Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A Multi-level Optimization Strategy to Improve the Performance of Stencil Computation

Abstract : Stencil computation represents an important numerical kernel in scientific computing. Leveraging multi-core or many-core parallelism to optimize such operations represents a major challenge due to both the bandwidth demand and the low arithmetic intensity. The situation is worsened by the complexity of current architectures and the potential impact of various mechanisms (cache memory, vectorization, compilation). In this paper, we describe a multi-level optimization strategy that combines manual vectorization, space tiling and stencil composition. A major effort of this study is to compare our results with the Pochoir framework. We evaluate our methodology with a set of three different compilers (Intel, Clang and GCC) on two recent generations of Intel multi-core platforms. Our results show a good match with the theoretical performance models (i.e. roofline models). We also outperform Pochoir performance by a factor of x2.5 in the best case.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-brgm.archives-ouvertes.fr/hal-03702849
Contributeur : Frédérique COUFFIGNAL Connectez-vous pour contacter le contributeur
Soumis le : jeudi 23 juin 2022 - 13:56:28
Dernière modification le : vendredi 24 juin 2022 - 03:47:31

Fichier

1-s2.0-S1877050917308153-main....
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Gauthier Sornet, Fabrice Dupros, Sylvain Jubertie. A Multi-level Optimization Strategy to Improve the Performance of Stencil Computation. Procedia Computer Science, Elsevier, 2017, 108, pp.1083 - 1092. ⟨10.1016/j.procs.2017.05.217⟩. ⟨hal-03702849⟩

Partager

Métriques

Consultations de la notice

0

Téléchargements de fichiers

0