. Hereafter, we focus on the procedure developed by [Gramacy and Taddy, 2012]. The basic idea is to carry out an estimation of the Sobol' indices from random realisations of the conditional Gaussian Processes

N. A. Abrahamson, State of the practice of seismic hazard assessment, pp.659-685, 2000.

A. , W. Allaire, D. L. Willcox, and K. E. , A variance-based sensitivity index function for factor prioritization, Reliability Engineering & System Safety, vol.107, pp.107-114, 2012.

D. A. Alvarez, Reduction of uncertainty using sensitivity analysis methods for infinite random sets of indexable type, International Journal of Approximate Reasoning, vol.50, issue.5, pp.750-762, 2009.
DOI : 10.1016/j.ijar.2009.02.002

. Antoniadis, Spatio-temporal metamodeling for West African monsoon, Environmetrics, vol.33, issue.6, pp.24-36, 2012.
DOI : 10.1002/env.1134

URL : https://hal.archives-ouvertes.fr/hal-00551303

. Archer, Sensitivity measures,anova-like Techniques and the use of bootstrap, Journal of Statistical Computation and Simulation, vol.2, issue.2, pp.99-120, 1997.
DOI : 10.1142/S0129183195000204

. Ascough, Future research challenges for incorporation of uncertainty in environmental and ecological decision-making, Ecological Modelling, vol.219, issue.3-4, pp.383-399, 2008.
DOI : 10.1016/j.ecolmodel.2008.07.015

. Auder, Screening and metamodeling of computer experiments with functional outputs, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00525491

I. Auder, B. Auder, and B. Iooss, Global sensitivity analysis based on entropy, 2008.

R. Aven, T. Aven, and O. Renn, On risk defined as an event where the outcome is uncertain, Journal of Risk Research, vol.8, issue.1, pp.1-11, 2009.
DOI : 10.1111/j.1539-6924.2007.00909.x

Z. Aven, T. Aven, and E. Zio, Some considerations on the treatment of uncertainties in risk assessment for practical decision making, Reliability Engineering & System Safety, vol.96, issue.1, pp.64-74, 2011.
DOI : 10.1016/j.ress.2010.06.001

E. Borgonovo, A new uncertainty importance measure, Reliability Engineering & System Safety, vol.92, issue.6, pp.771-784, 2007.
DOI : 10.1016/j.ress.2006.04.015

. Bouc, Determining safety criteria for co< sub> 2</sub> geological storage. Energy procedia, pp.2439-2446, 2009.

. Bouchut, . Vincent, J. Bouchut, and M. Vincent, Recensement et analyse des mouvements de terrain survenus en, 2000.

. Boulahya, Footprint@ work, a computing framework for large scale parametric simulations: application to pesticide risk assessment and management, 2007.

C. B. Brown, A fuzzy safety measure, Journal of the Engineering Mechanics Division, vol.105, issue.5, pp.855-872, 1979.

. Busby, Reservoir forecasting under uncertainty: an integrated approach, International Meeting on Complexity in Oil Industry, pp.5-9, 2007.

. Byrd, A Limited Memory Algorithm for Bound Constrained Optimization, SIAM Journal on Scientific Computing, vol.16, issue.5, pp.1190-1208, 1995.
DOI : 10.1137/0916069

. Cabantous, Is imprecise knowledge better than conflicting expertise? Evidence from insurers??? decisions in the United States, Journal of Risk and Uncertainty, vol.109, issue.4, pp.211-232, 2011.
DOI : 10.1007/s11166-011-9117-1

Z. Caers, J. Caers, and T. Zhang, Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into multiple reservoir models, 2004.

. Campbell, Sensitivity analysis when model outputs are functions, Reliability Engineering & System Safety, vol.91, issue.10-11, pp.911468-1472, 2006.
DOI : 10.1016/j.ress.2005.11.049

. Campolongo, From screening to quantitative sensitivity analysis. A unified approach, Computer Physics Communications, vol.182, issue.4, pp.978-988, 2011.
DOI : 10.1016/j.cpc.2010.12.039

. Carter, Our calibrated model has poor predictive value: An example from the petroleum industry, Reliability Engineering & System Safety, vol.91, issue.10-11, pp.911373-1381, 2006.
DOI : 10.1016/j.ress.2005.11.033

. Cauvin, Dealing with uncertainties in the context of post mining hazard evaluation, Post-Mining 2008. Symposium Proceedings, 2008.
URL : https://hal.archives-ouvertes.fr/ineris-00973289

B. D. Collins and N. Sitar, Stability of Steep Slopes in Cemented Sands, Journal of Geotechnical and Geoenvironmental Engineering, vol.137, issue.1, pp.43-51, 2010.
DOI : 10.1061/(ASCE)GT.1943-5606.0000396

. Couso, Second order possibility measure induced by a fuzzy random variable, Statistical modeling, analysis and management of fuzzy data, pp.127-144, 2002.
DOI : 10.1007/978-3-7908-1800-0_9

. Couso, . Sánchez, I. Couso, and L. Sánchez, Higher order models for fuzzy random variables. Fuzzy Sets and Systems, pp.237-258, 2008.

