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{gauthier.sornet, sylvain.jubertie}@univ-orleans.fr

2 BRGM, BP 6009, 45060 Orléans Cedex 2, France.
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Abstract
Stencil computation represents an important numerical kernel in scientific computing. Lever-
aging multi-core or many-core parallelism to optimize such operations represents a major chal-
lenge due to both the bandwidth demand and the low arithmetic intensity. The situation is
worsened by the complexity of current architectures and the potential impact of various mech-
anisms (cache memory, vectorization, compilation). In this paper, we describe a multi-level
optimization strategy that combines manual vectorization, space tiling and stencil composi-
tion. A major effort of this study is to compare our results with the Pochoir framework. We
evaluate our methodology with a set of three different compilers (Intel, Clang and GCC) on
two recent generations of Intel multi-core platforms. Our results show a good match with the
theoretical performance models (i.e. roofline models). We also outperform Pochoir performance
by a factor of x2.5 in the best case.
Keywords: Stencil computation, Vectorization, Performance model

1 Introduction
Stencil computation is widely used in numerical simulations. For instance, many physical
models based on PDE (Partial Differential Equation) heavily rely on it. This is coming from the
grid-based computation induced by finite-difference or finite-volume methods that are routinely
used to solve various equations (elastodynamics, heat equation, shallow water equation, etc).
This numerical kernel can represent a major part of the total elapsed time, particularly when
an explicit method is implemented. In this case, the numerical kernel should be evaluated
hundreds or thousands of times making critical any performance improvement.

Regarding the computation workflow, each numerical stencil could be described as a set of
weighted neighbor cells that should be loaded and combined. The stencil morphology (i.e. the
number of cells and the directions involved in the computation) has an impact on the overall
performance of the kernel. For instance, the ratio between the number of memory accesses
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and the number of operations on each cell should be minimized to improve the computational
efficiency. This memory-bound situation is a concern on multi-core architectures regarding the
limited improvement at the bandwidth level. The situation is worsened on many-core platforms
and recent work underline significant efforts to extract the best level of performance of such
platforms (e.g. Kalray MPPA-256 chips for seismic wave propagation stencil in [3]).

In this paper we consider the classical 7-point and 27-point stencils that exhibit different
characteristics (arithmetic intensity, memory bandwidth demand). These stencils have already
been widely studied in the scientific literature providing some good references [5]. The main
contributions of this paper are the following. First, we underline the effectiveness of each
level of optimization (vectorization, tiling, stencil composition) based on a set of representative
compilers (Clang, Intel and GCC). Moreover, we show the portability of our methodology on
two recent dual-socket Intel platforms (Intel Ivy Bridge and Broadwell). Finally, our contri-
butions are analyzed with respect to the expected peak performance of each numerical kernel
learned from the roofline prediction model [16]. Stencils studied in this paper have also been
implemented with the Pochoir reference compiler [15] in order to discuss our results.

The paper proceeds as follows. Section 2 describes the related work. Section 3 discusses
the fundamentals of stencil computation. We motivate the choice of each kernel by underlying
their theoretical behavior. Section 4 underlines the main challenges for optimal performance on
multi-core architectures and presents our contributions. Section 5 discusses our experimental
results and Section 6 concludes this paper.

2 Related work
Stencil-based computation is the building block of many numerical models. One of the crit-
ical aspects is to minimize the cost of the memory movements required to retrieve the data
from the main memory to the fast local memories. There have been significant efforts on new
techniques designed to improve the performance of these memory-bound kernels on different
types of architectures [10, 7, 14]. Obviously, these efforts mainly tackle the improvement of
data-reuse. Among them, space blocking techniques provide a first level of optimization but
these approaches suffer from several limitations. First of all, the expected efficiency is bounded
because of the very low reuse opportunity inherent to stencils. In [13], the limited speedup
obtained from such strategies is described in a three-dimensional Jacobi loop (17%). Addition-
ally, the impact of low-level mechanisms such as prefetching, vectorization or cache bypass are
underestimated as described in [5, 1].

