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[1] A spatially consistent approach is used for the representation of rainfall at catchment
scale for continuous rainfall-streamflow simulation by using inverse modeling.
Representing rainfall data at every location as the product of the mean rainfall by the
rainfall series reduced to unit average, it is shown that the regionalization of both terms
should follow different ways for broad-scale modeling. Whereas the regionalization of the
mean rainfall is based on its spatial continuity, it is demonstrated from the study of
three French basins that are subject to different climates that the reduced rainfall data
should be represented from a weighted sum of a small number of observed rainfall data
(three to five) located both inside and outside the catchments to be as representative as
possible at catchment scale. The reliability of peak flow modeling increases with the basin
size as well as the return period of flood events provided that the rainfall is correctly
regionalized, which is particularly important for real-time forecasting of rainfall and flow.
This contradicts the widespread assumption that for the distributed rainfall-runoff model,
the denser the network of rain samplers used as input in the models, the more accurate
the broad-scale flood model will be.

Citation: Pinault, J.-L., and D. Allier (2007), Regionalization of rainfall for broad-scale modeling: An inverse approach,Water
Resour. Res., 43, W09422, doi:10.1029/2006WR005642.

1. Introduction
[2] Recent floods in Europe have raised public, political

and scientific awareness and flooding is now widely recog-
nized as being of major strategic importance, with signifi-
cant economic and social implications. Complex and
difficult questions have been identified, concerning, for
example, the actual and potential future effects of climate
variability and climate change on flood risk and the effects
of change in land use or land management. These have far-
reaching scientific, technical and socioeconomic implica-
tions. Rainfall-runoff models provide flood discharge
hydrographs. The impact of flooding is related to water
level. Conventionally, hydrological models are used to
simulate the former and provide input to hydraulic models
of channel and floodplain flow.

[3] The regionalization of rainfall data is a current issue
in flood modeling. There has been rapid progress in
stochastic modeling of single-site rainfall [Cox and Isham,
1980, 1988;Rodriguez-Iturbe et al., 1987, 1988], in which
storms arrive according to a Poisson process in time. This
type of rainfall has been regionalized and applied in
different contexts byOnof and Wheater[1993, 1994,
1995], Onof et al. [1996], Wheater et al.[1999, 2005],
Cowpertwait [1994], Velghe et al.[1994], Khaliq and
Cunnane[1996], Verhoest et al.[1997], Gyasi-Agyei and
Willgoose[1997], Foufoula-Georgiou[1998], Cameron et
al. [2000, 2001],Fowler et al.[2000], andCowpertwait et

al. [2002]. The identification of homogeneity at regional
scale is a basic step in the inference of the estimation of
flood probabilities. This operation is traditionally carried
out using statistical methods with large uncertainties. This
deficiency has led to the introduction of the concept of scale
invariance of annual maximum flood to identify homoge-
neous regions in flood frequency regionalisation [Gupta and
Waymire, 1990; Gupta and Dawdy, 1994; Gupta et al.,
1994; De Michele and Rosso, 1995; Robinson and
Sivapalan, 1997a]. The analysis of the mechanisms of flood
production can provide useful information on the clustering
of river basins.Robinson and Sivapalan[1997b] investi-
gated the influence of the different timescales on the
hydrological regimes and the implications on the flood
frequency analysis.Burn [1997] introduced seasonality
measures as catchment similarity indices for the regional
flood frequency analysis.De Michele and Rosso[2002]
used a multilevel approach to flood frequency regionalisa-
tion that combines physical and statistical criteria to cluster
homogeneous groups in a geographical area.

[4] The importance of spatial rainfall for flood manage-
ment will vary as a function of the spatial scale of the
catchment (which will determine the spatial and temporal
scale of rainfall input), catchment properties and rainfall
type [Wheater et al., 2006]. Two different approaches are
used therefore to model floods depending on the catchment
size and the concentration time of rainwater to the outlet:

[5] 1. Flash floods are characterized by a high specific
discharge, typically higher than 5 m3 s km2. In exceptional
cases, specific discharge can exceed 20 m3 s km2. Flash
flood modeling generally applies to small basins
(<500 km2). It requires a high spatial and temporal resolu-
tion of rainfall, which needs a dense network of rain
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samplers. Meteorological radars are extensively used to
anticipate rainfall events while representing the spatial and
the temporal structures of precipitations [Delrieu et al., 2005].

[6] 2. On the other hand, modeling medium and large
catchments (500 to 25,000 km2) needs a comprehensive
modeling strategy for a wide range of water management
issues. The determination of the level of detail appropriate
to broad-scale modeling is a crucial issue. At best, a
comprehensive framework should enable to use nested
models of different levels of complexity and resolution for
a variety of purposes within the context of flood manage-
ment and flood design. This should, for example, allow
evaluation of joint probabilities of fluvial flooding from a
combination of contributory effects. Broad-scale modeling
for fluvial flooding must focus on the simulation of river
basin response (i.e., flood discharge and associated water
levels) to precipitation input [Hosking and Wallis, 1993,
1997;Hay et al., 2002].

[7] The purpose of this paper is the regionalization of
rainfall for broad-scale modeling by using an inverse
approach that has been developed previously for hydro-
graph separation. Representing rainfall data at every loca-
tion as the product of the mean rainfall by the rainfall series
reduced to unit average, it is shown that the regionalization
of both terms of rainfall data should follow different ways
for broad-scale modeling. Whereas the regionalization of
the mean rainfall is based on its spatial continuity (interpo-
lation is commonly used to represent the isohyets), it will be
demonstrated from the study of three French basins that are
subject to different climates that the reduced rainfall data
should be represented from a weighted sum of a few
numbers of observed rainfall data to be as representative
as possible at catchment scale: Only a few rain samplers
(3 to 5) located both inside and outside the catchments are
required to optimize rainfall representativeness. The low-
noise weighted sum of observed rainfall data exhibits a long
correlation length.

[8] The three basins used to develop a methodological
approach for the regionalization of the reduced rainfall data
are: the Allier and the Maine, which are subcatchments of
the Loire basin, and the Somme. The Somme River is
supplied mainly by groundwater and therefore has a very
long concentration time, up to 100 days, whereas some
subcatchments of the Loire basin are very rapid, with
rainwater concentration times of around one day. The
Somme and Maine floods are generated by rainfall of
oceanic origin, whereas the Allier basin floods are subject
to convective rainfall on the Cevennes (Southern Massif
Central) (Figure 1).

[9] Whereas rain gauges are used as inputs of process-
based models the purpose of which is the best representation
of streamflow, the gauged catchments are used as pluviom-
eters in inverse models. Indeed, inverse modeling attempts
to represent the measurements recorded at pluviometers
used as the output of the models, i.e., the streamflows
observed at the outlet of catchments, by using information
given by rain samplers used as inputs.

