N. H. Abu-hamdeh and R. C. Reeder, Soil Thermal Conductivity, Soil Science Society of America Journal, vol.64, issue.4, pp.1285-1290, 2000.
DOI : 10.2136/sssaj2000.6441285x

A. C. Adkinson, K. H. Syed, and L. B. Flanagan, Contrasting responses of growing season ecosystem CO 2 exchange to variation in temperature and water table depth in two peatlands in northern Alberta, Canada, J. Geophys. Res.-Biogeo, vol.116, pp.1-17, 2011.

R. Aerts, The freezer defrosting: global warming and litter decomposition rates in cold biomes, Journal of Ecology, vol.11, issue.Suppl. 1, pp.713-724, 2006.
DOI : 10.1111/j.1365-2486.2005.00927.x

M. Aurela, T. Laurila, and J. P. And-tuovinen, The timing of snow melt controls the annual CO 2 balance in a subarctic fen, Geophys. Res. Lett, vol.31, pp.3-6, 2004.

M. Aurela, T. Riutta, T. Laurila, J. Tuovinen, T. Vesala et al., exchange of a sedge fen in southern Finland-the impact of a drought period, Tellus B: Chemical and Physical Meteorology, vol.53, issue.5, pp.826-837, 2007.
DOI : 10.1002/qj.49710644707

M. Aurela, A. Lohila, J. P. Tuovinen, J. Hatakka, T. Riutta et al., Carbon dioxide exchange on a northern boreal fen, Boreal Environ. Res, vol.14, pp.699-710, 2009.

J. Barabach, The history of Lake Rzecin and its surroundings drawn on maps as a background to palaeoecological reconstruction, Limnological Review, vol.12, issue.3, pp.103-114, 2012.
DOI : 10.2478/v10194-011-0050-0

A. G. Barr, T. A. Black, E. H. Hogg, N. Kljun, K. Morgenstern et al., Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production, Agricultural and Forest Meteorology, vol.126, issue.3-4, pp.237-255, 2004.
DOI : 10.1016/j.agrformet.2004.06.011

M. J. Best, M. Pryor, D. B. Clark, G. G. Rooney, R. L. Essery et al., The Joint UK Land Environment Simulator (JULES), model description ??? Part 1: Energy and water fluxes, The Joint UK Land Environment Simulator (JULES), model description ? Part 1: Energy and water fluxes, pp.677-699, 2011.
DOI : 10.5194/gmd-4-677-2011-supplement

A. Botta, N. Viovy, P. Ciais, P. Friedlingstein, and P. Monfray, A global prognostic scheme of leaf onset using satellite data, Global Change Biology, vol.11, issue.2, pp.709-725, 2000.
DOI : 10.1029/97GB00330

C. Boutin and P. A. Keddy, A functional classification of wetland plants, Journal of Vegetation Science, vol.67, issue.5, pp.591-600, 1993.
DOI : 10.1007/978-94-009-7796-9_6

J. L. Bubier, R. Smith, S. Juutinen, T. R. Moore, R. Minocha et al., Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs, Oecologia, vol.24, issue.2, pp.355-368, 1998.
DOI : 10.1029/2009GB003522

V. Bui, Photosynthetic Performance of Chamaedaphne calyculata after Twelve Years of Nutrient Addition at Mer Bleue Bog, 2013.

R. F. Carsel and R. S. Parrish, Developing joint probability distributions of soil water retention characteristics, Water Resources Research, vol.44, issue.5, pp.755-769, 1988.
DOI : 10.1016/B978-0-12-348580-9.50018-3

N. Chaudhary, P. A. Miller, and B. Smith, Modelling Holocene peatland dynamics with an individual-based dynamic vegetation model, Biogeosciences, vol.14, issue.10, pp.2571-2596, 2017.
DOI : 10.5194/bg-14-2571-2017-supplement

N. Chaudhary, P. A. Miller, and B. Smith, Modelling past, present and future peatland carbon accumulation across the pan-Arctic region, Biogeosciences, vol.14, issue.18, pp.4023-4044, 2017.
DOI : 10.7202/033029ar

B. H. Chojnicki, M. Urbaniak, D. Józefczyk, J. Augustin, and J. Olejnik, Measurements of gas and heat fluxes at Rzecin wetland, Wetl. Monit. Model. Manag. Taylor Fr. Group, pp.125-131, 2007.