To overcome space tiling limitations, efforts have been focused on tiling the computational
domain both in space and time directions. In this case, the algorithms exploit the iterative
nature of the kernel. Time-skewing or cache-oblivious algorithms [8] rely on a similar idea to
perform several time steps inside each subdomain. The main difference comes from the explicit
blocking criterion in the first case whereas the oblivious approaches exploit a recursive cut in
space in order to fit into cache memory. The search for the optimal spacetime tile shape is
also a critical point, the so-called diamond tile shape exhibits the best performance [11, 12].
Regarding the growing importance of vectorization capabilities, the space-time decomposition
could exhibit a high level of complexity for the compilers. Moreover, implementations at the
application level is difficult as the organization of the code must be deeply revisited.

Much work has also been done on auto-tuning techniques. Several frameworks have been
introduced to optimize stencil computations on modern architectures (e.g. PATUS [4] or
PLUTO [2]). Amongst them, the Pochoir stencil compiler [15] aroused much interest. It im-
plements stencil computations in a domain-specific language (DSL) and exploits a hyperspace
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Figure 1: Visual representation of the 7-point and 27-point stencils.

cut algorithm in order to optimize cache reuse and parallelism. The Pochoir framework relies
on the Cilk multithreading library and on the Intel compiler to vectorize.

3 Standard Stencils

3.1 7-point and 27-point Stencil Description

We consider two classical stencils commonly studied in the scientific literature [13, 6]. The first
stencil is a 7-point 3D stencil which includes a central cell with its six nearest neighbors as
described in figure 1. The second stencil is a 27-point 3D stencil composed of a total of 27
cells: 6 direct plus 20 indirect neighbors included in the 3 × 3 × 3 cube around the central cell
as described in figure 1. Both stencils are of great interest because they are representative of
compute-bound and memory-bound situations. Indeed, we define the Reuse Intensity (RI) as a
factor of reused floats per loaded bytes per stencil iteration. It is determined by the number of
cells of the stencil divide by the number of bytes of a floating point value. The 7-point stencil
performs the accumulation of 7 cells and each cell contains a 32 bits (4 bytes) floating point
value. In this case, the reuse intensity factor is 7/4 = 1.75 for 7-point stencil that is likely to
be memory-bound. It means that each float per byte is reused 1.75 times. For the 27-point
stencil, the RI is 6.75, indicating that this stencil is less memory-bound.

3.2 Classic Stencil Implementation

Stencil algorithms consist in traversing a grid and performing computation at each grid point. In
the case of a three-dimensional Cartesian grid, the computation consists in using the neighbor
points in the upward-downward, left-right and forward-backward directions to evaluate the
value of the current grid point. The algorithm then iterates to the next point applying the
same computation until the entire grid has been traversed. Considering the 7-point Jacobi
stencil, one needs to deal with a domain of n3 single precision values and adds neighbor weights
to compute the result for the next iteration. On multi-core platforms, a classical way to extract
parallelism is to exploit the nested loops coming from the spatial dimensions of the problem.
One of the main advantages is a straightforward use of OpenMP directives that are applied to
the external loop. A first level of optimization of this implementation is to use the collapse
OpenMP option in order to extract the parallelism from the three spatial loops.

3



	 Gauthier Sornet et al. / Procedia Computer Science 108C (2017) 1083–1092� 1085A Multi-level Optimization Strategy for Stencil Computation Sornet et. al.

and the number of operations on each cell should be minimized to improve the computational
efficiency. This memory-bound situation is a concern on multi-core architectures regarding the
limited improvement at the bandwidth level. The situation is worsened on many-core platforms
and recent work underline significant efforts to extract the best level of performance of such
platforms (e.g. Kalray MPPA-256 chips for seismic wave propagation stencil in [3]).

In this paper we consider the classical 7-point and 27-point stencils that exhibit different
characteristics (arithmetic intensity, memory bandwidth demand). These stencils have already
been widely studied in the scientific literature providing some good references [5]. The main
contributions of this paper are the following. First, we underline the effectiveness of each
level of optimization (vectorization, tiling, stencil composition) based on a set of representative
compilers (Clang, Intel and GCC). Moreover, we show the portability of our methodology on
two recent dual-socket Intel platforms (Intel Ivy Bridge and Broadwell). Finally, our contri-
butions are analyzed with respect to the expected peak performance of each numerical kernel
learned from the roofline prediction model [16]. Stencils studied in this paper have also been
implemented with the Pochoir reference compiler [15] in order to discuss our results.