[10] Contrary to the process-based models that attempt
to reproduce hydrological and hydrogeological processes
as accurately as possible, the priority in inverse modeling
is to reduce the number of parameters to be calibrated. So,
the method does not attempt to reduce the systematic

errors of the model as much as possible, but the discrep-
ancies between the estimated and the observed outputs are
minimized by using a few numbers of degree of freedom
as well as a regularization technique to make the systems
invertible. More precisely, the systematic errors of the
output and the random errors resulting from the propaga-
tion of sampling errors of input data are separated. In other
words, the relevancy of the sampled rainfalls used as
inputs of the models may be checked objectively without
significantly altering the parameters to be calibrated. So,
the robustness of the inverse models enables to test
coherence between the sampled rainfall and discharge at
catchment scale. In this way, the contribution of every rain
sampler to the streamflow can be estimated and the most
representative weighted sum of rainfall data can be de-
duced for rainfall regionalization.

2. Methodology
2.1. General Approach

[11] Process-based models and inverse models have op-
posite requirements:

[12] 1. Process-based models attempt to reproduce
streamflow from background data as vegetation, topogra-
phy, soil, geology and rainfall recorded at rain samplers.
Systematic errors of the computed streamflow are mini-
mized by simulating subtle processes. Most of the random
errors of the modeled streamflow are originating from
rainfall sampling.

[13] 2. Sampling errors of rainfall data used in inverse
models are removed since the pluviometer is the gauged
catchment and rainfall is not sampled. Nevertheless catch-
ments used as pluviometers are imperfect rain gauges,
because of three reasons: (1) The response of the catchment
is delayed, all the more as groundwater contributes to
streamflow, (2) a part of rainfall is evaporated and does
not contribute to the streamflow, and (3) transfer processes
may be altered when extensive rainfalls occur, because of
water saturation of soils that enhances runoff or because of
piston flow effect that may occur both in the unsaturated
and in the saturated zones.

[14] Hence inverse modeling of rainfall consists in re-
moving most of the biases introduced by the rainfall
measurement at the catchment scale and in overcoming
the three mentioned drawbacks, the purpose being to select
the most representative rain samplers.

[15] It is convenient to represent the recorded rainfall at a
particular location by the product of two terms: (1) the mean
rainfall height that is influenced by the local environment of
the rain gauge, represented by the isohyets and (2) the
rainfall series reduced to unit average that is generally
subject to large-scale correlations.

[16] Whereas isohyets are generally accurately known
since they are deduced from mean values of rainfall data
recorded at rain gauges, the regionalization of reduced
rainfall is much more difficult to perform. Indeed, reduced
rainfall at a given location cannot be related to the nearest
rain samplers and interpolation techniques are inappropri-
ate. Nevertheless, short-term rainfall events determine the
reliability of transfer models, whether intended for flood or
low water conditions. The rainfall sampling rate depends on
the concentration time of rainwater to catchment outlets,
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which is rarely less than one day in the case of medium size
and large catchments.

[17] The inverse approach proposed here consists in
optimizing a weighted sumRS of reduced rainfall data
observed at rain samplers to explain, as well as possible, the
rainfall observed at the catchment scale. Indeed, considering
rainfall data reduced to unit average, the weighted sum of
rainfall series observed at different locations may be con-
sidered as representative as possible of the mean rainfall at
the catchment scale by reducing the random errors of the
output, i.e., by minimizing the sampling errors of rainfall
data. Consequently the data of the inverse models are
dimensionless, whether it is question of sampled rainfall
or streamflow: The time series are divided by their average
(their expected value).

2.2. Inverse Modeling
[18] The inverse approach used into the procedure for

the regionalizing of rainfall data (Figure 2) is outlined from
(1) to (6). The concepts as well as the inversion and the

regularization techniques were developed byPinault et al.
[2001a]. Some methodological developments of the inverse
models were presented in previous studies to characterize
denitrification processes in groundwater [Pinault et al.,
2001a], to determine water renewal in karsts [Pinault et
al., 2001b], to separate deep and shallow waters of a
submarine karst aquifer system [Pinault et al., 2004], to
elucidate switching behavior of groundwater recharge from
matrix flow to macropore flow in groundwater-induced
flooding [Pinault et al., 2005], to separate pressure head
variations of the French Alsace water table into three
components, recharge from rainfall and exchanges with
surface water in the Rhine River and in Vosgean tributaries
[Pinault and Schomburgk, 2006] and to characterize the
resilience of aquatic ecosystems with respect to the evolu-
tion of environmental parameters [Pinault and Berthier,
2007].

[19] A new methodological approach is presented to
regionalize rainfall data. The concepts that were developed
in the previous studies are used: (1) to calculate the effective

Figure 1. Localization of the three study areas in France: The Somme, Maine, and Allier basins.
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rainfall threshold to express the reduced rainfall data into
effective rainfall and (2) to calibrate the rainfall-runoff
models in order to quantify the impact of rainfall sampling
onto the computed streamflows.

[20] The inverse approach may be synthesized in the
following way. Considering the streamflowQ as the output
of a transfer model, a general formulation of the problem
can be written:

Q ti� � � Q � Gs * Rs� Reff � Gq * Rq� Reff � e �1�

where * is the discrete convolution product. Effective
rainfall Reff (ti) is composed of two componentsReff (ti) =
Rs(ti) + Rq(ti), Rs(ti) and Rq(ti), representing those parts of
the rainfall that induce the slow and quick components of
the streamflow at the outlet, respectively (X represents the
mean of the seriesX).

[21] Such a model requires the solutionsGs andGq, the
slow and quick transfer functions, to the transport equation.
The random parte represents erratic, complex, and usually
short-term variability of the streamflow that is not explained
by the model.

[22] Effective rainfallReff is calculated from rainfallR
and the effective rainfall thresholdW, such that

Reff ti� � �
R ti� � � W ti� � if R ti� � � W ti� �
0 if R ti� � � W ti� �

�
�

� 2�

The effective rainfall thresholdW(ti) is related to both
rainfall and potential evapotranspiration, such that

W � GW�PET * PET � GW�R * R � Cst � 3�

where GW,PET and GW,R are impulse responses ofW to
potential evapotranspirationPET and to rainfallR, respec-
tively (Cst is a constant).

[23] Quick transfer occurs only after exceptional rainfall,
when a water-saturated soil enhances runoff or when a
hydraulic continuity is established between matrix and
macropores in the unsaturated zone, which can lead to
groundwater discharge into the stream. The component
Rq(ti) can be expressed according to effective rainfallReff (ti)
so that

Rq ti� � � Reff ti� � � a ti� � � 4�

where the functiona(ti) is the fraction of effective rainfall
participating in quick transfer;a(ti) reflects either the
nonlinear switching of groundwater recharge from matrix
flow to macropore flow or the water saturation index of
soils. It is related to the effective rainfall of previous events
such that

a � Ga�Reff * Reff � 5�

whereGa,Reff
is the impulse response ofa(ti) to effective

rainfall Reff. The functiona(ti) increases as a result of the

Figure 2. Procedure used to optimize the rainfall data at a catchment scale: Rainfall is represented as the
product of the optimized sum of rainfall data reduced to unit average by the rainfall height averaged over
the catchment.
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stacking effect when several successive intense rainfall
events occur. This function may express the filling up of
fractures, which occurs when successive rainfall events
occur rapidly enough to fill up the fractures while the
drainage of macropores toward the surface water network
occurs. Concerning runoff, the functiona(ti) is related to the
water saturation index of the soils, which increases
considerably when successive rainfall events are close
enough in comparison with the duration of soil drainage.