E. Cox, The Fuzzy Systems Handbook: A Practitioner's Guide to Building, Using, and Maintaining Fuzzy Systems, 1994.

S. Tarantola, Uncertainty and sensitivity analysis: tools for gis-based model implementation, International Journal of Geographical Information Science, vol.15, issue.5, pp.415-437, 2001.

. Crowley, The impact of epistemic uncertainty on an earthquake loss model. Earthquake engineering & structural dynamics, pp.341653-1685, 2005.

D. Bibliography, A. Cooman, G. Cooman, and D. Aeyels, Supremum preserving upper probabilities, Information Sciences, vol.118, issue.1, pp.173-212, 1999.

F. De, B. De-finetti-]-de-finetti, and B. De-finetti, Theory of probability, volume i, Bull. Amer. Math. Soc, vol.83, pp.94-97, 1977.

. De-rocquigny, Uncertainty in industrial practice: a guide to quantitative uncertainty management, 2008.
DOI : 10.1002/9780470770733

T. Verdel, Uncertainties and risk analysis related to geohazards: From practical applications to research trends. Risk management for the future?theory and cases, 2012.

A. P. Dempster, Upper and lower probabilities induced by a multivalued mapping. The annals of mathematical statistics, pp.325-339, 1967.

. Dewez, Probabilistic coastal cliff collapse hazard from repeated terrestrial laser surveys: case study from Mesnil Val (Normandy, northern France), Journal of Coastal Research, vol.65, pp.702-707, 2013.
DOI : 10.2112/SI65-119.1

URL : https://hal.archives-ouvertes.fr/hal-00796550

O. Ditlevsen, Distribution arbitrariness in structural reliability. Structural Safety and Reliability, pp.1241-1247, 1994.

P. Drucker, D. C. Drucker, and W. Prager, Soil mechanics and plastic analysis or limit design, Quarterly of Applied Mathematics, vol.10, issue.2, pp.157-165, 1952.
DOI : 10.1090/qam/48291

D. Dubois, Possibility theory and statistical reasoning, Computational Statistics & Data Analysis, vol.51, issue.1, pp.47-69, 2006.
DOI : 10.1016/j.csda.2006.04.015

D. Dubois, Uncertainty theories: a unified view, IEEE Cybernetic Systems Conference, pp.4-9, 2007.

D. Dubois, The Role of Epistemic Uncertainty in Risk Analysis, Scalable Uncertainty Management, pp.11-15, 2010.
DOI : 10.1007/978-3-642-15951-0_5

. Dubois, An information-based discussion of vagueness, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297), pp.781-784, 2001.
DOI : 10.1109/FUZZ.2001.1009071

G. Dubois, D. Dubois, and D. Guyonnet, Risk-informed decision-making in the presence of epistemic uncertainty, International Journal of General Systems, vol.2, issue.2, pp.40145-167, 2011.
DOI : 10.1016/0165-0114(78)90029-5

URL : https://hal.archives-ouvertes.fr/hal-00578821

. Dubois, Possibility Theory, Probability and Fuzzy Sets Misunderstandings, Bridges and Gaps, Fundamentals of fuzzy sets, pp.343-438, 2000.
DOI : 10.1007/978-1-4615-4429-6_8

P. Dubois, D. Dubois, and H. Prade, Possibility theory, 1988.
URL : https://hal.archives-ouvertes.fr/hal-01136336

P. Dubois, D. Dubois, and H. Prade, When upper probabilities are possibility measures. Fuzzy sets and systems, pp.65-74, 1992.

P. Dubois, D. Dubois, and H. Prade, Possibility theory and data fusion in poorly informed environments, Control Engineering Practice, vol.2, issue.5, pp.811-823, 1994.
DOI : 10.1016/0967-0661(94)90346-8

. Eidsvig, Quantification of model uncertainty in debris flow vulnerability assessment, Engineering Geology, vol.181, 2014.
DOI : 10.1016/j.enggeo.2014.08.006

. Einstein, H. H. Baecher-]-einstein, and G. B. Baecher, Probabilistic and statistical methods in engineering geology. Rock mechanics and rock engineering, pp.39-72, 1983.

. El-ramly, Probabilistic slope stability analysis for practice, Canadian Geotechnical Journal, vol.39, issue.3, pp.665-683, 2002.
DOI : 10.1139/t02-034

. Bibliography and Y. El-shayeb-]-el-shayeb, Apport de la logique floue à l'évaluation de l'aléa mouvement de terrain des sites géotechniques: propositions pour une méthodologie générale, 1999.

. Eldred, Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation, Reliability Engineering & System Safety, vol.96, issue.9, pp.961092-1113, 2011.
DOI : 10.1016/j.ress.2010.11.010

B. R. Ellingwood and K. Kinali, Quantifying and communicating uncertainty in seismic risk assessment, Structural Safety, vol.31, issue.2, pp.31179-187, 2009.
DOI : 10.1016/j.strusafe.2008.06.001

D. Ellsberg, Risk, ambiguity, and the savage axioms. The quarterly journal of economics, pp.643-669, 1961.

G. Ercanoglu and C. Gokceoglu, Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (west black sea region, turkey) Engineering Geology, pp.75229-250, 2004.

E. Esterhuizen, G. S. Esterhuizen, and J. L. Ellenberger, Effects of weak bands on pillar stability in stone mines: field observations and numerical model assessment, Proceedings of the 26th International Conference on Ground Control in Mining, pp.336-342, 2007.