H. Chu, J. Chen, J. F. Gottgens, Z. Ouyang, R. John et al., Net ecosystem methane and carbon dioxide exchanges in a Lake Erie coastal marsh and a nearby cropland, Journal of Geophysical Research: Biogeosciences, vol.84, issue.3, pp.722-740, 2014.
DOI : 10.1016/S0034-4257(02)00135-9

H. Chu, J. F. Gottgens, J. Chen, G. Sun, A. R. Desai et al., Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources, Global Change Biology, vol.182, issue.183, pp.1165-1181, 2015.
DOI : 10.1016/j.agrformet.2013.07.015

R. S. Clymo, The Limits to Peat Bog Growth, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.303, issue.1117, pp.605-654, 1984.
DOI : 10.1098/rstb.1984.0002

J. H. Cornelissen, P. M. Van-bodegom, R. Aerts, T. V. Callaghan, R. S. Van-logtestijn et al., Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes, and Zielke, M.: Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes, pp.619-627, 2007.
DOI : 10.2307/1551761

C. Corradi, O. Kolle, K. Walter, S. A. Zimov, and E. D. Schulze, Carbon dioxide and methane exchange of a north-east Siberian tussock tundra, Global Change Biology, vol.98, issue.0, 1910.
DOI : 10.1126/science.284.5422.1973

D. Angelo, B. Gogo, S. Laggoun-défarge, F. , L. Moing et al., Soil temperature synchronisation improves representation of diel variability of ecosystem respiration in Sphagnum peatlands, Agr. Forest Meteorol, vol.223, pp.95-102, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01299246

Q. L. Dawson, T. Polcher, J. De-rosnay, and P. , Impact du changement climatique sur le cycle de l'eau en Afrique de l'Ouest: modélisation et incertitudes, modélisation et incertitudes Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes, Hydrol. Earth Syst. Sci, vol.125194, issue.110, pp.1387-1401, 1387.

A. Druel, P. Peylin, G. Krinner, P. Ciais, N. Viovy et al., Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1.0), Geosci. Model Dev, pp.4693-4722, 2017.

N. I. Ducoudré, K. Laval, A. Perrier, J. Du?ek, H. Cí?ková et al., SECHIBA, a New Set of Parameterizations of the Hydrologic Exchanges at the Land-Atmosphere Interface within the LMD Atmospheric General Circulation Model, 006<0248:SANSOP>2.0.CO Influence of summer flood on the net ecosystem exchange of CO 2 in a temperate sedge-grass marsh, pp.248-2731520, 1993.
DOI : 10.1175/1520-0442(1993)006<0248:SANSOP>2.0.CO;2

E. S. Euskirchen, M. S. Bret-harte, G. J. Scott, C. Edgar, and G. R. Shaver, Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska, Ecosphere, vol.3, issue.1, pp.1-19, 2012.
DOI : 10.1007/BF00140516

E. S. Euskirchen, C. W. Edgar, M. R. Turetsky, M. P. Waldrop, and J. W. Harden, Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost, Journal of Geophysical Research: Biogeosciences, vol.25, issue.2, pp.1576-1595, 2014.
DOI : 10.2307/1551820

E. S. Euskirchen, G. R. Shaver, C. W. Edgar, R. , and V. E. , Long-Term Release of Carbon Dioxide from Arctic Tundra Ecosystems in Alaska, Ecosystems, vol.113, issue.1, pp.960-974, 2016.
DOI : 10.1073/pnas.1516017113