[24] By corollary, the componentRs(ti) for rainfall induc-
ing the slow component of the transfer function may be
written as

Rs ti� � � Reff ti� � � 1 � a ti� �� � � 6�

[25] The inverse method that is parsimonious (few param-
eters) and computationally efficient aims to calculate the
normalized impulse responsesGs and Gq, the impulse
responsesGW,PET, GW,R and the constant Cst used to calcu-
late the effective rainfall thresholdW(ti) in (3) and the
impulse responseGa,Reff

used to calculate the fraction of
effective rainfalla(ti) involved in quick flow in (5). Actual
implementation of (1)–(6) was carried out by means of the
Tempo code [Pinault et al., 2001a].

[26] The calibration of the transfer model (1) is illustrated
in Figure 3. The effective rainfall threshold that represents
the available water deficit in the soil (Figure 3e) exhibits a
pseudo periodicity so that the effective rainfall deduced
from (2) is 60% of the total rainfall. The proportion of quick
transfer of effective rainfall that quantifies the contribution
of runoff to streamflow given by (4) depends strongly on
the temporal structure of rainfall height (Figure 3f). The
comparison of the observed flow and the model shows some
discrepancies that are interpreted as systematic errors, i.e.,
errors resulting from subtle processes that are not taken into
account in the inverse model (Figures 3a and 3b). Although
the distinction between transfer processes might be arbitrary
for small lags, the quick and slow impulse responsesGq and
Gs represent mainly rainwater transfer to the outlet via
runoff and groundwater, respectively. The quick transfer
reaches its maximum one day after an effective rainfall
event and vanishes four days after, whereas the slow
transfer decreases slowly for 20 days after reaching its
maximum 2 days after the rainfall event (Figure 3g and
3h). The recession lasts 200 days. The separation of the
hydrograph into slow and quick components (Figure 3c and
3d) shows that floods are caused mainly by runoff whereas
the groundwater discharge supports low water. The mean
contribution of quick transfer is 9.2% of the total flow. The
impulse responseGW,PET of the effective rainfall threshold
Wto rainfall and to PET (3) indicates water dynamics in the
soils (Figure 3i). The duration of the available water content
response is very similar for both inputs, 16 and 17 days
respectively, whereas it responds immediately after a rain-
fall event or after a sudden increase in evapotranspiration.
The impulse responseGa,Reff

of the effective rainfall contri-
bution to quick flowa(ti) (5) is represented in Figure 3j.
There must be at least 16 days between two rainfall events
to enable the contribution to quick transfera(ti) to decrease,
which corresponds to the duration of soil drainage.

2.3. Procedure to Optimize the Reduced Weighted Sum
of Rainfall Data

[27] The method consists in optimizing a weighted sum
of reduced rainfall data observed at rain samplers to explain,
as well as possible, a streamflowQ measured at the outlet of
a catchment (or a subcatchment). The same analysis can be
done using data from piezometers in unconfined aquifers.

[28] The best representation of the weighted sum of
rainfall series

RS �
�

k� 1� p

dkRk dk � 0k � 1� L � p
�

k� 1� p

dk � 1 � 7�

(wherep is the number of rain samplers) should consist in
calculating the weighting factorsdk so that the Euclidian
distance between the observed streamflowQ(ti) and its
estimator �Q(ti) for which the reduced rainfallR/R is
replaced by the reduced weighted sumRS/RS in (1):

�Q ti� � � Q � Gs * RS�s� RS � Gq * RS�q� RS � e �8�

is minimum. From a numerical point of view, this is an ill-
posed problem, and to give the weighting factorsdk
meaning the calculations have to be carried out in three
steps using a linear approximation (Figure 2): (1) An
effective rainfall thresholdW(ti) is calculated at every
gauging station to estimate effective rainfall at rain samplers
located inside the catchments. (2) The weighted sumRS of
effective rainfall series is defined so as to maximize the
cross correlogramCorRS

,Q(t ) of RS and the streamflowQ
for small lagst :

CorRS�Q t� � �

�

i� 1�N

RS ti� � � 1� 	 � Q ti � t� � � Q
� �

������������������������������������

i� 1�N

RS ti� � � 1� 	2
� ������������������������������������

i� 1�N
Q ti� � � Q

� � 2
� � 9�

where N is the number of sampling steps. For a given
gauging station, the same thresholdW(ti) is used in (9) to
estimate the effective rainfall at all weather stations. The
weighting factorsdk are calculated so that they maximize
the objective function:

OS �
�

l� 1�L

CorRS �Q t l� � � 10�

defined from the increasing section of the cross correlogram
CorRS

,Q (t l) (L is such thatCorRS
,Q (t L) is maximum; that is,

is the concentration time of the catchment). The optimiza-
tion of the weighting factors, i.e., the maximization of the
functional (10), is carried out in the hypercube [0, 1]P with

RS =
�

k� 1� p
dkRk/

�

k� 1� p
dk. The functional (10) having no

continuous derivatives, descent methods cannot be used; so
the maximization of (10) is performed by dichotomy. At
first, the cube [0, 1]P is split into 2P cubes in which the
functional (10) is evaluated. The one in which the functional
(10) is maximum is split into 2P cubes in which the
functional (10) is evaluated again and so on. The accuracy
of the weighting factors is 1/2m after m iterations and the
stations whose weighting factor is lower than 1/2m are
removed.
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Figure 3. Inverse modeling of the Allier flow at Vieille Brioude: A 1-day sampling rate is used. (a and
b) Comparison of model (1) and the observed flow. Return period of the flow is mentioned (wet years);
(c and d) Hydrograph separation according to (1); (e) Effective rainfall thresholdWdeduced from (2) and
(3) and the weighted rainfall expressed in Figure 7; (f) Fraction of quick transfera of effective rainfall
deduced from (4) and (5) and the effective rainfall; (g and h) slow and quick impulse responsesGs andGq
(both areas are 1); (i) impulse response of the effective rainfall thresholdW to rainfall and to PET. Y axis
and Y intersection are arbitrary; (j) impulse responseGa,Reff

for calculating the fraction of effective rainfall
a(ti) involved in quick flow.
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[29] The recursive procedure reminds the stepwise method
for the multiple regression to select the relevant variables.
The radius of the circle containing rain samplers inside and
outside the catchment is increased to include additional rain
samplers until the cross correlogramCorRS

,Q(t ) is stabi-
lized: Either the new rain samplers are irrelevant or they do
not significantly improve the cross correlation. The optimi-
zation is achieved over periods of observation that include at
least one 10-year return (or greater) event. At every step, the
circle radius is decided so that a few numbers of new stations
are integrated (less than 5), which approximately corre-
sponds to a 10 km increase in the radius, depending on the
density of the weather stations. The number of relevant
stations oscillates between 3 and 5 as the radius increases
while the sampling errors of rainfall decrease until the
increase in the functional (10) is no longer significant.

[30] The robustness of the weighted rainfall seriesRS/RS
is investigated by comparing the model to the observed flow
over the whole period of observation. At this step, the
optimized rainfall is used as input of the transfer model and
the normalized impulse responses, the effective rainfall
thresholdW(ti) and the fractiona(ti) of effective rainfall
involved in quick flow are recalculated at every gauging
station.