The paper proceeds as follows. Section 2 describes the related work. Section 3 discusses
the fundamentals of stencil computation. We motivate the choice of each kernel by underlying
their theoretical behavior. Section 4 underlines the main challenges for optimal performance on
multi-core architectures and presents our contributions. Section 5 discusses our experimental
results and Section 6 concludes this paper.

2 Related work
Stencil-based computation is the building block of many numerical models. One of the crit-
ical aspects is to minimize the cost of the memory movements required to retrieve the data
from the main memory to the fast local memories. There have been significant efforts on new
techniques designed to improve the performance of these memory-bound kernels on different
types of architectures [10, 7, 14]. Obviously, these efforts mainly tackle the improvement of
data-reuse. Among them, space blocking techniques provide a first level of optimization but
these approaches suffer from several limitations. First of all, the expected efficiency is bounded
because of the very low reuse opportunity inherent to stencils. In [13], the limited speedup
obtained from such strategies is described in a three-dimensional Jacobi loop (17%). Addition-
ally, the impact of low-level mechanisms such as prefetching, vectorization or cache bypass are
underestimated as described in [5, 1].

To overcome space tiling limitations, efforts have been focused on tiling the computational
domain both in space and time directions. In this case, the algorithms exploit the iterative
nature of the kernel. Time-skewing or cache-oblivious algorithms [8] rely on a similar idea to
perform several time steps inside each subdomain. The main difference comes from the explicit
blocking criterion in the first case whereas the oblivious approaches exploit a recursive cut in
space in order to fit into cache memory. The search for the optimal spacetime tile shape is
also a critical point, the so-called diamond tile shape exhibits the best performance [11, 12].
Regarding the growing importance of vectorization capabilities, the space-time decomposition
could exhibit a high level of complexity for the compilers. Moreover, implementations at the
application level is difficult as the organization of the code must be deeply revisited.

Much work has also been done on auto-tuning techniques. Several frameworks have been
introduced to optimize stencil computations on modern architectures (e.g. PATUS [4] or
PLUTO [2]). Amongst them, the Pochoir stencil compiler [15] aroused much interest. It im-
plements stencil computations in a domain-specific language (DSL) and exploits a hyperspace

2

A Multi-level Optimization Strategy for Stencil Computation Sornet et. al.

Figure 1: Visual representation of the 7-point and 27-point stencils.
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4 Optimizations

This section details the different techniques we propose to optimize stencil computation.

4.1 Manual Vectorization

Available in all modern processors, SIMD units are able to apply a single instruction on a
vector of values.In our study, we consider using AVX units supported by our Intel platforms
which are able to process vectors of eight floating point single precision values. Compilers may
automatically vectorize some codes, but there is no guarantee that the process works nor that
it provides the best vectorized code in terms of performance. Thus, we propose a hand-written
vectorized version of the stencil computation to ensure that our code is correctly vectorized. We
compared it with actual auto-vectorized codes produced by compilers. This version is written
using compiler intrinsics and consists in computing eight contiguous cells at a time.

4.2 Tiling

Tiling consists in virtually decomposing the domain into tiles and adapting the traversal ac-
cordingly. In this case, we traverse the domain blockwise with a given tile size (tx; ty; tz). When
the whole domain does not fit into the cache, the standard stencil implementation makes the
processor reload data from DRAM several times by iteration. If we traverse this domain by
tiles fitting into the cache, we can expect to get closer to the theoretical RI. Therefore, the
challenge is to determine the size of the tile that minimizes the amount of cache misses and
provides the best performance. Optimized tile sizes have been experimentally found. Their
larger dimensions are in the unit-stride direction which follows the literature [5, 12].