J. R. Evans, Photosynthesis and nitrogen relationships in leaves of C 3 plants, Oecologia, pp.9-19, 1989.

J. Fang, S. Piao, C. B. Field, Y. Pan, Q. Guo et al., Increasing net primary production in China from 1982 to 1999, Frontiers in Ecology and the Environment, vol.1, issue.6, pp.293-297, 1982.
DOI : 10.1890/1540-9295(2003)001[0294:INPPIC]2.0.CO;2

L. B. Flanagan and K. H. Syed, Stimulation of both photosynthesis and respiration in response to warmer and drier conditions in a boreal peatland ecosystem, Global Change Biology, vol.18, issue.7, pp.2271-2287, 2011.
DOI : 10.1029/2004GB002239

K. Fortuniak, W. Pawlak, L. Bednorz, M. Grygoruk, M. Siedlecki et al., Methane and carbon dioxide fluxes of a temperate mire in Central Europe, Agricultural and Forest Meteorology, vol.232, pp.306-318, 2017.
DOI : 10.1016/j.agrformet.2016.08.023

D. Franz, F. Koebsch, E. Larmanou, J. Augustin, and T. Sachs, High net CO<sub>2</sub> and CH<sub>4</sub> release at a eutrophic shallow lake on a formerly drained fen, Biogeosciences, vol.13, issue.10, pp.3051-3070, 2016.
DOI : 10.5194/bg-13-3051-2016

S. Frolking, N. T. Roulet, E. Tuittila, J. L. Bubier, A. Quillet et al., A new model of Holocene peatland net primary production, decomposition, water balance , and peat accumulation, Earth Syst. Dynam, vol.15194, issue.10, pp.1-21, 2010.

S. Frolking, J. Talbot, M. C. Jones, C. C. Treat, J. B. Kauffman et al., Peatlands in the Earth???s 21st century climate system, Environmental Reviews, vol.25, issue.NA, pp.371-396, 2011.
DOI : 10.1139/a98-002

T. Gnatowski, J. Szaty?owicz, T. Brandyk, and C. Kechavarzi, Hydraulic properties of fen peat soils in Poland, Geoderma, vol.154, issue.3-4, pp.188-195, 2010.
DOI : 10.1016/j.geoderma.2009.02.021

S. Gogo, F. Laggoun-défarge, F. Merzouki, S. Mounier, A. Guirimand-dufour et al., In situ and laboratory non-additive litter mixture effect on C dynamics of Sphagnum rubellum and Molinia caerulea litters, Journal of Soils and Sediments, vol.9, issue.1, pp.13-27, 1178.
DOI : 10.1016/S0045-6535(98)00166-0

URL : https://hal.archives-ouvertes.fr/insu-01164205

J. Gong, K. Wang, S. Kellomäki, C. Zhang, P. J. Martikainen et al., Modeling water table changes in boreal peatlands of Finland under changing climate conditions, Ecological Modelling, vol.244, pp.65-78, 2012.
DOI : 10.1016/j.ecolmodel.2012.06.031

E. Gorham, Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming, Ecological Applications, vol.1, issue.2, pp.182-195, 1991.
DOI : 10.2307/1941811

I. Gouttevin, G. Krinner, P. Ciais, J. Polcher, and C. Legout, Multi-scale validation of a new soil freezing scheme for a landsurface model with physically-based hydrology, The Cryosphere, pp.407-430, 2012.

P. A. Graniero and J. S. Price, The importance of topographic factors on the distribution of bog and heath in a Newfoundland blanket bog complex, Catena, pp.233-254, 1999.

J. Hommeltenberg, M. Mauder, M. Drösler, K. Heidbach, P. Werle et al., Ecosystem scale methane fluxes in a natural temperate bog-pine forest in southern Germany, Agricultural and Forest Meteorology, vol.198, issue.199, pp.273-284, 2014.
DOI : 10.1016/j.agrformet.2014.08.017

A. Hooijer, S. Page, J. G. Canadell, M. Silvius, J. Kwadijk et al., Current and future CO 2 emissions from drained peatlands in Southeast Asia, Biogeosciences, vol.75194, issue.10, pp.1505-1514, 1505.