[31] In linear systems, streamflowQ(ti) depends linearly
on rainfall R(ti) and the cross correlogram ofR and Q
CorRS

,Q(t ) is simply the impulse response of the system.
This is not the general case because the rainfallR(ti) is not
the effective rainfall, i.e., the fraction of rainfall that gen-
erates streamflow at the outlet. Moreover, streamflowQ(ti)
results in quick and slow transfer of rainwater to the outlet.

[32] The nonlinearity of rainwater transfer enhances the
contribution of exceptional events in the cross correlogram
(9). So, because of the amplification of fast transfer, the
contribution of exceptional rainfall events is strengthened.
When the transfer is dominated by surface and the subsur-
face flow, nonlinearity can occur when soil is saturated, thus
enhancing runoff while the infiltration of water through the
unsaturated zone is considerably reduced, which lead to
downward flow to the outlet. On the other hand, nonline-
arity of transfer can occur when a stream is partly fed by
groundwater during floods. Because of the dual porosity of
some formations such as the chalk, nonlinear processes
involve switching of groundwater recharge from matrix
flow to macropore flow due to accumulated wetness.

[33] Owing to both the strong nonlinearities and the
spatial variability of reduced rainfall data, the analysis of
the cross correlogram at every step is not sufficient to ensure
the optimum is reached or, in the contrary, to test the
relevancy of the new weather stations that are integrated
into the weighted sumRS. Only the quantification of
discrepancies between the computed and the observed peak
flows can be objectively used to end the recursive process.
This criterion is based on the analysis of the relative
standard deviations calculated from the estimation of peak
flows that are expressed in comparison with a reference
peak flow whose return period is 10 years.

3. Field Description
3.1. Allier Basin

[34] The Loire River is the longest river in France
(1015 km) and drains a fifth of the country. Its manage-

ment and development are a major issue both for the
French and for bordering populations.

[35] The upper Allier and the Loire basins can get rainfall
from the Cevennes-Vivarais (southern France), character-
ized by convective cells, mesoscale convective systems and
fronts, producing extensive precipitation events [Rivrain,
1998; Miniscloux et al., 2001; Ducrocq et al., 2002;
Anquetin et al., 2003; Wobrock et al., 2003; Kirshbaum
and Durran, 2005;Delrieu et al., 2005]. This type of event
is related to exceptionally intensive rainfall concentrated on
very restricted sectors. The factors contributing to such
heavy rainfall are (1) the Mediterranean Sea, which acts
as a reservoir of energy and moisture for the lower layers of
the atmosphere, especially at the end of summer and
beginning of fall, when the sea is still warm; (2) upper
level cold troughs generally extending from the United
Kingdom to the Iberian Peninsula generate a southerly flow
that generates advection of the warm and moist air masses
from the Mediterranean Sea toward the coast and destabil-
izes these air masses; and (3) the pronounced relief of the
Mediterranean region, with the Alps, Pyrenees and Massif
Central, triggers convection and also channels the low-level
flow inducing low-level convergence. Occurring in winter
or in spring, the floods generated by rainfall of oceanic
origin affect only the lower part of the basin. The floods
of the Allier basin, whose catchment area at Limons is
7005 km2 (Figure 4 and Table 1), can play a major role in
those of the middle Loire when there is a conjunction of
rainfall from both the Cevennes and the Atlantic Ocean; the
mixed floods can be exceptional like the 1866 flood.

[36] The precipitation rate on the Allier catchment
decreases as we move downstream: It is 952 mm/y at
Langogne, 623 mm/y at Brioude and 619 mm/y at Issoire.
Snow is frequent on the upper basin and the Allier can be
supplied mainly by snowmelt in spring.

[37] The Allier River and its main tributaries, the Alag-
non and the Senouire, flow across the Massif Central and
drain granite, metamorphic and volcanic formations. The
upper Allier basin is constituted of granite, volcanic rocks
and migmatite. Downstream of Vieille Brioude, the Allier
drains Oligocene sediments. The mean contribution of
groundwater to the Allier flow increases from Langogne
where it is about 20% to Limons where it exceeds 40%.
Because of the low rainwater concentration time as a result
of the steep slope of the upper part of the basin, the specific
discharge may reach 1.5 m3 s km2.

3.2. Maine Basin
[38] The Maine basin (Figure 5 and Table 2) in western

France extends over a surface area of 22,020 km2 and
represents the principal subcatchment of the Loire. It is
made up of three main subcatchments, the Mayenne
(4160 km2), the Sarthe (7380 km2) and the Loir
(7920 km2). The magnitude of the floods in the basin is
directly related to atmospheric circulation from the Atlantic.
The 1995 10-year return flood followed a series of rainy
episodes corresponding to passages of cold fronts as a result
of the persistence of atmospheric circulation [Galley and
Fleury, 2001]. This type of situation is very frequent during
the winter, from November to March. The wettest months
are November and December with 21% of the annual
precipitation. The rainfall rate on the Maine catchment is
between 934 mm/y (Saint Cyr) and 605 mm/y (Chateaudun).
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It decreases as we move away from the sea, the steepest
gradient being in the northwest to southeast direction. Snow
is rare in the basin and snowmelt does not contribute
significantly to water transfer processes.

[39] The Mayenne and the Oudon flow across the eastern
part of the Armorican massif constituted mainly of granite.
Upstream to downstream, the mean contribution of ground-
water to the flow decreases from 50% to about 10% for the
Oudon, whereas it decreases from 50% to almost 0% for the
Mayenne. The Mayenne valley is narrow and causes rapid
flood propagation. The Sarthe River crosses middle Jurassic
limestone in the western part of the Paris basin. The mean
contribution of groundwater reaches almost 40% at Saint
Denis d’Anjou. The Loir River and its tributary, the Braye,
cross sedimentary formations of the Paris basin, flinty clay
and the Beauce limestone. About 50% of the Huisne flow, a
tributary of the Sarthe, is supplied by Cenomanian ground-
water, which is similar to the mean groundwater contribu-
tion to the Loir flow at Durthal. Groundwater contributes
only 25% of the mean flow in the Braye, which flows

mainly on flinty clay. Exceptionally, the specific discharge
may reach 0.3 m3 s km2 locally. The 100-year flood at the
outlet of the Maine basin corresponds to a specific discharge
of 0.15 m3 s km2.

Table 1. Allier Basin

Tributary
Gauging
Station

Area,
km2

Elevation,
m

Concentration
Time, d

Capacity,
km2 d

Allier Laveyrune 48.8 993 1.1 54
Langogne 324 931 1.1 356
Naussac 396 877 1.1 436
St Haon 514 740 1.1 565
Prades 1350 540 1.2 1620
Langeac 1781 495 1.2 2137
Vieille Brioude 2269 434 1.6 3630
Agnat 2950 360 1.9 5605
Vic le Comte 5370 343 2.0 10,740
Limons 7005 278 2.2 15,411

Senouire Paulhaguet 155 538 1.4 217
Alagnon Joursac 310 870 1.1 326

Lempdes 984 450 1.1 1082

Figure 4. Allier basin.
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3.3. Somme Basin
[40] The Somme basin (Figure 6 and Table 3) is located

in northwestern France, near the Channel. It is exposed to
an oceanic influence, generally mild in winter. The rainfall
rate is governed mainly by northwest winds coming from
the sea. The wettest months are November and December
with 20.5% of the annual precipitation. The isohyets show
significant variations in mean rainfall values over the
catchment. It rains more on the plateaus (771 mm/y at
Epehy) than in the valleys (657 mm/y at Amiens). The mean
rainfall values increase near the sea (818 mm/y at Abbeville,
894 mm/y at Vron). The variations reach 42% between
extreme values. Snow is rare in the basin and snowmelt
does not contribute significantly to the water transfer
processes.

