Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A Hybrid High-Order Discretization Method for Nonlinear Poroelasticity

Abstract : Abstract In this work, we construct and analyze a nonconforming high-order discretization method for the quasi-static single-phase nonlinear poroelasticity problem describing Darcean flow in a deformable porous medium saturated by a slightly compressible fluid. The nonlinear elasticity operator is discretized using a Hybrid High-Order method, while the Darcy operator relies on a Symmetric Weighted Interior Penalty discontinuous Galerkin scheme. The method is valid in two and three space dimensions, delivers an inf-sup stable discretization on general meshes including polyhedral elements and nonmatching interfaces, supports arbitrary approximation orders, and has a reduced cost thanks to the possibility of statically condensing a large subset of the unknowns for linearized versions of the problem. Moreover, the proposed construction can handle both nonzero and vanishing specific storage coefficients.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Frédérique COUFFIGNAL Connectez-vous pour contacter le contributeur
Soumis le : jeudi 30 juin 2022 - 15:56:11
Dernière modification le : vendredi 5 août 2022 - 10:49:33

Lien texte intégral




Michele Botti, Daniele Di Pietro, Pierre Sochala. A Hybrid High-Order Discretization Method for Nonlinear Poroelasticity. Computational Methods in Applied Mathematics, De Gruyter, 2020, 20 (2), pp.227-249. ⟨10.1515/cmam-2018-0142⟩. ⟨hal-03710373⟩



Consultations de la notice