M. Hurkuck, C. Brümmer, and W. L. Kutsch, Near-neutral carbon dioxide balance at a seminatural, temperate bog ecosystem, Journal of Geophysical Research: Biogeosciences, vol.12, issue.19, pp.370-384, 2016.
DOI : 10.5194/bg-12-79-2015

C. M. Iversen, V. L. Sloan, P. F. Sullivan, E. S. Euskirchen, A. D. Mcguire et al., The unseen iceberg: plant roots in arctic tundra, New Phytologist, vol.22, issue.1, pp.34-58, 2015.
DOI : 10.1890/11-1957.1

M. Jung, M. Reichstein, H. A. Margolis, A. Cescatti, A. D. Richardson et al., Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite , and meteorological observations, J. Geophys. Res.-Biogeo, vol.116, pp.1-16, 2011.

T. Kleinen, V. Brovkin, and R. J. Schuldt, A dynamic model of wetland extent and peat accumulation: results for the Holocene, Biogeosciences, vol.9, issue.1, pp.235-248, 2012.
DOI : 10.5194/bg-9-235-2012

K. Kobayashi and M. U. Salam, Comparing Simulated and Measured Values Using Mean Squared Deviation and its Components, Agronomy Journal, vol.92, issue.2, pp.345-352, 2000.
DOI : 10.2134/agronj2000.922345x

G. Krinner, N. Viovy, N. De-noblet-ducoudré, J. Ogée, J. Polcher et al., A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochemical Cycles, vol.113, issue.D19, pp.1-33, 2005.
DOI : 10.1175/1520-0442(2000)013<2665:TROVCI>2.0.CO;2

URL : https://hal.archives-ouvertes.fr/insu-00374606

P. M. Lafleur, T. R. Moore, N. T. Roulet, and S. Frolking, Ecosystem Respiration in a Cool Temperate Bog Depends on Peat Temperature But Not Water Table, Ecosystems, vol.54, issue.6, pp.619-629, 2005.
DOI : 10.1080/07055900.2000.9649643

F. Laggoun-défarge, S. Gogo, L. Bernard-jannin, C. Guimbaud, R. Zoccatelli et al., Does hydrological restoration affect greenhouse gases emission and plant dynamics in sphagnum peatlands?, Proceedings of the 15th International Pet Congress, 2016.

C. Largeron, G. Krinner, P. Ciais, and C. Vuilmet, Implementing northern peatlands in a global land surface model: description and evaluation in the ORCHIDEE high latitude version model (ORC-HL-PEAT), Geoscientific Model Development Discussions, 2017.
DOI : 10.5194/gmd-2017-141-SC2

D. C. Laughlin, J. J. Leppert, M. M. Moore, and C. H. Sieg, A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora, Functional Ecology, vol.166, issue.Suppl 3, pp.493-501, 2010.
DOI : 10.1111/j.1469-8137.2005.01349.x

M. G. Letts, N. T. Roulet, N. T. Comer, M. R. Skarupa, and D. L. Verseghy, Parametrization of peatland hydraulic properties for the Canadian land surface scheme, Atmosphere-Ocean, vol.81, issue.1, pp.141-160, 2000.
DOI : 10.1007/978-94-017-3048-8_23

J. Lloyd and J. A. Taylor, On the Temperature Dependence of Soil Respiration, Functional Ecology, vol.8, issue.3, pp.315-323, 1994.
DOI : 10.2307/2389824

M. Lund, A. Lindroth, T. R. Christensen, and L. Ström, balance of a temperate bog, Tellus B: Chemical and Physical Meteorology, vol.9, issue.11, pp.804-811, 2007.
DOI : 10.1046/j.1365-2486.2003.00571.x

M. Lund, T. R. Christensen, A. Lindroth, and P. Schubert, Effects of drought conditions on the carbon dioxide dynamics in a temperate peatland, Environmental Research Letters, vol.7, issue.4, pp.1748-9326, 2012.
DOI : 10.1088/1748-9326/7/4/045704

M. Lund, J. W. Bjerke, B. G. Drake, O. Engelsen, G. H. Hansen et al., Low impact of dry conditions on the CO 2 exchange of a Northern-Norwegian blanket bog, Environ. Res. Lett, vol.1010, issue.2, pp.1748-9326, 2015.