[41] The catchment has a surface area of 5560 km2 at the
Abbeville gauging station. The hydrographic network of the
basin is fed mainly by the chalk groundwater. A catastroph-
ic flood occurred during the spring 2001, whereas no such
event had been recorded for centuries [Pinault et al., 2005].
Nonlinear processes, involving a hydraulic continuity be-
tween the macropores of the unsaturated zone and the chalk
groundwater, govern water migration through the unsatu-
rated zone. In spite of nonlinear transfer processes, the
Somme basin is characterized by a long concentration time,
owing to the contribution of groundwater to surface water
flow. The 2001 flood, therefore, resulted from the basin’s
very low drainage capacity since the specific discharge
never exceeded 0.02 m3 s km2.

4. Results
[42] Rainfall and PET data were obtained from the

Meteo-France data bank (http://climatheque.meteo.fr) and
the streamflows from the French ministry of environment
(http://hydro.eaufrance.fr).

4.1. Allier Basin
[43] The different steps of inverse modeling are illustrated

for the Vieille Brioude flow of the Allier basin for which a
1-day sampling rate is used in calculations (Figure 3). The
area of the Vieille Brioude catchment is 2269 km2 and its
capacity, i.e., the product of the catchment area by the
concentration time of streamflow, is 3630 km2 d. Floods at
the outlet can result from either Mediterranean or Atlantic
rainfall.

Table 2. Maine Basin

Tributary
Gauging
Station

Area,
km2

Elevation,
m

Concentration
Time, d

Capacity,
km2 d

Mayenne Madre 335 129 1.1 369
Ambrieres 828 100 1.8 1490
St Fraimbault 1851 85 1.9 3517
Huisserie 2890 41 1.9 5491
Chateau-Gontiers 3910 26 2.0 7625
Chambellay 4160 20 2.1 8528

Sarthe St Ceneri 908 121 2.1 1907
Souillé 2700 49 2.2 5940
Neuville sur Sarthe 2716 47 2.3 6247
Spay 5285 38 2.3 12,156
St Denis d’Anjou 7380 22 2.3 16,974

Loir Villavard 4545 65 2.9 13,181
Flée 5940 46 3.0 17,820
Durthal 7920 21 4.1 32,472

Oudon Cosse le Vivien 133 55 1.2 160
Chatelais 734 35 1.6 1174
Segré 1310 21 1.8 2358

Huisne Reveillon 78.3 1.1 82
Nogent le Rotrou 827 102 1.9 1571
Montfort 1890 56 2.2 4064

Braye Valennes 270 101 1.1 297
Sarge 497 82 1.2 572

Maine Angers 22,020 13 2.8 61,656

Figure 5. Maine basin.
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[44] The weighted rainfallRS maximizes the objective
function (10) (Figure 7). Although 23 rain samplers are
used, only four can be considered to be relevant since they
contribute to the weighted rainfallRS by reducing sampling
errors: Barre des Ce´vennes, Brioude, Le Puy, and St Flour.
Although the rain sampler at Langogne is well correlated
with the Allier flow, it is not integrated into the weighted
rainfall RS because of the redundancy of information.

[45] The weighted rainfallRS is built from four rainfall
series that show the double influence of both Mediterranean
rainfall in the NW-SE direction, which coincides with the
Allier valley, and Atlantic rainfall in the W-E direction.

[46] Rainfall-streamflow models that are parsimonious
and regularized (thel2 norms (

�
Gi

2)1/2 of the quick and
slow impulse responsesGq and Gs are bounded) enable a
realistic estimation of peak flow accuracy. Indeed, once the
nonlinear effects affecting rainwater transport to the outlet of
catchments have been taken into account, the main discrep-
ancies observed between the observed and computed peak
flows result from the heterogeneity of rainfall at the catchment
scale, which is illustrated in Figure 8. In Figures 8a and 8b the
weighted rainfall is optimized by using rain samplers inside
and outside the catchment, whereas in Figures 8c and 8d it is
optimized by using rain samplers inside the catchment and
outside but close to the watershed. The discrepancies between
the observed flow and the model are approximately the same
in Figures 8a and 8c, which confirms they are resulting from
systematic errors, the transfer processes being altered after the
flood on 30 September 2000, whereas the peaks are accurately
explained. On the other hand, the doublet that is represented
in Figures 8b and 8d shows that the first peak on 24–25
November 2003 can be properly explained only if the rainfall
measured at Barre des Ce´vennes is introduced into the
optimization process of the weighted sumRS although the
rain sampler is not located on the Allier basin.

[47] Inverse modeling, therefore, enables us to estimate
the random errors of peak flow once the principal system-
atic errors have been removed. These random errors are
closely linked to catchment capacity and the return period of
the events (Table 4). Relative standard deviations are
calculated from the estimation of peak flows that are
expressed in comparison with a reference peak flow whose
return period is 10 yearsQ(10y):

S � 1� Q 10y� � 1� n
�

i� 1�n

Qobs � Qmod� � 2

� 	 1� 2

� 11�

wheren is the number of peak flows,QabsandQmodare the
observed and the computed peak flows, respectively. In this

Table 3. Somme Basin

Tributary or
Observation

Well Station
Area,
km2

Elevation,
m

Concentration
Time, d

Capacity,
km2 d

Somme Abbeville 5560 7 100 556,000
Peronne 1294 48 10 12,940

Nievre Etoile 269 10 90 24,210
Hallue Bavelincourt 115 46 60 6900
Selle Plachy 524 39 10 5240
Avre Moreuil 642 36 10 6420
Obs. well 00323X0080 45 100

00332X0007 71 80
00341X0012 127 100
00342X0025 129 150
0471X0010H1 77 110
00347X0002 143 110
0463X0036H1 87 70
00465X0007 107 190
0478X0002P 79 190
00487X0015 102 210
00624X0085 47.5 20

Figure 6. Somme basin.
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way, all the catchments of the Allier basin contribute to the
estimation of the deviations, regardless of their capacity.

[48] Catchment capacity has a strong influence on the
estimation errors of peak flow regardless of the return
period (Table 4). Modeling of floods in small catchments
whose capacity is less than 500 km2 d requires much denser

information than for rainfall regionalization at medium and
large catchment scale. On the other hand, a sparse network
of suitable rain samplers allows accurate coarse-scale mod-
eling of peak flow whose return period is at least 5 years.
The standard deviation of around 10% includes systematic
errors resulting from the parsimony of degree of freedom of
the inverse models as well as the regularization technique.