W. Fellin, Ambiguity of safety definition in geotechnical models, Analyzing uncertainty in civil engineering, pp.17-31, 2005.
DOI : 10.1007/3-540-26847-2_2

S. Ferson, What Monte Carlo methods cannot do, Human and Ecological Risk Assessment: An International Journal, vol.4, issue.4, pp.990-1007, 1996.
DOI : 10.1016/0888-613X(90)90022-T

. Ferson, S. Ginzburg-]-ferson, and L. R. Ginzburg, Different methods are needed to propagate ignorance and variability, Reliability Engineering & System Safety, vol.54, issue.2-3, pp.133-144, 1996.
DOI : 10.1016/S0951-8320(96)00071-3

. Ferson, Constructing probability boxes and Dempster-Shafer structures, 2002.
DOI : 10.2172/809606

T. Ferson, S. Tucker-]-ferson, T. Tucker, and W. , Sensitivity analysis using probability bounding, Reliability Engineering & System Safety, vol.91, issue.10-11, pp.911435-1442, 2006.
DOI : 10.1016/j.ress.2005.11.052

. Forrester, Engineering design via surrogate modelling: a practical guide, 2008.
DOI : 10.1002/9780470770801

S. Friedman, J. H. Friedman, and W. Stuetzle, Projection Pursuit Regression, Journal of the American Statistical Association, vol.4, issue.376, pp.76817-823, 1981.
DOI : 10.1080/01621459.1981.10477729

. Gelman, Bayesian data analysis, 2013.

. Geman, S. Geman-]-geman, and D. Geman, Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, issue.6, pp.721-741, 1984.

S. Ghanem, R. G. Ghanem, and P. D. Spanos, Stochastic finite elements: a spectral approach, 1991.
DOI : 10.1007/978-1-4612-3094-6

M. A. Gil, Fuzzy random variables, Information Sciences, vol.133, issue.1-2, pp.1-2, 2001.
DOI : 10.1016/S0020-0255(01)00072-X

. Ginsbourger, A note on the choice and the estimation of Kriging models for the analysis of deterministic computer experiments, Applied Stochastic Models in Business and Industry, vol.21, issue.7, pp.115-131, 2009.
DOI : 10.1002/asmb.741

URL : https://hal.archives-ouvertes.fr/hal-00270173

. Giovinazzi, . Lagomarsino, S. Giovinazzi, and S. Lagomarsino, A macroseismic method for the vulnerability assessment of buildings, 13th World Conference on Earthquake Engineering, pp.1-6, 2004.

. Gorsevski, Spatially and temporally distributed modeling of landslide susceptibility, Geomorphology, vol.80, issue.3-4, pp.80178-198, 2006.
DOI : 10.1016/j.geomorph.2006.02.011

R. B. Gramacy, Bayesian treed Gaussian process models, 2005.

R. B. Gramacy, Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models, Journal of Statistical Software, vol.19, issue.9, p.6, 2007.
DOI : 10.18637/jss.v019.i09

R. B. Gramacy and H. K. Lee, Adaptive Design and Analysis of Supercomputer Experiments, Technometrics, vol.51, issue.2, pp.130-145, 2009.
DOI : 10.1198/TECH.2009.0015

L. Gramacy, R. B. Gramacy, and H. K. Lee, Cases for the nugget in modeling computer experiments, Statistics and Computing, vol.4, issue.4, pp.713-722, 2012.
DOI : 10.1007/s11222-010-9224-x

. Gramacy, . Taddy, R. B. Gramacy, and M. Taddy, Categorical inputs, sensitivity analysis, optimization and importance tempering with tgp version 2, an r package for treed gaussian process models, Journal of Statistical Software, issue.i06, p.33, 2012.

G. Grünthal, Cahiers du centre européen de géodynamique et de séismologie: Volume 15?european macroseismic scale 1998, European Center for Geodynamics and Seismology, 1998.

. Guo, . Du, J. Guo, and X. Du, Sensitivity Analysis with Mixture of Epistemic and Aleatory Uncertainties, AIAA Journal, vol.45, issue.9, pp.2337-2349, 2007.
DOI : 10.2514/1.28707

H. Gzyl, The method of maximum entropy, World Scientific Singapore, 1995.

J. W. Hall, Uncertainty-based sensitivity indices for imprecise probability distributions, Reliability Engineering & System Safety, vol.91, issue.10-11, pp.911443-1451, 2006.
DOI : 10.1016/j.ress.2005.11.042

. Hamm, Variance-based sensitivity analysis of the probability of hydrologically induced slope instability, Computers & Geosciences, vol.32, issue.6, pp.32803-817, 2006.
DOI : 10.1016/j.cageo.2005.10.007

S. Handcock, M. S. Handcock, and M. L. Stein, A Bayesian Analysis of Kriging, Technometrics, vol.21, issue.3, pp.403-410, 1993.
DOI : 10.1080/00401706.1993.10485354

A. Hansen, Landslide hazard analysis, Slope Instability, pp.523-602, 1984.

. Hastie, The elements of statistical learning, 2009.