N. Malmer, T. Johansson, M. Olsrud, and T. R. Christensen, Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years, Global Change Biology, vol.5, issue.0
DOI : 10.1016/S0038-0717(02)00022-6

M. J. Mcgrath, J. Ryder, B. Pinty, J. Otto, K. Naudts et al., A multi-level canopy radiative transfer scheme for ORCHIDEE (SVN r2566), based on a domain-averaged structure factor, Geoscientific Model Development Discussions, 2016.
DOI : 10.5194/gmd-2016-280-supplement

P. Mcveigh, M. Sottocornola, N. Foley, P. Leahy, and G. Kiely, Meteorological and functional response partitioning to explain interannual variability of CO2 exchange at an Irish Atlantic blanket bog, Agricultural and Forest Meteorology, vol.194, pp.8-19, 2014.
DOI : 10.1016/j.agrformet.2014.01.017

L. Merbold, W. L. Kutsch, C. Corradi, O. Kolle, C. Rebmann et al., Artificial drainage and associated carbon fluxes (CO2/CH4) in a tundra ecosystem, Global Change Biology, vol.46, issue.11, pp.2599-2614, 2009.
DOI : 10.14430/arctic1344

S. Mertens, I. Nijs, M. Heuer, F. Kockelbergh, L. Beyens et al., Influence of High Temperature on End-of-Season Tundra CO 2 Exchange, Ecosystems, vol.4, issue.3, pp.226-236, 2001.
DOI : 10.1007/s10021-001-0006-3

K. Milecka, G. Kowalewski, B. Fia?kiewicz-kozie?, M. Ga?ka, M. Lamentowicz et al., Hydrological changes in the Rzecin peatland (Puszcza Notecka, Poland) induced by anthropogenic factors: Implications for mire development and carbon sequestration, The Holocene, vol.10, issue.1, pp.651-664, 2017.
DOI : 10.1007/s10021-006-0174-2

P. J. Morris, A. J. Baird, and L. R. Belyea, Bridging the gap between models and measurements of peat hydraulic conductivity, Water Resources Research, vol.167, issue.1, pp.5353-5364, 2015.
DOI : 10.1680/geng.12.00038

Y. Mualem, A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resources Research, vol.12, issue.4, pp.513-522, 1976.
DOI : 10.2136/sssaj1966.03615995003000020008x

R. R. Nemani, C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper et al., Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999, Science, vol.300, issue.5625, pp.1560-1563, 1982.
DOI : 10.1126/science.1082750

M. Nilsson, J. Sagerfors, I. Buffam, H. Laudon, T. Eriksson et al., Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire - a significant sink after accounting for all C-fluxes, Global Change Biology, vol.312, issue.10, pp.2317-2332, 2008.
DOI : 10.1016/B978-0-12-505580-2.50006-4

D. Olefeldt, N. T. Roulet, O. Bergeron, P. Crill, K. Bäckstrand et al., Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands, Geophysical Research Letters, vol.111, issue.G2, 2012.
DOI : 10.1029/2005JG000099

E. Paavilainen and J. Päivänen, Peatland forestry: ecology and principles, 1995.
DOI : 10.1007/978-3-662-03125-4

S. E. Page, F. Siegert, J. O. Rieley, H. V. Boehm, A. Jaya et al., The amount of carbon released from peat and forest fires in Indonesia during 1997, Nature, vol.21, issue.6911, pp.61-65, 1997.
DOI : 10.1080/014311600210632

S. E. Page, J. O. Rieley, and C. J. Banks, Global and regional importance of the tropical peatland carbon pool, Global Change Biology, vol.17, issue.(5, pp.798-818, 2011.
DOI : 10.2525/ecb1963.37.115