4.2. Maine Basin
[49] The calculations are very similar to those of the

Allier basin. Here again the sampling rate is 1 day. 38
rainfall samplers are used. The weighted rainfallRS shows
five main independent influences (Figure 9). The rainfall
rate on the Mayenne basin is clearly controlled by the
oceanic influence and its inland penetration in the W-E
direction.

Figure 7. Cross correlograms between the Allier flow at
Vieille Brioude and effective rainfall. Arrow indicates the
lags from which the increasing part of the cross correlogram
is maximized (2 days). Weighted rainfall:

RS � 0�07Barre des C�evennes� 0�26Brioude� 0�52 Le Puy
� 0�15St Flour

Figure 8. Inverse modeling of the Allier flow at Vieille Brioude: comparison of model (1) and the
observed flow. Return period of the flow is mentioned (wet years). (a and b) Weighted rainfall is
estimated from rain samplers that are located inside and outside the catchment; (c and d) weighted rainfall
is estimated from rain samplers that are located inside the catchment and outside but close to the
watershed:

RS � 0�25Brioude� 0�20Langogne� 0�32 Le Puy� 0�23St Flour

Table 4. Standard Deviation of Peak Flow Expressed in
Comparison With a 10-Year Return Event (Allier Basin)a

Return Period

Capacity
 500 km2 d Capacity >500 km2 d

Number of
Events

Standard
Deviation

Number of
Events

Standard
Deviation

RP < 1 y 87 16.9% 57 10.7%
1 y < RP < 5 y 20 30.5% 31 17.3%
RP > 5 y 18 30.5% 11 9.9%

aThe capacity of the piezometric surfaces is unknown because their area
may vary significantly during the recharge period.
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[50] The influence of rainfall sampling on the accuracy of
the model is illustrated in Figure 10. The weighted rainfall
RS is optimized from rain samplers located inside and
outside the catchment in Figures 10 and 10b while it is
optimized from rain samplers located inside and in the
vicinity of the catchment in Figures 10c and 10d. Peak

flows higher than 300 m3 s whose return period is 2 years
are better estimated when Granville, Chateaudun, Nantes
and Verneuil rain samplers are introduced into the optimi-
zation process although they are far from the Mayenne
catchment at Huisserie. Although the 1995 flood is accu-
rately reproduced by both models, the succession of floods
that occurred in 2001 are poorly explained when rain
samplers are limited to the catchment.

[51] The standard deviation deduced from the compari-
son of observed and computed peak flow values depends
only a little on the catchment capacity and the return period
(Table 5), which results from the homogeneity of stratified
rainfall of oceanic origin. Nevertheless, as for the Allier
basin where rainfall is both stratified and convective, the
standard deviation of peak flow expressed in comparison
with a 10-year return event is close to 10% for return
periods equal to or greater than 5 years.

Figure 9. Cross correlograms between the Mayenne flow
at Huisserie and effective rainfall. Arrow indicates the lags
from which the increasing part of the cross correlogram is
maximized (2 days). Weighted rainfall:

RS � 0�19Chateaudun� 0�21 Granville� 0�16 Nantes
� 0�29 StCyr� 0�15Verneuil

Figure 10. Inverse modeling of the Mayenne flow at Huisserie: comparison of model (1) and the
observed flow. Return period of the flow is mentioned (wet years); (a and b) weighted rainfall is
estimated from rain samplers that are located inside and outside the catchment; (c–d) weighted rainfall is
estimated from rain samplers that are located inside the catchment and outside but close to the watershed:

RS � 0�05Brece� 0�40Lassay� 0�06Mayenne� 0�32StCyr� 0�17StMars

Table 5. Standard Deviation of Ppeak Flow Expressed in
Comparison With a 10-Year Return Event (Maine Basin)

Return Period

Capacity
 500 km2 d Capacity >500 km2 d

Number of
Events

Standard
Deviation

Number of
Events

Standard
Deviation

RP < 1 y 135 11.9% 333 8.7%
1 y < RP< 5 y 38 12.1% 190 11.2%
RP > 5 y 14 10.0% 50 10.0%
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4.3. Somme Basin
[52] The calculations are done with a 10-day sampling

rate. 26 rainfall samplers are used. In Figure 11, the
maximization of the objective function (10) is done for
the Somme flow at Abbeville, near the outlet of the Somme
basin. The closest stations that allow a significant improve-
ment of the cross correlation are located on both sides of the
catchment. The Arras station is located 56 km at the north of
Amiens and the Senlis station is 76 km to the south. The
weighted rainfallRS therefore shows that the rainfall rate on
the Somme basin reflects an N-S influence from the North
Sea and the Channel.

[53] The different steps leading to the comparison be-
tween the observed and the computed flow values are
shown in Figure 12. Not only is the model able to explain
high water flow over the entire period of flooding but low
water flow is also properly modeled (Figure 12a). The slow
component represents the main contribution of the Somme
flow (Figure 12b and 12e). This component expresses water
migration through the matrix of the unsaturated zone down
to the chalk aquifer. Such a process is the result of switching
behavior of groundwater recharge from matrix flow to
macropore flow due to accumulated wetness over several
years, hence the important contribution of the quick com-
ponent to the Somme flow (Figures 12b, 12c 12d and 12f).
The relevancy of rain samplers is represented in Figure 13.
The weighted rainfall that is optimized from rain samplers
inside and outside the catchment enables to explain the
2001 flood properly (Figure 13a). The discrepancies that are
observed at the end of the flood are resulting from system-
atic errors since the Somme flowed out of bank, which
decreased drainage capabilities of the river. On the other
hand, the peak flow cannot be explained properly when rain
samplers are located inside the catchment only (Figure 13b).
In particular the initiation of the flood cannot be explained
without integrating the Arras rain sampler into the optimi-
zation process of the weighted rainfallRS.

[54] Thus the completeness of information for the decadal
data of rainfall is supported mainly by two weather stations

located at a distance close to the longest dimension of the
catchment, which indicates the correlation distance of
reduced rainfall data. Estimation error between observed
and computed streamflow is deduced from several sub-
catchments of the Somme basin that are equipped with
gauging stations, which allows the optimization of rainfall
data at the subcatchment scale. Moreover, several observa-
tion wells located close to water table outlets are computed.

[55] Owing to the possible systematic errors related to the
calibration curve of gauging stations, particularly for low
water stage, standard deviations (Table 6) are higher for
streamflow (8.6%) than for pressure head (5.6%) that is
linearly related to groundwater recharge when the aquifer is
homogeneous, which may be assumed in Somme basin
chalk at broad scale.

5. Discussion
[56] Only a few suitable rain gauges are necessary to

accurately model peak flow at medium and large catchment
scales. Nevertheless, daily rainfall can be locally very
erratic depending on the local environment and atmospheric
turbulence. The apparent spatial homogeneity of short-term
rainfall events, therefore, relies on statistical considerations.
Let us consider local fluctuations whose correlation distance
is l and regulation time ist . If Sandtc denote the catchment
area and the rainwater concentration time to the outlet,
respectively, this apparent homogeneity results in the large
number of elementary cells whose capacity isl2t that is
aggregated into the cell associated with the catchment with
a capacity ofStc. A global behavior results in the superpo-
sition of multiple influences that are globally represented
from rainfall fluxes through the watersheds as a result of
atmospheric circulation and advection. These fluxes, char-
acterized from a sparse network of rain gauges, reflect (1)
oceanic intrusion and its dampening as it moves over the
continent where both evaporation and precipitation occur
and (2) the condensation of warm wet air when it collides
with cold air like what happens for storms on the Cevennes
Mountains when warm Mediterranean air encounters cold
mountain air. The greater the return period of observed
events, the more accurate the flood estimation will be
because of the coherence of the elementary cells used to
produce such exceptional events at the catchment scale. At
broad scale, the heterogeneity of elementary cells therefore
appears mainly for events whose effect is weak, character-
ized by a small return period.

