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Abstract 6 

We illustrate two different, but complementary, applications of lithium (Li) isotope tracers for 7 

river-basin characterization at two different scales within the Loire River basin (LRB) in France. 8 

The first example deals with the behaviour of Li and the fractionation of its isotopes during river 9 

weathering at the basin scale of the LRB (117,800 km²). The wide δ
7
Li range (+5.0 to +13.3‰) in 10 

Loire basin streams, spatialized between the headwaters and the lowlands, is consistent with 11 

distinct weathering conditions and the distribution of Li from bedrock in the basin between the 12 

rivers and secondary mineral phases during water/rock interaction. Additionally, suspended 13 

sediments in the LRB streams are significantly 
6
Li enriched (

7
Li from -8.7 to -7.6‰) compared to 14 

average river waters that range from +5.0 to +13.3‰. The second example focuses on the 15 

smaller scale Egoutier watershed (13 km²), part of the LRB, which shows that Li isotopes can be 16 

useful for distinguishing between natural input and anthropogenic pollution, like effluents from a 17 

water treatment plant connected to a hospital. Overall, we confirm that Li isotopes cannot be 18 

used as lithological tracers for river waters. However, we did find that Li isotopes can be good 19 

tracers of weathering conditions and of anthropogenic sources in an urbanized watershed. 20 
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1- INTRODUCTION 27 

In the Earth Sciences, the field of stable-isotope geochemistry of metals has greatly expanded over 28 

the past 20 years (Johnson et al., 2004; Teng et al., 2017), which is mainly due to the recent 29 

introduction of a new generation of Multi Collector Inductively Coupled Plasma Mass Spectrometers 30 

(MC-ICP-MS) with enhanced sensitivity and better precision. These instrumental innovations have 31 

opened new fields of research in metal-isotopes geochemistry (Albarède et al., 2004; Wiederhold, 32 

2015).  33 

Among the stable-isotope systematics of metals studied so far, the geochemistry of lithium 34 

(Li) has an excellent potential as a tracer of water/rock interactions within low- and high-35 

temperature systems (Tomascak 2004; Burton and Vigier 2011; Tomascak et al., 2016; Penniston-36 

Dorland et al., 2017), whether in the field of surface waters (Huh et al., 1998; 2001; Vigier et al., 37 

2009; Wimpenny et al., 2010; Millot et al., 2010a; Dellinger et al., 2014; 2015), groundwaters (Hogan 38 

and Blum 2003; Négrel et al., 2010; 2012; Meredith et al., 2013; Pogge von Strandmann et al., 2014; 39 

Bagard et al., 2015), geothermal waters (Millot and Négrel, 2007; Millot et al., 2007; Millot et al., 40 

2010b; Millot et al., 2011; 2012; Bernal et al., 2014), rainwaters (Millot et al., 2010c) or Li-rich brines 41 

(Godfrey et al., 2013; Araoka et al., 2014).  42 

Li isotopes are good tracers in geochemistry due to their involvement in water/rock 43 

interactions at the Earth’s surface. More precisely, Li and its isotopes can provide key information on 44 

continental silicate weathering, which is the primary natural drawdown process of atmospheric CO2 45 

and a major control on climate (Pogge von Strandmann et al., 2020). Li isotopes help our 46 

understanding of weathering via globally important processes, such as clay formation and cation 47 

retention. Both these processes occur as part of weathering in surface environments, including 48 

rivers, soil pore waters, and groundwater, but Li isotopes can also be used for tracking weathering 49 

changes across major climate-change events (Misra and Froelich, 2012).  50 

Furthermore, Li has a strategic importance for numerous industrial applications, including the 51 

production of Li-ion batteries for mobile devices and electric vehicles (World Economic Forum 52 
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Report, 2019), or in pharmaceuticals used in the treatment of some mental diseases (Aral and 53 

Vecchio-Sadus 2008; 2011). 54 

Assessing the behaviour of Li and its isotopes during chemical weathering is important for a 55 

better definition of water/rock interactions at the Earth’s surface and also for refining our 56 

understanding of the global Li cycle. Lithium (6Li ~ 7.5% and 7Li ~ 92.5%) is a fluid, mobile metallic 57 

element and, due to the large relative mass difference between its two stable isotopes, it is subject 58 

to significant low-temperature mass fractionation that provides key information on weathering 59 

processes. 60 

Additionally, the contribution of human activities (industry, agriculture, and domestic inputs) 61 

becomes increasingly significant in the chemical composition of dissolved river load (Aral and 62 