URL : https://hal.archives-ouvertes.fr/hal-00599518

F. J. Parmentier, J. Van-huissteden, M. K. Van-der-molen, G. Schaepman-strub, S. A. Karsanaev et al., Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia, Journal of Geophysical Research, vol.23, issue.1696, p.3016, 2011.
DOI : 10.1029/2009GB003487

W. J. Parton, J. W. Stewart, C. , and C. , Dynamics of C, N, P and S in grassland soils: a model, Biogeochemistry, vol.77, issue.2, pp.109-131, 1988.
DOI : 10.1038/scientificamerican0970-44

M. Peichl, M. Öquist, M. Ottosson-löfvenius, U. Ilstedt, J. Sagerfors et al., A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide exchange in a boreal fen, Environmental Research Letters, vol.9, issue.5, 2014.
DOI : 10.1088/1748-9326/9/5/055006

S. Piao, P. Friedlingstein, P. Ciais, and N. Viovy, Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades, Global Biogeochemical Cycles, vol.106, issue.1, pp.1-11, 2007.
DOI : 10.1029/2000JD000115

N. Pirk, J. Sievers, J. Mertes, F. W. Parmentier, M. Mastepanov et al., Spatial variability of CO 2 uptake in polygonal tundra: assessing low-frequency disturbances in eddy covariance flux estimates, Biogeosciences, vol.145194, issue.10, pp.3157-3169, 2017.

M. Reichstein, E. Falge, D. Baldocchi, D. Papale, M. Aubinet et al., On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Global Change Biology, vol.6, issue.9, pp.1424-1439, 2005.
DOI : 10.1046/j.1354-1013.2001.00435.x

A. K. Rennermalm, H. Soegaard, and C. Nordstroem, Interannual Variability in Carbon Dioxide Exchange from a High Arctic Fen Estimated by Measurements and Modeling, Arctic, Antarctic, and Alpine Research, vol.37, issue.4, pp.545-556, 2005.
DOI : 10.1657/1523-0430(2005)037[0545:IVICDE]2.0.CO;2

F. Rezanezhad, J. S. Price, W. L. Quinton, B. Lennartz, T. Milojevic et al., Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists, Chemical Geology, vol.429, pp.75-84, 2016.
DOI : 10.1016/j.chemgeo.2016.03.010

B. Ringeval, B. Decharme, S. L. Piao, P. Ciais, F. Papa et al., Modelling sub-grid wetland in the ORCHIDEE global land surface model: evaluation against river discharges and remotely sensed data, Geoscientific Model Development, vol.5, issue.4, pp.941-962, 2012.
DOI : 10.5194/gmd-5-941-2012

URL : https://hal.archives-ouvertes.fr/insu-00844071

T. Riutta, J. Laine, M. Aurela, J. Rinne, T. Vesala et al., Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem, Tellus B: Chemical and Physical Meteorology, vol.11, issue.5, pp.838-852, 2007.
DOI : 10.1029/2005JG000145

J. Sagerfors, A. Lindroth, A. Grelle, L. Klemedtsson, P. Weslien et al., Annual CO 2 exchange between a nutrient-poor, minerotrophic, boreal mire and the atmosphere, J. Geophys. Res.-Biogeo, vol.113, pp.1-15, 2008.

X. Shi, P. E. Thornton, D. M. Ricciuto, P. J. Hanson, J. Mao et al., Representing northern peatland microtopography and hydrology within the Community Land Model, Biogeosciences, vol.12, issue.21, pp.6463-6477, 2015.
DOI : 10.5194/bg-12-6463-2015

URL : https://doi.org/10.5194/bgd-12-3381-2015

M. Sottocornola, A. Laine, G. Kiely, K. A. Byrne, and E. S. Tuittila, Vegetation and environmental variation in an Atlantic blanket bog in South-western Ireland, Plant Ecology, vol.7, issue.4, pp.69-81, 2009.
DOI : 10.1017/CBO9780511615146

R. Spahni, F. Joos, B. D. Stocker, M. Steinacher, Y. et al., Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century, Clim. Past, vol.95194, issue.10, pp.1287-1308, 1287.