4.3 Stencil Composition

The standard stencil description underlines the impact of the Reuse Intensity (RI). For instance,
the 7-point stencil exhibits poor theoretical performance. In this part, we introduce a strategy
to build an equivalent of the 7-point stencil but with a higher density. This approach could
be described as a similar strategy of spacetime stencil decomposition. Figure 2 provides an
overview of the composition of two 7-point stencils. Regarding the reuse intensity, this new
stencil is close to the 27-point stencil and is likely to improve the performance of the original
7-point stencil. Each evaluation of our composed stencil corresponds to two iterations of the
original 7-point kernel, thus we perform twice more floating point operations. However, we
expect to reach a higher level of performance. We remind that the RI of the 7-point stencil is
1.75 whereas the RI of the reformulated stencil with 25-point is 6.25.

The stencil composition is defined as follows. Let us consider two stencils SA and SB that
must be applied consecutively, then it is possible to build a stencil SC that is the composition of
SA and SB . If we consider that SA and SB are of dimension N where the size of each dimension
are respectively SA.ri ∗ 2 + 1 and SB .ri ∗ 2 + 1 (1 ≤ i ≤ N) then the composed stencil SC is
also in size N where the size of each dimension is (SA.ri + SB .ri) ∗ 2 + 1). We can determine
that the extra-compute ratio between the successive application of SA and SB in comparison
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Figure 2: The 25-point stencil corresponding to the composition of two 7-point kernels.

with the application of SC is given by the following approximation :

(
N∏

i=1
2(SA.ri + SB .ri) + 1) − 1

(
N∏

i=1
2SA.ri + 1 +

N∏
i=1

2SB .ri + 1) − 2
(1)

If we apply Equation 1 on the 27-point stencil, the half dimension is 1 and the extra-computation
ratio is 2.29. In our case, for the 7-point stencil extra-computing ratio is 2.0 (2).

(25pts − 1)Additions

2time steps ∗ (7pts − 1)Additions
(2)

5 Performance Analysis
5.1 Experimental Setup
We used two dual-socket platforms for our experiments:

• the first one with Intel Xeon E5-2697 v2 Ivy Bridge processors, for a total of twenty-four
cores at 2.7Ghz;

• the second one with Intel Xeon E5-2697 v4 Broadwell processors, for a total of eighteen
cores at 2.3Ghz.

Our codes are compiled with three different compilers: Clang 3.8, GCC 6.2 and ICC 17,
with -O3 -march=native optimization flags, the second one implicitly enables AVX and FMA
support on capable architectures. Multi-threading is performed using OpenMP. All results
represent the maximum of ten runs to guarantee relevant values. The computation domain is
composed of 5123 single precision floating point values. Therefore, the memory footprint is one
order of magnitude larger than the size of the last level of cache memory. For each run, 100
iterations are performed. The following versions are implemented for both the 7-point and the
27-point stencils, except for the composition which only concerns the first stencil:
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Figure 3: Experimental Stream and Linpack roofline models on Broadwell and Ivy Bridge
platforms.

1. No vectorization: vectorization is disabled by the -fno-tree-vectorize compilation flag.

2. Automatic vectorization: compilers may automatically vectorize the code.

3. Manual vectorization: manual vectorization is performed as described in Section 4.

4. Manual vectorization with tiling: this version adds tiling to the previous version.

5. 7-point stencil composition: this version applies the 25-point stencil resulting from the
self composition of the 7-point stencil and consequently performs only 50 iterations.