Vecchio-Sadus 2008; 2011) as well as in that of soil (Négrel et al., 2019). Human factors thus act as an 63 

additional key process and, therefore, a mass-balance for the budget of catchments and river basins 64 

must also consider anthropogenic disturbance of Li (Choi et al., 2019; Négrel et al., 2020). 65 

To date, both the magnitude of Li-isotopic fractionation associated with water/rock 66 

interaction processes, and the factors controlling such fractionation, are not totally understood. 67 

However, both field- and experimental studies have shown that 6Li is preferentially retained by 68 

secondary minerals during silicate weathering (Pistiner and Henderson 2003, Kisakürek et al. 2004, 69 

Pogge von Strandmann et al. 2006, Vigier et al. 2009). Accordingly, the fractionation of Li isotopes 70 

depends upon the extent of chemical weathering: strong fractionation seems to occur during 71 

incipient and early weathering stages, while little fractionation is observed during more intense or 72 

prolonged weathering in a stable environment, such as a low plain with long residence times; Huh et 73 

al. 1998, 2001, Pogge von Strandmann et al. 2006, Millot et al., 2010a).  74 

Li-isotope fractionation has been documented in numerous natural environments with 75 

experimental and natural data (Tomascak 2004, Burton and Vigier 2011; Tomascak et al., 2016; 76 

Penniston-Dorland et al., 2017; Pogge von Strandmann et al., 2020). It was shown that partial 77 

dissolution of basalt does not result in Li-isotope fractionation, but that granite dissolution can cause 78 
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such fractionation (Pistiner and Henderson 2003; Négrel and Millot, 2019). In addition, adsorption 79 

onto mineral surfaces can be another major mechanism of Li-isotopic fractionation in the 80 

hydrosphere (Wenshuai and Liu, 2020; Andrews et al., 2020). Moreover, Li is not a nutrient and does 81 

not participate in biologically mediated reactions, so no evidence of biological Li-isotope 82 

fractionation has been observed to date (Rudnick et al., 2004; Marriott et al., 2004). 83 

Here, we illustrate two applications at complementary scales of Li isotopes used for river-84 

basin hydrogeochemical surveys. The first example deals with the behaviour of Li and its isotopes at 85 

the Loire basin (LRB) scale (117,800 km², France) for river water and sediment transported during 86 

river flow. The second example focuses on a smaller scale: the Egoutier watershed (13 km²), part of 87 

the LRB. The main objective of our work was to evaluate Li isotopes as 1) tracers of weathering 88 

conditions over a large river basin, and 2) tracers of anthropogenic input at the scale of a small 89 

watershed. 90 

2- ANALYTICAL METHODS 91 

2.1. Sampling methods and element concentration measurements 92 

In the LRB (Table 1), river waters were sampled twice, first during low flow and then during high flow 93 

(August/September 2012 and April 2013, respectively). Suspended sediments in the Loire at 94 

Montjean (the farthest downstream sampling station of this study, 955 km from the Loire spring) 95 

were sampled monthly between July 2012 and June 2013. For the Egoutier watershed, we collected 96 

river water in April 2015), corresponding to the high-flow stage of the watershed.  97 

In the field, 5 litres of river water were collected in acid-washed containers for major- and 98 

trace-element and isotopic measurements (for details of the protocol see Millot et al., 2003). 99 

Samples were filtered in the field, using a Sartorius frontal filtration unit (0.2 µm cellulose acetate 100 

filter, 142 mm diameter). After filtration, samples were stored in acid-washed polypropylene bottles. 101 

The river sediments were collected after drying and centrifugation of the river-water filtration 102 

retentate. The samples for Li-concentration and Li-isotope analyses were acidified to pH=2 with 103 

ultrapure HNO3. Lithium concentrations in river-water and suspended-sediment samples were 104 
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determined by Quadrupole ICP-MS (Thermo X Series II) with indium as an internal standard, with a 105 

precision of ±5%.  106 

2.2 Lithium isotope measurements 107 

Lithium-isotopic compositions were measured using a Neptune+ Multi-Collector ICP-MS at the BRGM 108 

(French Geological Survey; Millot et al., 2004). 7Li/6Li ratios were normalized to the L-SVEC standard 109 

solution (NIST SRM 8545, Flesch et al., 1973) following the standard-sample bracketing method. 110 

Typical in-run precision on the determination of 7Li was about 0.1-0.2‰ (2m, standard error of the 111 

mean). Chemical separation of Li from the matrix before isotope analyses was done with a cationic 112 

exchange resin (a single column filled with 3 mL of BioRad AG 50W-X12 resin, 200-400 mesh) and 113 