C. Qiu, A model for northern peatland CO
URL : https://hal.archives-ouvertes.fr/insu-01719357

C. Stiegler, M. Lund, T. R. Christensen, M. Mastepanov, and A. Lindroth, Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem, The Cryosphere, vol.10, issue.4, pp.1395-1413, 1395.
DOI : 10.5194/tc-10-1395-2016

B. D. Stocker, R. Spahni, J. , and F. , DYPTOP: a costefficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands, Geosci. Model Dev, pp.3089-3110, 2014.

M. Strack, J. M. Waddington, L. Rochefort, and E. S. Tuittila, Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown, Journal of Geophysical Research: Biogeosciences, vol.364, issue.9, pp.1-10, 2006.
DOI : 10.1038/364794a0

B. N. Sulman, A. R. Desai, B. D. Cook, N. Saliendra, and D. S. Mackay, Contrasting carbon dioxide fluxes between a drying shrub wetland in Northern Wisconsin, USA, and nearby forests, Biogeosciences, vol.6, issue.6, pp.1115-1126, 1115.
DOI : 10.5194/bg-6-1115-2009

B. N. Sulman, A. R. Desai, N. Z. Saliendra, P. M. Lafleur, L. B. Flanagan et al., CO 2 fluxes at northern fens and bogs have opposite responses to inter-annual fluctuations in water table, Geophys. Res. Lett, vol.37, pp.3-7, 2010.

T. Takashima, K. Hikosaka, and T. Hirose, Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species, Plant, Cell and Environment, vol.29, issue.8, pp.1047-1054, 2004.
DOI : 10.1039/an9558000209

G. Tramontana, M. Jung, C. R. Schwalm, K. Ichii, G. Camps-valls et al., Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, vol.13, issue.14, pp.4291-4313, 2016.
DOI : 10.5194/bg-13-4291-2016-supplement

URL : https://doi.org/10.5194/bg-2015-661

M. Turetsky, K. Wieder, L. Halsey, and D. Vitt, Current disturbance and the diminishing peatland carbon sink, Geophysical Research Letters, vol.6, issue.11, pp.21-22, 2002.
DOI : 10.1139/a98-002

URL : http://onlinelibrary.wiley.com/doi/10.1029/2001GL014000/pdf

J. Turunen, E. Tomppo, K. Tolonen, and A. Reinikainen, Estimating carbon accumulation rates of undrained mires in Finland ? application to boreal and subarctic regions, Holocene, pp.69-80, 2002.

M. T. Van-genuchten, A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1, Soil Science Society of America Journal, vol.44, issue.5, pp.892-898, 1980.
DOI : 10.2136/sssaj1980.03615995004400050002x

M. Vanselow-algan, S. R. Schmidt, M. Greven, C. Fiencke, L. Kutzbach et al., High methane emissions dominated annual greenhouse gas balances 30 years after bog rewetting, Biogeosciences, vol.12, issue.14, pp.4361-4371, 2015.
DOI : 10.5194/bg-12-4361-2015

URL : https://www.biogeosciences.net/12/4361/2015/bg-12-4361-2015.pdf

L. M. Verheijen, V. Brovkin, R. Aerts, G. Bönisch, J. H. Cornelissen et al., Impacts of trait variation through observed trait???climate relationships on performance of an Earth system model: a conceptual analysis, Biogeosciences, vol.10, issue.8, pp.5497-5515, 2013.
DOI : 10.5194/bg-10-5497-2013-supplement

A. P. Walker, A. P. Beckerman, L. Gu, J. Kattge, L. A. Cernusak et al., - to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study, Ecology and Evolution, vol.26, issue.16, pp.3218-3235, 2014.
DOI : 10.1093/treephys/26.11.1457