6. Pochoir: this version requires the Intel compiler since it is based on the Cilk threading
library instead of OpenMP.

5.2 Performance Characterization
5.2.1 Roofline Models

Figure 3 shows the roofline models obtained on Broadwell and Ivy Bridge platforms. It is a
good visual tool to discuss both the performance of our baseline implementations but also to
compare the impact of the reuse intensity (RI) of each stencil. First, we can observe that
the achievable performance is strongly related to the RI. In the first case, the 7-point kernel
is higtly memory-bound and the achievable peak performance is limited to an average upper-
bound of 100 GFLOPS on both platforms. For the 27-point stencil, the RI is higher (6.25 vs
1.75 for the 7-point) leveraging from the higher density of this kernel. Therefore, the upper-
bound achievable performance is 413 GFLOPS on Broadwell and 368 GFLOPS on Ivy Bridge.
Nevertheless, these stencils are still memory-bound as their RI are below the compute-bound
limit measured on each platform (8.4 on Broadwell and 7.2 Ivy Bridge platforms). Secondly,
if we combine manual vectorization and space tiling optimization we almost reach 30% of
the achievable peak performance for the 7-point and 27-point stencils on both platforms. In
fact, the 7-point and 27-point stencils perform respectively 41 GFLOPS over 116 GFLOPS and
158 GFLOPS over 447 GFLOPS on the Broadwell platform. Moreover, the Ivy Bridge platform
achieves 35 GFLOPS over 104 GFLOPS and 128 GFLOPS over 400 GFLOPS with respectively
the 7-point and 27-point stencils. These results are rather good as we do not take into account
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advanced ceiling for our roofline models. For instance, one may consider that with only addi-
tions, processors may no use all its operator ports. Whereas a theoretical peak performance
can be determined from all the available ports. As a result, our kernels have a significantly
reduced achievable peak performance.

5.2.2 Comparison with the theoretical Results

The reuse intensity is a tool to check the level of performance of our implementations. The
theoretical ratio between the RI of the 27-point and the 7-point stencil is 6.75/1.75 ≈ 3.85. We
use this ratio to discuss the performance observed on the different architectures. Regarding
the Clang compiler auto vectorization version, the ratio measured is 1.97 on Broadwell and
2.04 on Ivy Bridge. These values are far from the theoretical value. Additional investigations
demonstrate that Clang compiler is unable to vectorize the standard OpenMP implementations.
Combination of the complexity of the nested loops and side effects from the use of OpenMP
directives could explain this situation [9]. GCC and ICC compilers vectorize the code leading
to better results. Another issue is the DRAM memory access delay. Any loaded data from
DRAM into caches have to be reused as mush as possible in order to avoid some DRAM access
delays. As we supposed a 3D grid bigger than caches, each grid cell is loaded at least once
by iteration. At the best, they are loaded only once by iteration. To get close to it, it needs
the spacial cache reuse to be optimized. This is the aim of the tile optimization. Table 1
shows our tiled vectorized peak performance ratios 27-point/7-point. The performance ratios
of the manually vectorized and tiled versions (version 4) are closer to 3.85 than the ones for
the automatic vectorized versions (version 2). Thus, we observe a good match between the
theoretical RI ratio and these experiments. This version shows a reliable ratio of 3.13.

Machine Clang compiler Intel Compiler GCC Compiler
2-Auto 4-ManuTiled 2-Auto 4-ManuTiled 2-Auto 4-ManuTiled

Broadwell 1.97 3.45 4.28 3.88 4.18 3.74
Ivy Bridge 2.04 2.59 4.24 4.14 4.20 3.72

Table 1: Ratios between 7-point and 27-point kernels of automatically vectorized version 2 and
our best optimized version 4. The theoretical value ration is about 3.85.

5.3 Multi-level Optimization
We evaluate the improvement coming from our optimizations including a new algorithmic for-
mulation introduced for the 7-point stencil. Figure 4 shoes the results we obtained.

5.3.1 Impact of Vectorization

The comparison between manual and automatic vectorization underlines the difficulty for the
compiler to fully exploit this level of parallelism. As described in the previous section, the
Clang compiler is struggling to be efficient on the 27-point stencil that exhibits complex multi-
threaded nested loops. Indeed, the compiler uses a lot of uload/ustore and does not detect
that the buffers are aligned. Moreover, in our case, the OpenMP transformations may inhibit
the Clang automatic vectorization. For these reasons, the scalar version and the automatic
vectorization version of Clang have the same performance. This is the reason why only the
scalar version is shown on figures 4. Our manual vectorization strategy provides a significant
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Figure 3: Experimental Stream and Linpack roofline models on Broadwell and Ivy Bridge
platforms.

1. No vectorization: vectorization is disabled by the -fno-tree-vectorize compilation flag.

2. Automatic vectorization: compilers may automatically vectorize the code.

3. Manual vectorization: manual vectorization is performed as described in Section 4.

4. Manual vectorization with tiling: this version adds tiling to the previous version.

5. 7-point stencil composition: this version applies the 25-point stencil resulting from the
self composition of the 7-point stencil and consequently performs only 50 iterations.

