.7B which indicate that a high-T hydrothermal fluid contribution of higher 

than 20% is adequate to explain the Eu/Sm ratios 

A.8 Summary and Discussion 

The trace-element signatures for chert in Algoma-type BIFs from these gold deposit settings 

have been determined in order to: (1) constrain the origin of the BIF units, (2) assess the effect of 

superimposed hydrothermal processes possibly related to gold mineralization on the cherts; and 

(3) assess the consequent implications for BIF-hosted gold deposits in general. This report 

represents the second part of this study (Gourcerol et al., 2013). Importantly, in this phase of the 

study we validated the application of using LA ICP-MS analysis in traverse mode on carefully 

selected chert bands within BIFs with the appropriate analytical protocols to provide 

quantitatively meaningful data. It was also shown that these data, when plotted in MUQshale-

normalized patterns, provided internally consistent patterns that reflect the nature and origin of 

the fluids from which the chert precipitated. The consistency of the patterns noted in this study 

indicates that potentially primary chemical signatures have been retained within the selected 
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chert samples despite the fact that several post-formation deformation and metamorphic events, 

in some cases to amphibolite facies, have affected the rocks.  

A.8.1 Implications for the depositional processes of BIFs  

Although Musselwhite and Meadowbank differ in their petrographic features, style of gold 

mineralization and geologic tectonic setting, the chert samples show similar geochemistry and 

depositional setting: 

(1) A seawater component is recognized in most of the BIFs, as reflected by enrichment in 

the HREE relative to LREE and MREE, and positive La, Gd, Y anomalies. In some 

BIFs (e.g., 4EA, 4F), the combination of the Th/U ratios and Eu/Eu* values suggest 

that a hydrothermal component overprinted or replaced the seawater component either 

during or after diagenesis and thus likely during mineralizing processes. 

(2) A hydrothermal contribution is recognized in all the BIFs as reflected in positive Eu 

anomalies. This hydrothermal component is estimated at 0.1 to 30%, using the trace 

element chemistry of black smoker fluids as an end member, thus confirming that BIFs 

formed in areas where black smoker systems formed part of the geological setting. 

(3) A detrital contribution is observable in all the BIFs either as a trace contaminant or 

observable volcanic detritus, depending on the proportion of detritus involved. The 

shale contamination appears, however, to be more significant in the data for samples 

from the West IF and East BIF. 

The results of this study indicate that Algoma-type BIFs were formed in a marine setting 

close to discharge zones for hydrothermal fluids (here, black smoker type fluids). 



 

137 
 

A.8.2 Implications for the gold mineralization 

A significant outcome of this phase of the study is the recognition of a possible chemical 

overprinting by hydrothermal fluids on the cherts bands close to gold mineralized zones, as 

recorded by the modification of the original seawater-type REE+Y patterns. At the Musselwhite 

deposit, this possible overprint is illustrated by the 4EA and 4F units. Although unit 4F is largely 

an argillite and is not strictly considered as a BIF (i.e., as chemical sedimentary rocks composed 

of iron rich mineral interlayered with chert bands but more as an IF (22.7% Fe2O3, n = 70), it 

still is inferred to show the influence of an overprinting hydrothermal fluid. Unit 4EA, a BIF, 

shows strong Eu anomalies that coincide with negative Ce anomalies ((Ce/Ce*)MUQ = 0.04-1.59, 

average = 0.66, standard deviation at 1.13), which should be close to 1 in Archean seawater (i.e., 

anoxic conditions). This unit also represents the more mineralized BIF facies in the Musselwhite 

area. 
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A.10 Figures and Captions 

 

Figure A.1: Geological map of the Musselwhite area (Biczok et al., 2012).  
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Figure A.2: Plots of geochemical data for chert samples from the 4B unit at Musselwhite: A) 

Shale (MUQ) -normalized REE patterns reflecting the influence of ambient seawater and 

hydrothermal fluids; B) plot of Sr vs. Pr/SmMUQ; C) plot of Mn vs. Pr/SmMUQ; D) plot of Ga vs. 

Pr/SmMUQ.  
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Figure A.3: Geochemical data for chert samples from the 4EA unit at Musselwhite: A) Shale 

(MUQ) -normalized REE patterns reflecting the influence of ambient seawater and hydrothermal 

fluids; B) Mn vs. Pr/SmMUQ; C) Ga vs. Pr/SmMUQ; D) Sr vs. /SmMUQ.  
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Figure A.4: Geochemical data for chert samples from the 4E unit at Musselwhite: A) Shale 

(MUQ) -normalized REE patterns reflecting the influence of ambient seawater and hydrothermal 

fluids; B) Sr vs. Pr/SmMUQ; C) Ga vs. Pr/SmMUQ.  
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Figure A.5: Geochemical data for chert samples from the 4F unit at Musselwhite: A) Shale 

(MUQ) -normalized REE patterns reflecting the influence of ambient seawater and hydrothermal 

fluids; B) Sr vs. Pr/SmMUQ; C) Ga vs. Pr/SmMUQ; D) Ta vs. Pr/SmMUQ.  
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Figure A.6: Plot of Th/U versus (Ce/Ce*)MUQ for samples from Musselwhite (A), and 

Meadowbank (B) deposits compared to the fields for river water and seawater based on the 

continental crust Th/U value of 3.9. A margin of errors of 15% is applied here (after Bau and 