W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.
DOI : 10.1093/biomet/57.1.97

. Helbert, Assessment of uncertainty in computer experiments from Universal to Bayesian Kriging, Applied Stochastic Models in Business and Industry, vol.96, issue.2, pp.99-113, 2009.
DOI : 10.1002/asmb.743

URL : https://hal.archives-ouvertes.fr/hal-00407651

J. C. Helton, Treatment of Uncertainty in Performance Assessments for Complex Systems, Risk Analysis, vol.2, issue.4, pp.483-511, 1994.
DOI : 10.1016/0951-8320(93)90097-I

. Helton, Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty, Reliability Engineering & System Safety, vol.91, issue.10-11, pp.911414-1434, 2006.
DOI : 10.1016/j.ress.2005.11.055

. Helton, Survey of samplingbased methods for uncertainty and sensitivity analysis, Reliability Engineering & System Safety, issue.10, pp.911175-1209, 2006.

O. Helton, J. C. Helton, and W. Oberkampf, Alternative representations of epistemic uncertainty, Reliability Engineering & System Safety, vol.85, issue.1-3, pp.1-10, 2004.
DOI : 10.1016/j.ress.2004.03.001

A. Hemez, F. M. Hemez, and S. Atamturktur, The dangers of sparse sampling for the quantification of margin and uncertainty, Reliability Engineering & System Safety, vol.96, issue.9, pp.1220-1231, 2011.
DOI : 10.1016/j.ress.2011.02.015

. Higdon, Computer Model Calibration Using High-Dimensional Output, Journal of the American Statistical Association, vol.103, issue.482, 2008.
DOI : 10.1198/016214507000000888

. Hill, Risk assessment and uncertainty in natural hazards. Risk and uncertainty assessment for natural hazards, pp.1-18, 2013.

. Hoeting, Bayesian model averaging: a tutorial, Statistical science, pp.382-401, 1999.

C. Holden, Kinematic Source Model of the 22 February 2011 Mw 6.2 Christchurch Earthquake Using Strong Motion Data, Seismological research letters, pp.783-788, 2011.
DOI : 10.1785/gssrl.82.6.783

S. Homma, T. Homma, and A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering & System Safety, vol.52, issue.1, pp.1-17, 1996.
DOI : 10.1016/0951-8320(96)00002-6

J. Hujeux, Une loi de comportement pour le chargement cyclique des sols, Génie parasismique, pp.278-302, 1985.

. Igusa, Bayesian analysis of uncertainty for structural engineering applications, Structural Safety, vol.24, issue.2-4, pp.165-186, 2002.
DOI : 10.1016/S0167-4730(02)00023-1

B. Iooss, Revue sur l'analyse de sensibilité globale de modèles numériques, Journal de la Société Française de Statistique, pp.3-25, 2011.

. Janon, UNCERTAINTIES ASSESSMENT IN GLOBAL SENSITIVITY INDICES ESTIMATION FROM METAMODELS, International Journal for Uncertainty Quantification, vol.4, issue.1, 2014.
DOI : 10.1615/Int.J.UncertaintyQuantification.2012004291

URL : https://hal.archives-ouvertes.fr/inria-00567977

I. Jolliffe, Principal component analysis, 2005.
DOI : 10.1007/978-1-4757-1904-8

. Jones, Efficient global optimization of expensive black-box functions, Journal of Global Optimization, vol.13, issue.4, pp.455-492, 1998.
DOI : 10.1023/A:1008306431147

G. Kaplan, S. Kaplan, and B. J. Garrick, On The Quantitative Definition of Risk, Risk Analysis, vol.165, issue.3, pp.11-27, 1981.
DOI : 10.1111/j.1539-6924.1981.tb01350.x

. Karimi, . Hüllermeier, I. Karimi, and E. Hüllermeier, Risk assessment system of natural hazards: A new approach based on fuzzy probability. Fuzzy Sets and Systems, pp.987-999, 2007.

. Bibliography, O. Kennedy, M. C. Kennedy, O. Hagan, and A. , Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.63, issue.3, pp.425-464, 2001.

J. M. Keynes, A treatise on probability, 1921.
DOI : 10.1007/978-1-349-00843-8

A. D. Kiureghian and O. Ditlevsen, Aleatory or epistemic? does it matter? Structural Safety, pp.31105-112, 2009.

J. P. Kleijnen, An overview of the design and analysis of simulation experiments for sensitivity analysis, European Journal of Operational Research, vol.164, issue.2, pp.287-300, 2005.
DOI : 10.1016/j.ejor.2004.02.005

G. J. Klir, IS THERE MORE TO UNCERTAINTY THAN SOME PROBABILITY THEORISTS MIGHT HAVE US BELIEVE?*, International Journal of General Systems, vol.15, issue.4, pp.347-378, 1989.
DOI : 10.1080/03081078908935057

G. J. Klir, On the alleged superiority of probabilistic representation of uncertainty, IEEE Transactions on Fuzzy Systems, vol.2, issue.1, pp.27-31, 1994.
DOI : 10.1109/91.273119

. Klir, . Wierman, G. J. Klir, and M. J. Wierman, Uncertainty-based information: elements of generalized information theory, 1999.
DOI : 10.1007/978-3-7908-1869-7