6. Pochoir: this version requires the Intel compiler since it is based on the Cilk threading
library instead of OpenMP.

5.2 Performance Characterization
5.2.1 Roofline Models

Figure 3 shows the roofline models obtained on Broadwell and Ivy Bridge platforms. It is a
good visual tool to discuss both the performance of our baseline implementations but also to
compare the impact of the reuse intensity (RI) of each stencil. First, we can observe that
the achievable performance is strongly related to the RI. In the first case, the 7-point kernel
is higtly memory-bound and the achievable peak performance is limited to an average upper-
bound of 100 GFLOPS on both platforms. For the 27-point stencil, the RI is higher (6.25 vs
1.75 for the 7-point) leveraging from the higher density of this kernel. Therefore, the upper-
bound achievable performance is 413 GFLOPS on Broadwell and 368 GFLOPS on Ivy Bridge.
Nevertheless, these stencils are still memory-bound as their RI are below the compute-bound
limit measured on each platform (8.4 on Broadwell and 7.2 Ivy Bridge platforms). Secondly,
if we combine manual vectorization and space tiling optimization we almost reach 30% of
the achievable peak performance for the 7-point and 27-point stencils on both platforms. In
fact, the 7-point and 27-point stencils perform respectively 41 GFLOPS over 116 GFLOPS and
158 GFLOPS over 447 GFLOPS on the Broadwell platform. Moreover, the Ivy Bridge platform
achieves 35 GFLOPS over 104 GFLOPS and 128 GFLOPS over 400 GFLOPS with respectively
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advanced ceiling for our roofline models. For instance, one may consider that with only addi-
tions, processors may no use all its operator ports. Whereas a theoretical peak performance
can be determined from all the available ports. As a result, our kernels have a significantly
reduced achievable peak performance.

5.2.2 Comparison with the theoretical Results

The reuse intensity is a tool to check the level of performance of our implementations. The
theoretical ratio between the RI of the 27-point and the 7-point stencil is 6.75/1.75 ≈ 3.85. We
use this ratio to discuss the performance observed on the different architectures. Regarding
the Clang compiler auto vectorization version, the ratio measured is 1.97 on Broadwell and
2.04 on Ivy Bridge. These values are far from the theoretical value. Additional investigations
demonstrate that Clang compiler is unable to vectorize the standard OpenMP implementations.
Combination of the complexity of the nested loops and side effects from the use of OpenMP
directives could explain this situation [9]. GCC and ICC compilers vectorize the code leading
to better results. Another issue is the DRAM memory access delay. Any loaded data from
DRAM into caches have to be reused as mush as possible in order to avoid some DRAM access
delays. As we supposed a 3D grid bigger than caches, each grid cell is loaded at least once
by iteration. At the best, they are loaded only once by iteration. To get close to it, it needs
the spacial cache reuse to be optimized. This is the aim of the tile optimization. Table 1
shows our tiled vectorized peak performance ratios 27-point/7-point. The performance ratios
of the manually vectorized and tiled versions (version 4) are closer to 3.85 than the ones for
the automatic vectorized versions (version 2). Thus, we observe a good match between the
theoretical RI ratio and these experiments. This version shows a reliable ratio of 3.13.
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Broadwell 1.97 3.45 4.28 3.88 4.18 3.74
Ivy Bridge 2.04 2.59 4.24 4.14 4.20 3.72

Table 1: Ratios between 7-point and 27-point kernels of automatically vectorized version 2 and
our best optimized version 4. The theoretical value ration is about 3.85.

5.3 Multi-level Optimization
We evaluate the improvement coming from our optimizations including a new algorithmic for-
mulation introduced for the 7-point stencil. Figure 4 shoes the results we obtained.