HCl acid (0.2N) rendering 30 ng Li. Blanks for the total chemical extraction were <30 pg Li, which is 114 

negligible as this represents a blank/sample ratio of <10-3. 115 

Successful quantitative measurement of Li-isotopic compositions requires 100% Li recovery 116 

during laboratory processing. Therefore, frequent column calibrations were performed and repeated 117 

analysis of an L-SVEC standard processed through the columns showed that no isotope fractionation 118 

occurred as a result of the purification process. 119 

The accuracy and reproducibility of the entire method (purification procedure + mass 120 

analysis) were also tested by repeated measurement of a seawater standard solution (IRMM BCR-121 

403) after separation of Li from the matrix, giving a mean value of 7Li +30.8 0.4‰ (2, n=15) over 122 

the duration of the analyses. This mean value agrees with our long-term measurements (7Li +31.0 123 

0.5‰, 2, n=30, Millot et al., 2004) and with other values reported in the literature (see for 124 

example Carignan et al., 2004 and Tomascak 2004 for a data compilation). 125 

For suspended sediments, a total digestion of 50 mg of crushed sample took place over 126 

4 days at 100 °C in a closed beaker with a mixture of three ultrapure acids: 4 mL HF (23N), 1 mL HNO3 127 

(14N) and 0.1 mL HClO4 (12N). The solution obtained was evaporated to dryness and 4 mL HCl (6N) 128 

was added and left for a further 4 days at 100 °C. Sample aliquots (30 ng Li) of the residue of the acid 129 

dissolution were then dissolved in 0.5 mL HCl (0.2N), before being placed in cation exchange columns 130 
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for Li separation. Accuracy and reproducibility of the entire procedure for solid samples (dissolution + 131 

purification + mass analysis) were tested by repeated measurements of the JB-2 basalt standard 132 

(Geological Survey of Japan), which gave a mean value of 7Li = +4.9‰0.6‰ (2, n=17), in good 133 

agreement with published values (see Jeffcoate et al. 2004, Tomascak 2004 and Carignan et al. 2007 134 

for data compilation). 135 

3- FIELD SITE DESCRIPTION 136 

3.1 The Loire River Basin 137 

We undertook a systematic study of the weathering products (both dissolved load and suspended 138 

sediments) of the LRB, one of the major river basins in Europe. This area is of particular interest as it 139 

has been extensively studied and is scientifically well characterized (Négrel and Grosbois 1999; 140 

Grosbois et al., 2001).  141 

The Loire River in central France (Fig. 1) is approximately 1010 km long and drains an area of 142 

117,800 km2. Initially, the Loire flows north to northwest, originating in the Massif Central and 143 

continuing up to the city of Orléans, about 650 km from the source. Beyond Orléans, the river turns 144 

west to WSW, being one of the main European riverine inputs into the Atlantic Ocean. In the upper 145 

basin, the bedrock is Palaeozoic plutonic rock overlain by sub-Recent volcanic rocks. The 146 

intermediate basin includes three major tributaries flowing into the Loire from the left bank: the 147 

Cher, the Indre and the Vienne rivers. Here, the Loire drains sedimentary rocks of the Paris Basin, 148 

mainly carbonate deposits. The lower Loire basin drains Palaeozoic basement rocks of the Armorican 149 

Massif and its overlying Mesozoic to Cenozoic sedimentary deposits.  150 

Its spring is located at an altitude of 1,404 m (Mont Gerbier de Jonc) and its course is 151 

classically divided into three parts from upstream to downstream: (i) the Upper Loire, (ii) the Loire 152 

Valley, and (iii) the Lower-Loire, to the estuary. River discharge of the Loire is very irregular: in the 153 

Lower Loire it can exceed 7000 m3/s, but at Orléans it is around 350 m3/s and during summer the 154 

river can literally dry up, with flows less than 25 m3/s. 155 
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BRGM's expert knowledge of the LRB is recognized by the numerous, particularly isotopic, 156 

studies, that have been carried out over the past decades (Négrel, 1997; Négrel and Grosbois, 1999; 157 

Négrel et al., 2000; Négrel and Petelet-Giraud, 2012; Petelet-Giraud et al., 2018). The Loire has been 158 

regularly monitored at Orléans and Tours over several hydrological cycles (Grosbois et al., 2000; 159 

2001). Its physico-chemical parameters, major- and trace elements, and strontium-isotope ratios 160 

were determined on the dissolved fraction over time spans ranging from two days to one week, 161 

depending on river flow.  162 

The relationships between chemical elements and flow as well as between isotopic ratios and 163 

flow have shown that the dissolved fraction of the Loire results from a mixture between rainfall 164 

input, input from the weathering of silicate- and carbonate bedrocks, and anthropogenic input of 165 

agricultural and urban origin. Total dissolved-solids flow during a hydrological cycle is estimated at 166 