Alexander, 2009).  
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Figure A.7: A plot of elemental ratio data (Eu/Sm and Sm/Yb) for samples from Musselwhite 

(A), and Meadowbank (B) deposits which is used to assess potential contamination of samples 

with a high-T hydrothermal fluid, as illustrated with the two-component conservative mixing 

lines. The data for the black smoker fluid is from Bau and Dulski (1999) and data for seawater is 

from Alibo and Nozaki (1999).  
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Figure A.8: Influence of variable detrital contamination on chert samples. Geochemical data for 

chert samples from the West BIF (A) and the East BIF (C) at the Meadowbank deposit compared 

to variable amounts of shale contamination (red lines) using sample AMB-128328 as the initial 

sample without any contamination. A plot of (Nd/Yb)MUQ �Y�H�U�V�X�V�����5�(�(���F�R�Q�W�H�Q�W�����S�S�P�����R�I���V�D�P�S�O�H�V��

from the West BIF (B) and the East BIF (D) in the Meadowbank area. Except for three of the 8 

samples, all are close to or on the mixing line and suggest up to 5% shale contamination.  
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A.11 Table and captions 

Table A.1: Abundances of elements and REE+Y for samples from the 4F facies in the 

Musselwhite area 

 

Samples E599653 E599657 E599658 E599664 E599673
Si (ppm) 437300 418000 423500 450200 367100
Li (ppm) 7.400 4.290 3.390 1.189 0.193
Be (ppm) 0.061 0.061 0.061 0.061 0.061
Sc (ppm) 4.348 3.499 3.542 3.251 3.134
Ti (ppm) 5.710 43.000 185.000 15.200 5.660
V (ppm) 0.325 5.530 11.300 2.770 0.990
Cr (ppm) 4.590 2.770 6.200 2.840 4.050
Mn (ppm) 3.640 59.600 7.400 30.500 11.000
Fe (ppm) 326 1840 3030 1020 700
Co (ppm) 1.620 1.630 4.300 1.730 1.100
Ni (ppm) 43.300 13.700 46.000 15.300 9.100
Cu (ppm) 199.000 55.000 82.000 45.800 21.600
Zn (ppm) 318.000 125.000 59.000 83.800 64.000
Ga (ppm) 0.212 0.763 1.610 1.036 0.159
As (ppm) 2.860 1.205 1.190 1.740 11.000
Rb (ppm) 0.118 3.140 8.100 1.410 0.109
Sr (ppm) 0.344 1.600 1.380 0.730 0.316
Y (ppm) 0.011 0.154 0.097 0.173 0.076
Zr (ppm) 0.570 0.164 0.156 0.142 0.383
Nb (ppm) 0.035 0.084 0.275 0.114 0.046
Mo (ppm) 1.170 0.210 0.330 3.900 0.235
Ag (ppm) 0.359 0.182 1.000 0.187 0.182
Cd (ppm) 2.740 0.993 0.900 1.333 1.321
In (ppm) 0.206 0.084 0.063 0.162 0.130
Sn (ppm) 0.494 0.665 0.990 0.422 0.246
Sb (ppm) 0.941 0.775 0.880 1.260 0.451
Cs (ppm) 0.030 0.118 0.234 0.144 0.073
Ba (ppm) 0.279 2.160 13.600 2.030 0.278
La (ppm) 0.011 0.163 0.151 0.126 0.199
Ce (ppm) 0.058 0.368 0.710 0.360 0.603
Pr (ppm) 0.012 0.041 0.111 0.063 0.088
Nd (ppm) 0.015 0.144 0.710 0.268 0.360
Sm (ppm) 0.018 0.038 0.470 0.150 0.108
Eu (ppm) 0.007 0.020 0.076 0.051 0.024
Gd (ppm) 0.018 0.045 0.350 0.124 0.066
Tb (ppm) 0.004 0.009 0.019 0.015 0.012
Dy (ppm) 0.009 0.032 0.040 0.050 0.026
Ho (ppm) 0.004 0.008 0.004 0.011 0.010
Er (ppm) 0.008 0.020 0.008 0.017 0.008
Tm (ppm) 0.004 0.003 0.003 0.006 0.006
Yb (ppm) 0.011 0.011 0.011 0.011 0.011
Lu (ppm) 0.004 0.003 0.002 0.005 0.006
Hf (ppm) 0.011 0.008 0.008 0.008 0.008
Ta (ppm) 0.008 0.008 0.020 0.014 0.011
W (ppm) 0.540 0.300 0.470 0.374 0.160
Au (ppm) 0.195 0.035 2.700 0.034 0.030
Tl (ppm) 0.335 0.105 0.104 0.135 0.129
Pb (ppm) 10.740 5.720 14.300 6.810 2.850
Th (ppm) 0.007 0.006 0.007 0.014 0.082
U (ppm) 0.025 0.024 0.065 0.093 0.085

Y/Ho 2.545 20.424 22.558 15.175 7.983
Eu/Eu* 1.503 1.942 1.084 1.672 1.068
La/La* 0.024 0.842 0.970 0.631 0.659
Y/Y* 0.115 0.790 1.002 0.753 0.459

Ce/Ce* 0.062 0.878 2.105 0.832 0.922
Gd/Gd* 0.796 0.904 1.818 1.097 0.775
Pr/Sm 0.667 1.073 0.236 0.420 0.815
Nd/Yb 1.310 12.743 62.832 23.717 31.858
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