5.3.1 Impact of Vectorization

The comparison between manual and automatic vectorization underlines the difficulty for the
compiler to fully exploit this level of parallelism. As described in the previous section, the
Clang compiler is struggling to be efficient on the 27-point stencil that exhibits complex multi-
threaded nested loops. Indeed, the compiler uses a lot of uload/ustore and does not detect
that the buffers are aligned. Moreover, in our case, the OpenMP transformations may inhibit
the Clang automatic vectorization. For these reasons, the scalar version and the automatic
vectorization version of Clang have the same performance. This is the reason why only the
scalar version is shown on figures 4. Our manual vectorization strategy provides a significant
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Figure 4: Impact of the multi-level optimization strategy on the 7-point and the 27-point stencils
with the Clang, Intel and GCC compilers on a dual-socket Intel Xeon Broadwell (E5-2697v4)
and a dual-socket Intel Xeon Ivy Bridge platform.

improvement in comparison with the results obtained with the three compilers. We observe an
average gain of 1.8× for Intel and GCC compilers and a maximum gain of a factor 4.2 for Clang
compiler. As a matter of fact, the 7-point stencil can hardly benefit from these improvements
as this kernel quickly saturates the memory bandwidth available.

5.3.2 Impact of Tiling

Tiling is a strategy to enhance data-reuse.We learn from figures 4 that the impact of this
optimization is rather strongly dependent on the stencil characteristics.For instance, we observe
limited gains for the 7-point stencil (less than 10% on Broadwell and about 0.3% on Ivy Bridge)
whereas the 27-point stencil is able to benefit from this strategy (more than 25% on Broadwell
and more than 12% on Ivy Bridge). This is mainly coming from the shape of the stencil and the
ratio between the computation and the memory movement that offers more opportunities to
reuse data in the 27-point case. The optimal tile size selection is another issue. We solve it for
each stencil and architecture thanks to an experimental approach guided by the literature [5, 12].

5.3.3 Impact of Stencil Composition

The last stage of our optimization strategy corresponds to a new formulation of the numerical
kernel. We evaluate this strategy for the 7-point example as this kernel is more likely to leverage
this improvement.

In terms of GFLOPS, we observe good performances with Clang, Intel and GCC compilers as
the measured speedup on Broadwell is respectively 3.34×, 3.33× and 3.42×. On the Ivy Bridge,
we also have respectively 2.8×, 3.74× and 3.26× speedups. The reuse intensity of the 25-point
stencil (new formulation of the 7-point stencil) allows us to compute with a higher efficiency
whatever the compiler or the platform. Additionally, we maintain the coherency with the
theoretical analysis. Figure 4 shows the peak performance measured with the 25-point and the
27-point stencil. The measurements are very similar as both stencils exhibit very close data
reuse capabilities. Elapsed times are reported in table 2. As explained in the subsection 4.3, the
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25-point stencil is the result of the 7-point stencil self-composition but it requires 4 times more
additions by iteration (from 6 to 24 additions). However, one iteration of the 25-point stencil
is equivalent to 2 iterations of the 7-point stencil. Thus, to obtain the same numerical results,
we only need half the number of iterations. As a result, we perform twice more additions for
the whole computation. Then, in terms of elapsed time, the measured speedup on Broadwell is
respectively divided by 2 and are equal to 1.67×, 1.67× and 1.7×. On the Ivy Bridge, we also
have respectively 1.4×, 1.87× and 1.63× speedups. We are still investigating these odd Pochoir
performances.

Machine Stencil steps Clang ICC GCC Pochoir
Ivy Bridge 7-point 100 2157 2288 2174 1316

25-point 50 1520 1306 1339 2534
27-point 100 3613 2393 2532 5289

Broadwell 7-point 100 1875 1956 2117 2810
25-point 50 938 1160 1276 2301
27-point 100 2358 2183 2249 2893

Table 2: Elapsed time (in ms) of the 7-point (RI=1.75) and the 25-point (RI=6.25) stencil.

6 Conclusion and Perspectives
As shown in our experiments, optimizing stencil kernels is not straightforward since efficient
optimization techniques depend on the stencil morphology, on the underlying architecture and
on compilers. Taken independently, these optimization techniques are simple to implement,
but they need to be combined in order to reach near-peak performance, and some parameters,
like the tile size, may need to be tuned for each architecture. The Pochoir library relies on
a complex space and time decomposition which outperforms our implementation (tiling and
manual vectorization) only for the 7-point stencil on the Ivy Bridge architecture. However,
our stencil composition is able to reach a similar level of performance on this architecture.
In all other cases, our best implementation is faster than Pochoir but the speedup is highly
variable depending on the architecture, on the stencil and on the compilers. Of course, faster
implementations may be obtained since we do not reach the upper bound of the Roofline, but
reducing the remaining gap may require to increase the code complexity.