F. H. Knight, From Risk, Uncertainty, and Profit, 1921.
DOI : 10.1017/CBO9780511817410.005

O. Koehler, J. Koehler, and A. Owen, Computer experiments. Handbook of statistics, pp.261-308, 1996.

. Konikow, . Bredehoeft, L. F. Konikow, and J. D. Bredehoeft, Ground-water models cannot be validated, Advances in Water Resources, vol.15, issue.1, pp.75-83, 1992.
DOI : 10.1016/0309-1708(92)90033-X

D. Krige, A statistical approach to some basic mine valuation problems on the witwatersrand, Journal of Chemical, 1951.

. Kucherenko, The identification of model effective dimensions using global sensitivity analysis, Reliability Engineering & System Safety, vol.96, issue.4, pp.440-449, 2011.
DOI : 10.1016/j.ress.2010.11.003

. Lagomarsino, . Giovinazzi, S. Lagomarsino, and S. Giovinazzi, Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings, Bulletin of Earthquake Engineering, vol.23, issue.4, pp.415-443, 2006.
DOI : 10.1007/s10518-006-9024-z

. Laloui, Hydro-mechanical modeling of crises of large landslides: application to the La Frasse Landslide, 9th International Symp. on Landslides, number LMS-CONF-2004-008, pp.1103-1110, 2004.
DOI : 10.1201/b16816-163

. Lamboni, Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models, Reliability Engineering & System Safety, vol.96, issue.4, pp.450-459, 2011.
DOI : 10.1016/j.ress.2010.12.002

URL : https://hal.archives-ouvertes.fr/hal-00999840

D. Langewisch and G. Apostolakis, A comparison of polynomial response surfaces and gaussian processes as metamodels for uncertainty analysis with long-running computer codes, the 10th International Probabilistic Safety Assessment & Management Conference, 2010.

]. Gratiet and L. , Multi-fidelity Gaussian process regression for computer experiments, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00866770

[. Gratiet, A Bayesian Approach for Global Sensitivity Analysis of (Multifidelity) Computer Codes, SIAM/ASA Journal on Uncertainty Quantification, vol.2, issue.1, pp.336-363, 2014.
DOI : 10.1137/130926869

URL : https://hal.archives-ouvertes.fr/hal-00842432

. Li, Regional sensitivity analysis of aleatory and epistemic uncertainties on failure probability, Mechanical Systems and Signal Processing, vol.46, issue.2, pp.209-226, 2014.
DOI : 10.1016/j.ymssp.2014.02.006

. Li, . Lu, L. Li, and Z. Lu, Regional importance effect analysis of the input variables on failure probability, Computers & Structures, vol.125, pp.74-85, 2013.
DOI : 10.1016/j.compstruc.2013.04.026

L. Lilburne and S. Tarantola, Sensitivity analysis of spatial models, International Journal of Geographical Information Science, vol.58, issue.2, pp.151-168, 2009.
DOI : 10.1016/j.ress.2005.11.048

D. Lindley, Understanding uncertainty? john wiley and sons, 2006.

D. V. Lindley, The Philosophy of Statistics, Journal of the Royal Statistical Society: Series D (The Statistician), vol.49, issue.3, pp.293-337, 2000.
DOI : 10.1111/1467-9884.00238

. Lockwood, Mixed Aleatory/Epistemic Uncertainty Quantification for Hypersonic Flows via Gradient-Based Optimization and Surrogate Models, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, pp.9-12, 2012.
DOI : 10.2514/6.2012-1254

M. Lopez-caballero, F. Lopez-caballero, M. Farahmand-razavi, and A. , Numerical simulation of liquefaction effects on seismic SSI, Soil Dynamics and Earthquake Engineering, vol.28, issue.2, pp.85-98, 2008.
DOI : 10.1016/j.soildyn.2007.05.006

URL : https://hal.archives-ouvertes.fr/hal-00265121

. Lopez-caballero, Nonlinear numerical method for earthquake site response analysis I ??? elastoplastic cyclic model and parameter identification strategy, Bulletin of Earthquake Engineering, vol.117, issue.1, pp.303-323, 2007.
DOI : 10.1007/s10518-007-9032-7

URL : https://hal.archives-ouvertes.fr/hal-00179375

. Lophaven, Dace-a matlab kriging toolbox, version 2.0, 2002.

. Loschetter, Dealing with uncertainty in risk assessments in early stages of a CO2 geological storage project: comparison of pure-probabilistic and fuzzy-probabilistic frameworks, Stochastic Environmental Research and Risk Assessment, pp.1-17, 2015.
DOI : 10.1007/s00477-015-1035-3

Z. Ma, X. Ma, and N. Zabaras, Kernel principal component analysis for stochastic input model generation, Journal of Computational Physics, vol.230, issue.19, pp.7311-7331, 2011.
DOI : 10.1016/j.jcp.2011.05.037

. Marrel, Calculations of Sobol indices for the Gaussian process metamodel, Reliability Engineering & System Safety, vol.94, issue.3, pp.94742-751, 2009.
DOI : 10.1016/j.ress.2008.07.008

URL : https://hal.archives-ouvertes.fr/hal-00239494

. Marrel, An efficient methodology for modeling complex computer codes with Gaussian processes, Computational Statistics & Data Analysis, vol.52, issue.10, pp.524731-4744, 2008.
DOI : 10.1016/j.csda.2008.03.026

URL : https://hal.archives-ouvertes.fr/hal-00239492

. Marzocchi, Quantifying probabilities of volcanic events: The example of volcanic hazard at Mount Vesuvius, Journal of Geophysical Research: Solid Earth, vol.92, issue.B2, p.109, 1978.
DOI : 10.1007/s00445-003-0309-7

. Masson, . Denoeux, M. Masson, and T. Denoeux, Inferring a possibility distribution from empirical data. Fuzzy sets and systems, pp.319-340, 2006.