[57] The completeness of rainfall data to explain nonlin-
ear transfer processes can be ascertained from a very small
number of weather stations covering an area of several
thousands of km2. Everything happens as if most of the
reduced data from rain gauges were not sensitive enough to
reliably represent the rainfall fluxes generated by atmo-
spheric circulation through the watersheds, and their re-
sponse to short-term rainfall events is too noisy to provide
relevant information for the transfer models. Moreover, the
selected stations are always the same for each catchment
unless two optimized weighted rainfallsRS are equivalent,
which results both on the capacity of the catchments and on
the return period of flood events: So local storm events that
may be due to the front passage or summer thunderstorm are
excluded from the statistics.

Figure 11. Cross correlograms between the Somme flow
at Abbeville and effective rainfall. Arrow indicates the lags
from which the increasing part of the cross correlogram is
maximized (20 days). Weighted rainfall:

RS � 0�52Arras� 0�13Bernaville� 0�08Rouvroy� 0�27Senlis
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Figure 12. Different steps for optimizing the weighted rainfall of rainfall data: (a) comparison of model
(1) and the observed flow. Return period of the flow is mentioned (wet years); (b) hydrograph separation
according to (1); (c) effective rainfall thresholdW and the weighted rainfall; (d) fraction of quick transfer
a of effective rainfall and the effective rainfall; (e and f) slow and quick impulse responsesGs andGq.

Figure 13. Inverse modeling of the Somme flow at Abbeville: comparison of model (1) and the
observed flow. Return period of the flow is mentioned (wet years). (a) Weighted rainfall is estimated from
rain samplers that are located inside and outside the catchment; (b) weighted rainfall is estimated from
rain samplers that are located inside the catchment and outside but close to the watershed:

RS � 0�31 Epehy� 0�07 Oisemont� 0�52 Rouvroy� 0�10 Vron
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[58] Thus upscaling at broad scale makes the notion of
proximity of rain gauges to the catchment obsolete, only
their representativeness of the fluxes through the water-
sheds as a result of atmospheric circulation is relevant. For
example, the rain gauges of Arras (Somme basin), Gran-
ville (Maine basin) and Barre des Cevennes (Allier basin)
fulfill such conditions. Located upstream in the direction of
the dominant wind that generates heavy rain, their influence
is significant over long distances of up to a hundred
kilometers. In the opposite case, rain gauges located inside
the catchment may not be representative of short-term
rainfall events at the catchment scale, and rainfall data
may increase random errors when they are used as inputs of
hydrological models without selection on the basis of the
analysis of the cross correlogram between rainfall data and
streamflows.

6. Regionalization of Rainfall at Broad Scale
[59] The broad-scale regionalization of rainfall can be

achieved by optimizing the weighted sumRS on the mosaic
of subcatchments included between the watersheds inter-
secting two successive gauging stations. Equation (1),
therefore, has to be transformed into the following equation:

Qdown ti� � � Qdown � Gs * Rs� Reff � Gq * Rq� Reff

� Gup * Qup� Qup � e �12�

whereQup andQdownare the flows observed at the upstream
and the downstream stations, respectively. Now,Gup is the
impulse response of the upstream flow to the downstream
flow, the area of which is the ratio of the mean upstream
flow to the mean downstream flow:

�
Gup � Qup� Qdown � 13�

The correlation distances of observed rainfall and of the
weighted sumRS are represented in Figure 14, Figure 15,
and Figure 16 for the three basins.

[60] In the Allier basin, the weighted rainfall exhibits a
weak correlation decrease from Langogne to Vieille
Brioude, then decreases to Agnat before showing a plateau
to Limons. The behavior of the correlation distance reflects
the gradual attenuation of the Mediterranean influence as
the distance increases from the watershed at the upper limit
of the Allier basin to Vieille Brioude, then the step between
Vieille Brioude and Agnat materializes the limit between the
Mediterranean and the continental influences. The apparent
spatial decorrelation observed for rain samplers results from
noise, i.e., sampling errors.

[61] As opposed to what occurs in the Allier basin, the
regionalization of reduced rainfall data on the Maine basin
shows the strong correlation of daily rainfall at the basin
scale regardless of the axis. The rainfall correlation

decreases very slowly as the distance from the sea increases,
as a result of inland penetration of the front.

[62] The Somme basin is characterized by an influence of
the Channel at the edge of the basin, and then the inland
penetration of the front shows a very long correlation
distance of decadal rainfall from Bernaville.

7. Conclusion
[63] An inverse approach based on previous studies was

demonstrated to evaluate the representativeness of rain
samplers to explain flood events. Because of the small
degree of freedom of the inverse models the regularized
solutions enable to separate systematic errors resulting from
subtle transfer processes not taken into account into the
models and random errors produced by the propagation of
sampling errors of rainfall. So, rainfall sampling can be
optimized without interfering on the calibration of the
inverse models, by minimizing the discrepancies between
the observed and the computed streamflows.

[64] At catchment scale (500 to 25,000 km2), the best
representativeness of rainfall is obtained from the reduced
rainfall RS/RS that maximizes the cross correlation with the
flow observed at the outlet of the catchment, this reduced
rainfall being weighted by the mean rainfall height over the
catchment (from the isohyets). The reduced weighted rain-
fall RS/RS is characterized by the sparseness of the rain
samplers from which it is defined and the long distance
between them. As a corollary, the regionalization of rainfall
data for broad-scale modeling shows a very long correlation
length of daily (or decadal) rainfall. This correlation length
becomes shorter only at the frontier between two climate
systems. This contradicts the widespread assumption that
for distributed rainfall-runoff model, the denser the network
of rain samplers used as input in the models, the more
accurate broad-scale flood model will be. Random errors of
the models resulting from the propagation of sampling
errors of rainfall could be substantially lessened by using
the reduced rainfallRS/RS weighted by the mean rainfall
height over the catchment as input of the models instead of
the row rainfall data. Flood events can be reproduced
accurately only if some particular weather stations are
introduced into the models, those stations being represen-
tative of the rainfall fluxes through the watersheds as a
result of atmospheric circulation and advection. Such sta-
tions may be located outside the catchments and their

Table 6. Standard Deviation of Peak Flow Expressed in
Comparison With a 10-Year Return Event (Somme Basin)

Number of Events Standard Deviation

Streamflow 18 8.6%
Observation well 25 5.6%

Figure 14. Correlation distance of rainfall in the Allier
basin (sampling rate = 1 day).
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omission as input of the models may involve a lack of
information, leading to a poor representation of exceptional
flood events. Furthermore, the temporal and the spatial
structure of the low-noise optimal combinationRS are
much easier to decipher than those of raw rainfall data,
which improves the reliability of both flood models and
flood predictions. Precipitation events or sequences need to
be generated with an appropriate spatial and temporal
structure, and methods are capable of extension to represent
climate change. In particular, the spatial resolution of
regionalized rainfall events is compatible with that of the
General Circulation Models and the temporal structure is
well adapted to the integration of current and possible future
effects of climate variability and change on flood risk.
Modeling of large basins may require connected models
linked from the cross correlation of the corresponding
weighted rainfallRS. Considering the importance of flood
forecasting in large basins requiring evaluation of joint
probabilities of fluvial flooding from a combination of
contributory effects, this work may be generalized to a
large variety of issues of major strategic importance, with
major economic and social implications.
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Cévennes-Vivarais Mediterranean Hydro-meteorological Observatory,
J. Hydrometeorol., 6, 34–52.