Despite encouraging results, the implementation of our contributions in some real applica-
tions may not seem straightforward nor reasonable. Indeed, these optimizations are tied to the
underlying architecture which may prevent code portability. To solve this problem, we plan to
use the same approach as Pochoir: splitting the interface from the optimized implementation.
A Domain Specific Language (DSL) would be provided to the developer who focuses on the de-
scription of its stencil computation. Optimized implementation would be obtained using either
a specific compiler, like Pochoir, or meta-programming techniques.
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7 Acknowledgments
The authors thank Philippe Thierry, senior principal engineer at Intel, for many interesting
discussions and for providing us access to Broadwell and Ivy Bridge platforms.
The work of G. Sornet is co-funded by the Région Centre-Val de Loire.

9



	 Gauthier Sornet et al. / Procedia Computer Science 108C (2017) 1083–1092� 1091A Multi-level Optimization Strategy for Stencil Computation Sornet et. al.
Broadwell 7pts

Page 1

Clang3.8 ICC17 GCC6.2

0

5

10

15

20

25

30

35

40

45

ManuVectoTile

ManuVecto

AutoVecto

NoVecto

Clang3.8 ICC17 GCC6.2

0

20

40

60

80

100

120

140

160

180

Ivy Bridge 7pts

G
F

L
O

P
S

Clang3,8 ICC17 GCC6,2

0

20

40

60

80

100

120

140

160

180

Ivy Bridge 27pts

G
F

L
O

P
S

   Composed 7pts    ManuVectoTile    ManuVecto    AutoVecto    NoVecto     Pochoir

Clang3.8 ICC17 GCC6.2

0

20

40

60

80

100

120

140

160

180

Broadwell 7pts

G
F

L
O

P
S

Clang3,8 ICC17 GCC6,2

0

20

40

60

80

100

120

140

160

180

Broadwell 27pts

G
F

L
O

P
S

Figure 4: Impact of the multi-level optimization strategy on the 7-point and the 27-point stencils
with the Clang, Intel and GCC compilers on a dual-socket Intel Xeon Broadwell (E5-2697v4)
and a dual-socket Intel Xeon Ivy Bridge platform.

improvement in comparison with the results obtained with the three compilers. We observe an
average gain of 1.8× for Intel and GCC compilers and a maximum gain of a factor 4.2 for Clang
compiler. As a matter of fact, the 7-point stencil can hardly benefit from these improvements
as this kernel quickly saturates the memory bandwidth available.
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reuse data in the 27-point case. The optimal tile size selection is another issue. We solve it for
each stencil and architecture thanks to an experimental approach guided by the literature [5, 12].

5.3.3 Impact of Stencil Composition

The last stage of our optimization strategy corresponds to a new formulation of the numerical
kernel. We evaluate this strategy for the 7-point example as this kernel is more likely to leverage
this improvement.

In terms of GFLOPS, we observe good performances with Clang, Intel and GCC compilers as
the measured speedup on Broadwell is respectively 3.34×, 3.33× and 3.42×. On the Ivy Bridge,
we also have respectively 2.8×, 3.74× and 3.26× speedups. The reuse intensity of the 25-point
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theoretical analysis. Figure 4 shows the peak performance measured with the 25-point and the
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like the tile size, may need to be tuned for each architecture. The Pochoir library relies on
a complex space and time decomposition which outperforms our implementation (tiling and
manual vectorization) only for the 7-point stencil on the Ivy Bridge architecture. However,
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In all other cases, our best implementation is faster than Pochoir but the speedup is highly
variable depending on the architecture, on the stencil and on the compilers. Of course, faster
implementations may be obtained since we do not reach the upper bound of the Roofline, but
reducing the remaining gap may require to increase the code complexity.
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tions may not seem straightforward nor reasonable. Indeed, these optimizations are tied to the
underlying architecture which may prevent code portability. To solve this problem, we plan to
use the same approach as Pochoir: splitting the interface from the optimized implementation.
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