B. Matti, . École, . Fédérale, and . Lausanne, Geological heterogeneity in landslides: characterization and flow modelling, 2008.

. Mckay, Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.21, issue.2, pp.239-245, 1979.

S. Mishra, Assigning probability distributions to input parameters of performance assessment models, Swedish Nuclear Fuel and Waste Management Co, 2002.

. Modaressi, Computer-aided seismic analysis of soils, 1997.

J. Morio, Influence of input pdf parameters of a model on a failure probability estimation. Simulation Modelling Practice and Theory, pp.2244-2255, 2011.

M. D. Morris, Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics, vol.1, issue.2, pp.161-174, 1991.
DOI : 10.2307/1266468

R. Nachbaur, A. Nachbaur, and J. Rohmer, Managing expert-information uncertainties for assessing collapse susceptibility of abandoned underground structures, Engineering Geology, vol.123, issue.3, pp.166-178, 2011.
DOI : 10.1016/j.enggeo.2011.07.007

URL : https://hal.archives-ouvertes.fr/hal-00657797

R. M. Neal, Monte carlo implementation of gaussian process models for bayesian regression and classification, 1997.

B. Nilsen, New trends in rock slope stability analyses, Bulletin of Engineering Geology and the Environment, vol.58, issue.3, pp.173-178, 2000.
DOI : 10.1007/s100640050072

T. Aven, Models and model uncertainty in the context of risk analysis, Reliability Engineering & System Safety, vol.79, issue.3, pp.309-317, 2003.

O. Oakley, J. E. Oakley, O. Hagan, and A. , Probabilistic sensitivity analysis of complex models: a Bayesian approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.34, issue.3, pp.66751-769, 2004.
DOI : 10.1214/ss/1009213004

W. Fellin, From probability to fuzzy sets: the struggle for meaning in geotechnical risk assessment, Conference Report, pp.1-10, 2002.

. Oberguggenberger, Classical and imprecise probability methods for sensitivity analysis in engineering: A case study, International Journal of Approximate Reasoning, vol.50, issue.4, pp.680-693, 2009.
DOI : 10.1016/j.ijar.2008.09.004

A. O-'hagan-]-o-'hagan, Bayesian analysis of computer code outputs: a tutorial, Reliability Engineering & System Safety, issue.10, pp.911290-1300, 2006.

O. Hagan, A. Oakley, and J. E. , Probability is perfect, but we can't elicit it perfectly, Reliability Engineering & System Safety, vol.85, issue.1-3, pp.239-248, 2004.
DOI : 10.1016/j.ress.2004.03.014

C. Oliver, D. S. Oliver, and Y. Chen, Recent progress on reservoir history matching: a review, Computational Geosciences, vol.42, issue.3, pp.185-221, 2011.
DOI : 10.1007/s10596-010-9194-2

. Olivier, Contribution of Physical Modelling to Landslide Hazard Mapping: Case of the French Basque Coast, Landslide Science and Practice, pp.109-118, 2013.
DOI : 10.1007/978-3-642-31427-8_14

URL : https://hal.archives-ouvertes.fr/hal-00619296

L. Papadrakakis and N. D. Lagaros, Reliability-based structural optimization using neural networks and Monte Carlo simulation, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.32, pp.1913491-3507, 2002.
DOI : 10.1016/S0045-7825(02)00287-6

B. Pappenberger, F. Pappenberger, and K. J. Beven, Ignorance is bliss: Or seven reasons not to use uncertainty analysis, Water Resources Research, vol.11, issue.4, 2006.
DOI : 10.1007/s00477-005-0006-5

. Bibliography and . Pappenberger, Review of sensitivity analysis methods Modelling aspects of water framework directive implementation, pp.191-265, 2010.

. Park, Probabilistic analysis of rock slope stability and random properties of discontinuity parameters, interstate highway 40, western north carolina, usa. Engineering Geology, pp.79230-250, 2005.

. Park, . Baek, J. Park, and J. Baek, Efficient computation of maximum likelihood estimators in a spatial linear model with power exponential covariogram, Computers & Geosciences, vol.27, issue.1, pp.1-7, 2001.
DOI : 10.1016/S0098-3004(00)00016-9

G. Parry and M. Drouin, Risk-informed regulatory decision-making at the us nrc: dealing with model uncertainty. Nuclear Regulatory Commission, p.2009, 2009.