De Michele, C., and R. Rosso (1995), Self-similarity as a physical basis for
regionalisation of flood probabilities, paper presented at International
Workshop on Hydrometeorology Impacts and Management of Extreme
Floods, Univ. of Perugia, Perugia, Italy, 13–17 November.

De Michele, C., and R. Rosso (2002), A multi-level approach to flood
frequency regionalisation,Hydrol. Earth Syst. Sci., 6(2), 185–194.

Ducrocq, V., D. Ricard, J. P. Lafore, and F. Orain (2002), Storm-scale
numerical rainfall prediction for five precipitating events over France:
On the importance of the initial humidity field,Weather Forecasting, 17,
1236–1256.

Foufoula-Georgiou, E. (1998), On scaling theories of space-time rainfall:
Some recent results and open problems, inStochastic Methods in Hy-
drology, edited by O. Barndorff-Nielsen et al., pp. 25–72, World Sci.,
Hackensack, N. J.

Fowler, H. J., C. G. Kilsby, and P. E. O’Connell (2000), A stochastic
rainfall model for the assessment of regional water resource systems
under changed climatic conditions,Hydrol. Earth Syst. Sci., 4(2),
263–282.

Galley, R., and J. Fleury (2001), Rapport de la commission d’enqueˆte sur
les causes des inondations,Rep. 3386, French Natl. Assem., Paris.

Gupta, V. K., and D. R. Dawdy (1994), Regional analysis of flood peaks:
Multiscaling theory and its physical basis, inAdvances in Distributed
Hydrology, edited by R. Rosso et al., pp. 149–168, Water Resour. Publ.,
Highlands Ranch, Colo.

Gupta, V. K., and E. Waymire (1990), Multiscaling properties of spatial
rainfall and river flow distributions,J. Geophys. Res., 95, 1999–2009.

Figure 15. Correlation distance of rainfall in the Maine basin (sampling rate = 1 day) along two
directions (a) Granville-Vendoˆme axis and (b) Rennes-Tours axis.

Figure 16. Correlation distance of rainfall in the Somme
basin (sampling rate = 10 days).

16 of 17

W09422 PINAULT AND ALLIER: INVERSE APPROACH TO RAINFALL REGIONALIZATION W09422



Gupta, V. K., O. J. Mesa, and D. R. Dawdy (1994), Multiscaling theory
of flood peaks: Regional quantile analysis,Water Resour. Res., 30,
3405–3421.

Gyasi-Agyei, Y., and G. Willgoose (1997), A hybrid model for point rain-
fall modelling,Water Resour. Res., 33, 1699–1706.

Hay, L. E., M. P. Clark, R. L. Wilby, W. J. Gutowski, G. H. Leavesley,
Z. Pan, R. W. Arritt, and E. S. Takle (2002), Use of regional climate
model output for hydrologic simulations,J. Hydrometeorol., 3(5),
571–590.

Hosking, J. R. M., and J. R. Wallis (1993), Some statistics useful in regional
frequency analysis,Water Resour. Res., 29, 271–281.

Hosking, J. R. M., and J. R. Wallis (1997),Regional Frequency Analysis:
An Approach Based on L-moments, Cambridge Univ. Press, Cambridge,
UK.

Khaliq, M., and C. Cunnane (1996), Modelling point rainfall occurrences
with the modified Bartlett-Lewis rectangular pulses model,J. Hydrol.,
180, 109–138.

Kirshbaum, D. J., and D. R. Durran (2005), Observations and modeling of
banded orographic convection,J. Atmos. Sci., 62(5), 1463–1479.

Miniscloux, F., J. D. Creutin, and S. Anquetin (2001), Geostatistical ana-
lysis of orographic rainbands,J. Appl. Meteorol., 40, 1835–1854.

Onof, C., and H. S. Wheater (1993), Modelling of British rainfall using a
random parameter Bartlett-Lewis rectangular pulse model,J. Hydrol.,
149, 67–95.

Onof, C., and H. S. Wheater (1994), Improvements of the modelling of
British rainfall using a modified random parameter Bartlett-Lewis rec-
tangular pulse model,J. Hydrol., 157, 177–195.

Onof, C., and H. S. Wheater (1995), Modelling of rainfall time-series using
the Bartlett-Lewis model,Proc. Inst. Civil Eng., Water Maritime Energy,
112, 362–374.

Onof, C., P. Northrop, H. S. Wheater, and V. Isham (1996), Spatiotemporal
storm structure and scaling property analysis for modeling,J. Geophys.
Res., 101, 26,415–26,425.

Pinault, J.-L., and F. Berthier (2007), A methodological approach to char-
acterize the resilience of aquatic ecosystems with application to Lake
Annecy, France,Water Resour. Res., 43, W01418, doi:10.1029/
2006WR005125.

Pinault, J.-L., and S. Schomburgk (2006), Inverse modeling for character-
izing surface water/groundwater exchanges,Water Resour. Res., 42,
W08414, doi:10.1029/2005WR004587.

Pinault, J.-L., H. Pauwels, and C. Cann (2001a), Inverse modeling of the
hydrological and the hydrochemical behavior of hydrosystems: Applica-
tion to nitrate transport and denitrification,Water Resour. Res., 37(8),
2179–2190.

Pinault, J.-L., V. Plagnes, L. Aquilina, and M. Bakalowicz (2001b), Inverse
modeling of the hydrological and the hydrochemical behavior of hydro-
systems: Characterization of karst system functioning,Water Resour.
Res., 37(8), 2191–2204.

Pinault, J.-L., N. Doerfliger, B. Ladouche, and M. Bakalowicz (2004),
Characterizing a coastal karst aquifer using an inverse modeling ap-

proach: The saline springs of Thau, southern France,Water Resour.
Res., 40, W08501, doi:10.1029/2003WR002553.

Pinault, J.-L., N. Amraoui, and C. Golaz (2005), Groundwater-induced
flooding in macropore-dominated hydrological system in the context of
climate changes,Water Resour. Res., 41, W05001, doi:10.1029/
2004WR003169.

Rivrain, J. C. (1998), Les e´pisodes orageux a` précipitations extreˆmes dans
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vol. 4, 93 pp., Serv. cent. d’exploitation de la meteorol. (SCEM), Me´téo
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