A. P. Walker, T. Quaife, P. M. Bodegom, M. G. De-kauwe, T. F. Keenan et al., ) on global gross primary production, New Phytologist, vol.19, issue.4, pp.1370-1386, 2017.
DOI : 10.1029/2004GB002395

R. Wania, I. Ross, P. , and I. C. , Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes, Global Biogeochemical Cycles, vol.18, issue.D24, pp.1-19, 2009.
DOI : 10.1029/2004GB002239

R. Wania, I. Ross, P. , and I. C. , Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes, Global Biogeochemical Cycles, vol.112, issue.4, pp.1-15, 2009.
DOI : 10.1029/2006JG000342

URL : http://onlinelibrary.wiley.com/doi/10.1029/2008GB003412/pdf

A. Westergaard-nielsen, M. Lund, B. U. Hansen, and M. P. Tamstorf, Camera derived vegetation greenness index as proxy for gross primary production in a low Arctic wetland area, ISPRS Journal of Photogrammetry and Remote Sensing, vol.86, pp.89-99, 2013.
DOI : 10.1016/j.isprsjprs.2013.09.006

T. G. Williams and L. B. Flanagan, Measuring and modelling environmental influences on photosynthetic gas exchange in Sphagnum and Pleurozium, Plant, Cell and Environment, vol.108, issue.6, pp.555-564, 1998.
DOI : 10.1007/BF00333212

I. J. Wright, M. Westoby, P. B. Reich, J. Oleksyn, D. D. Ackerly et al., The worldwide leaf economics spectrum, Nature, vol.61, issue.6985, pp.821-827, 2004.
DOI : 10.1007/978-1-4612-1626-1

URL : https://repository.si.edu/bitstream/handle/10088/17704/serc_Wright_etal_2004_Nature_428_821_827.pdf

I. J. Wright, P. B. Reich, J. H. Cornelissen, D. S. Falster, E. Garnier et al., Assessing the generality of global leaf trait relationships, New Phytologist, vol.428, issue.2, pp.485-496, 2005.
DOI : 10.1007/978-3-642-79354-7_22

Y. Wu, D. L. Verseghy, and J. R. Melton, Integrating peatlands into the coupled Canadian Land Surface Scheme (CLASS) v3.6 and the Canadian Terrestrial Ecosystem Model (CTEM) v2.0, Geoscientific Model Development, vol.9, issue.8, pp.2639-2663, 2016.
DOI : 10.5194/gmd-9-2639-2016

URL : https://doi.org/10.5194/gmdd-8-10089-2015

Z. Yu, J. Loisel, D. P. Brosseau, D. W. Beilman, and S. J. Hunt, Global peatland dynamics since the Last Glacial Maximum, Geophysical Research Letters, vol.184, issue.13, pp.1-5, 2010.
DOI : 10.1029/2008GM000822

URL : http://onlinelibrary.wiley.com/doi/10.1029/2010GL043584/pdf

A. Yurova, A. Wolf, J. Sagerfors, and M. Nilsson, Variations in net ecosystem exchange of carbon dioxide in a boreal mire: Modeling mechanisms linked to water table position, Journal of Geophysical Research, vol.16, issue.4, p.2025, 2007.
DOI : 10.1007/978-3-642-04898-2_509

D. Zhu, S. Peng, P. Ciais, R. Zech, G. Krinner et al., Simulating soil organic carbon in yedoma deposits during the Last Glacial Maximum in a land surface model, Geophysical Research Letters, vol.57, issue.5780, pp.5133-5142, 2016.
DOI : 10.1016/j.quascirev.2012.10.005

L. Zobler, A world soil file for global climate modeling, Natl. Aeronaut . Sp. Adm. Goddard Sp. Flight Center, Inst. Sp. Stud. NASA Tech. Memo, vol.87802, p.32, 1986.

D. Zona, W. C. Oechel, J. Kochendorfer, U. Paw, K. T. Salyuk et al., Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra, Global Biogeochemical Cycles, vol.277, issue.52, 2009.
DOI : 10.1126/science.277.5327.800