E. Paté-cornell, Risk and Uncertainty Analysis in Government Safety Decisions, Risk Analysis, vol.27, issue.4, pp.633-646, 2002.
DOI : 10.1111/0272-4332.00043

D. Patt, A. Patt, and S. Dessai, Communicating uncertainty: lessons learned and suggestions for climate change assessment, Comptes Rendus Geoscience, vol.337, issue.4, pp.425-441, 2005.
DOI : 10.1016/j.crte.2004.10.004

. Pedroni, Hierarchical propagation of probabilistic and non-probabilistic uncertainty in the parameters of a risk model, Computers & Structures, vol.126, pp.199-213, 2013.
DOI : 10.1016/j.compstruc.2013.02.003

URL : https://hal.archives-ouvertes.fr/hal-00839639

I. Piedra-morales-]-piedra-morales, Carrière de beauregard, à pont evêque (38), analyse de la stabilité et définition des moyens à mettre en oeuvre pour assurer la sécurité BRGM (French geological survey) technical report RR, p.34089, 1991.

C. Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2014.

. Rabinowitz, N. Steinberg-]-rabinowitz, and D. M. Steinberg, Seismic hazard sensitivity analysis: a multi-parameter approach, pp.796-817, 1991.

R. , S. Ramsay, J. Silverman, and B. , Functional data analysis, 2005.

W. Rasmussen, C. Rasmussen, and C. Williams, Gaussian Processes in Machine Learning, 2006.
DOI : 10.1162/089976602317250933

. Ratto, Sensitivity analysis in model calibration: GSA-GLUE approach, Computer Physics Communications, vol.136, issue.3, pp.212-224, 2001.
DOI : 10.1016/S0010-4655(01)00159-X

. Raufaste, Testing the descriptive validity of possibility theory in human judgments of uncertainty, Artificial Intelligence, vol.148, issue.1-2, pp.197-218, 2003.
DOI : 10.1016/S0004-3702(03)00021-3

URL : https://hal.archives-ouvertes.fr/hal-00109814

M. D. Rogers, Risk analysis under uncertainty, the Precautionary Principle, and the new EU chemicals strategy, Regulatory Toxicology and Pharmacology, vol.37, issue.3, pp.370-381, 2003.
DOI : 10.1016/S0273-2300(03)00030-8

J. Rohmer, Dynamic sensitivity analysis of long-running landslide models through basis set expansion and meta-modelling, Natural Hazards, vol.2, issue.56???61, pp.1-18, 2013.
DOI : 10.1007/s11069-012-0536-3

URL : https://hal.archives-ouvertes.fr/hal-00853933

. Rohmer, J. Baudrit-]-rohmer, and C. Baudrit, The use of the possibility theory to investigate the epistemic uncertainties within scenario-based earthquake risk assessments, Natural Hazards, vol.1, issue.3, pp.613-632, 2011.
DOI : 10.1007/s11069-010-9578-6

URL : https://hal.archives-ouvertes.fr/hal-00531772

. Rohmer, J. Foerster-]-rohmer, and E. Foerster, Global sensitivity analysis of large-scale numerical landslide models based on Gaussian-Process meta-modeling, Computers & Geosciences, vol.37, issue.7, pp.917-927, 2011.
DOI : 10.1016/j.cageo.2011.02.020

. Rohmer, . Verdel, J. Rohmer, and T. Verdel, Joint exploration of regional importance of possibilistic and probabilistic uncertainty in stability analysis, Computers and Geotechnics, vol.61, pp.308-315, 2014.
DOI : 10.1016/j.compgeo.2014.05.015

URL : https://hal.archives-ouvertes.fr/hal-01104565

. Rougier, . Beven, J. Rougier, and K. J. Beven, Model and data limitations: the sources and implications of epistemic uncertainty. Risk and Uncertainty Assessment for Natural Hazards, p.40, 2013.

. Roustant, Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization, Journal of Statistical Software, vol.51, issue.1, pp.1-55, 2012.
DOI : 10.18637/jss.v051.i01

URL : https://hal.archives-ouvertes.fr/hal-00495766

. Sacks, Design and analysis of computer experiments. Statistical science, pp.409-423, 1989.

. Saeidi, Comparison of Building Damage Assessment Methods for Risk Analysis in Mining Subsidence Regions, Geotechnical and Geological Engineering, vol.91, issue.5, pp.311073-1088, 2013.
DOI : 10.1007/s10706-013-9633-7

. Saint-geours, Computing first-order sensitivity indices with contribution to the sample mean plot, Journal of Statistical Computation and Simulation, vol.51, issue.1, pp.851334-1357, 2015.
DOI : 10.1057/jos.2013.16

A. Saltelli, Making best use of model evaluations to compute sensitivity indices, Computer Physics Communications, vol.145, issue.2, pp.280-297, 2002.
DOI : 10.1016/S0010-4655(02)00280-1

. Saltelli, . Annoni, A. Saltelli, and P. Annoni, How to avoid a perfunctory sensitivity analysis, Environmental Modelling & Software, vol.25, issue.12, pp.1508-1517, 2010.
DOI : 10.1016/j.envsoft.2010.04.012

. Saltelli, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer Physics Communications, vol.181, issue.2, pp.259-270, 2010.
DOI : 10.1016/j.cpc.2009.09.018

. Saltelli, Global sensitivity analysis: the primer, 2008.
DOI : 10.1002/9780470725184

. Saltelli, A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output, Technometrics, vol.60, issue.1, pp.4139-56, 1999.
DOI : 10.1007/BF01166355

. Santner, The design and analysis of computer experiments, 2003.
DOI : 10.1007/978-1-4757-3799-8

. Sarma, Kernel Principal Component Analysis for Efficient, Differentiable Parameterization of Multipoint Geostatistics, Mathematical Geosciences, vol.34, issue.3, pp.3-32, 2008.
DOI : 10.1007/s11004-007-9131-7

L. Savage, The Foundations of Statistics, 1954.

. Schmidt, Probabilistic forecasting of shallow, rainfall-triggered landslides using real-time numerical weather predictions, Natural Hazards and Earth System Science, vol.8, issue.2, pp.349-357, 2008.
DOI : 10.5194/nhess-8-349-2008

URL : https://hal.archives-ouvertes.fr/hal-00299512

S. Schneider and R. Moss, Uncertainties in the ipcc tar. recommendations to lead authors for more consistent assessment and reporting, 1999.

. Shafer, A mathematical theory of evidence, 1976.

P. Smets, Belief functions on real numbers, International Journal of Approximate Reasoning, vol.40, issue.3, pp.181-223, 2005.
DOI : 10.1016/j.ijar.2005.04.001

'. Sobol and I. M. , On sensitivity estimation for nonlinear mathematical models, Matematicheskoe Modelirovanie, vol.2, issue.1, pp.112-118, 1990.

. Bibliography, Estimating the approximation error when fixing unessential factors in global sensitivity analysis, Reliability Engineering & System Safety, issue.7, pp.92957-960, 2007.

. Song, The uncertainty importance measures of the structural system in view of mixed uncertain variables. Fuzzy Sets and Systems, pp.25-35, 2014.

S. Steimen, Uncertainties in earthquake Scenarios, 2004.

M. L. Stein, Interpolation of spatial data: some theory for kriging, 1999.
DOI : 10.1007/978-1-4612-1494-6

. Storlie, Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models, Reliability Engineering & System Safety, vol.94, issue.11, pp.941735-1763, 2009.
DOI : 10.1016/j.ress.2009.05.007

S. Straub, D. Straub, and M. Schubert, Modeling and managing uncertainties in rock-fall hazards, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, vol.104, issue.1, pp.1-15, 2008.
DOI : 10.1016/S0167-4730(99)00037-5

. Sumner, A methodology for global-sensitivity analysis of time-dependent outputs in systems biology modelling, Journal of The Royal Society Interface, vol.21, issue.1, pp.92156-2166, 2012.
DOI : 10.1006/rtph.1995.1024

. Tacher, Modelling the behaviour of a large landslide with respect to hydrogeological and geomechanical parameter heterogeneity, Landslides, vol.38, issue.2, pp.3-14, 2005.
DOI : 10.1007/s10346-004-0038-9

. Tarantola, Sensitivity analysis using contribution to sample variance plot: Application to a water hammer model, Reliability Engineering & System Safety, vol.99, pp.62-73, 2012.
DOI : 10.1016/j.ress.2011.10.007

. Thierry, 3D geological modelling at urban scale and mapping of ground movement susceptibility from gypsum dissolution: The Paris example (France), Engineering Geology, vol.105, issue.1-2, pp.51-64, 2009.
DOI : 10.1016/j.enggeo.2008.12.010

URL : https://hal.archives-ouvertes.fr/hal-00514427

K. Thywissen, Components of risk -a comparative glossary, 2006.

. Tritsch, Guide technique: Evaluation des aléas liés aux cavités souterraines. collection environnement-risques naturels, 2002.

J. W. Tukey, Unsolved problems of experimental statistics*, Journal of the American Statistical Association, issue.268, pp.49706-731, 1954.

/. Un and . Isdr, (united nations international strategy for disaster reduction). living with risk. a global review of disaster reduction initiatives, 2004.

R. Asselt, M. Asselt, and J. Rotmans, Uncertainty in integrated assessment modelling, Climatic Change, vol.54, issue.1/2, pp.75-105, 2002.
DOI : 10.1023/A:1015783803445

V. Neumann, M. Neumann, J. Morgenstern, and O. , Theory of games and economic behavior, 1944.

. Walker, Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support, Integrated Assessment, vol.4, issue.1, pp.5-17, 2003.
DOI : 10.1076/iaij.

P. Walley, Statistical reasoning with imprecise probabilities, 1991.
DOI : 10.1007/978-1-4899-3472-7

. Waltham, Sinkholes and subsidence, 2005.

L. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, pp.3-28, 1978.

L. A. Zadeh, Fuzzy sets, Information and Control, vol.8, issue.3, pp.338-353, 1965.
DOI : 10.1016/S0019-9958(65)90241-X

L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning???I, Information Sciences, vol.8, issue.3, pp.199-249, 1975.
DOI : 10.1016/0020-0255(75)90036-5

L. A. Zadeh, Is there a need for fuzzy logic?, Information Sciences, vol.178, issue.13, pp.2751-2779, 2008.
DOI : 10.1016/j.ins.2008.02.012

. Zhang, Interval Monte Carlo methods for structural reliability, Structural Safety, vol.32, issue.3, pp.183-190, 2010.
DOI : 10.1016/j.strusafe.2010.01.001

C. Zimmerman, D. L. Zimmerman, and N. Cressie, Mean squared prediction error in the spatial linear model with estimated covariance parameters, Annals of the Institute of Statistical Mathematics, vol.33, issue.1, pp.27-43, 1992.
DOI : 10.1007/BF00048668