1300x103 t/year at Orléans and 1620x103 t/year at Tours (Grosbois et al., 2001). For the river 167 

sediments, work by Négrel and Grosbois (1999) on 87Sr/86Sr isotope ratios suggests the existence of 168 

at least two reservoirs of suspended matter transported by the river. One is related to the detrital 169 

fraction from silicate erosion, the other to carbonate erosion. The stable isotopes of carbon and 170 

oxygen in the fraction extracted by acid leaching from Loire sediments during periods of low water 171 

flow (Négrel et al., 2000), confirm the formation of antigenic calcites in isotopic equilibrium with 172 

Loire water (Fontes et al., 1973; Dever et al., 1983).  173 

3.2 The Egoutier watershed 174 

We also investigated anthropogenic Li tracing of wastewater release, using Li isotopes in the small 175 

Egoutier catchment near Orléans (13 km², Fig. 2; in French, ‘Egout’ means ‘Sewer’, Desaulty and 176 

Millot 2017). 177 

Located in the Paris Basin on the Beauce plateau just east of Orléans, the Egoutier is a small 178 

stream with its spring near the village of Chanteau and a length of 5 km before being channelled and 179 

flowing into the Loire at Saint-Jean-de-Braye. For this study, we worked in a small built-up area 180 
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between its spring in the forest and a point just downstream of the departmental road D2060 181 

(Fig. 2).  182 

The study area integrates two main potential sources of metals due to human activities: The 183 

first one is a psychiatric hospital with about 300 beds and many outpatients. The hospital also houses 184 

an active laundry. About a ton of linen from different community sources (fire brigade, schools, etc.) 185 

is washed and ironed every day. The second one is an industrial area including a slaughterhouse, 186 

factories for processing animal products, and the oil depot of Saint-Jean-de-Braye that supplies fuel 187 

oil to the Centre-Val-de-Loire region. This second area is drained by a stream that flows into the 188 

Egoutier.  189 

4- RESULTS 190 

4.1 The Loire River basin 191 

In the LRB (Table 1), natural Li concentrations in river water are between 2.0 and 46.5 µg/L whereas 192 


7Li-isotopic compositions range from +5.0 to +13.3‰. In more detail, there are slight differences 193 

depending upon whether the rivers were sampled during low- or high-flow stages.  194 

During low flow, Li concentrations are higher (3.4 to 46.5 µg/L; mean 15.9 µg/L n=20, Table 1) than 195 

during high flow (Li concentrations from 2.0 to 30.0 µg/L with a mean of 7.4 µg/L, n=20, Table 1). In 196 

parallel, the Li-isotopic compositions are little different for low- and high-flow samples, with 7Li 197 

values ranging from +5.0 to +13.3‰ and +5.2 to +11.7‰ respectively. These concentrations are 198 

higher than the worldwide riverine average of 1.9 µg/L (Huh et al., 1998; Gaillardet et al., 2014). In 199 

addition, Loire basin rivers have lower isotopic compositions than the average δ7Li value for modern 200 

river water of about +23‰ (Huh et al., 1998; Misra and Froelich, 2012). Finally, δ7Li values for the 201 

Loire basin rivers agree with previous data reported by Rivé et al. (2013) for the upstream Loire (7Li 202 

from 4.0 to 24.0‰). Loire river suspended sediments collected monthly at Montjean/Loire (Table 2) 203 

from July 2012 to June 2013 have Li concentrations between 41.3 and 73.0 µg/g (mean 60.2 µg/g, 204 

n=7), significantly higher than those of the average Upper Continental Crust (UCC) at Li 35 ± 11 µg/g 205 

(2, Teng et al., 2004). In addition, these sediments have low 7Li with strongly negative values 206 
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ranging from -8.7 to -7.6‰ (mean 8.2‰, n=7) when compared to the UCC value of 0‰ ±2 (Teng et 207 

al., 2004). 208 

4.2 The Egoutier watershed 209 

Lithium concentrations in the Egoutier watershed cover a narrow range from 5.3 to 12.7 µg/L (mean 210 

7.3 µg/L, n=9, Table 3), whereas the isotopic compositions of Li are comprised between -3.1 and 211 

+4.2‰ (mean +0.5‰, n=10, Table 3). The Li concentrations and the 7Li values in the Egoutier 212 

watershed are very different from the ones observed at the larger scale of the LRB.  213 

5- DISCUSSION 214 

5.1 The Loire River basin: controlling parameters for the distribution of Li and its isotopes 215 

Overall, Li concentrations in Loire River mainstream waters span a wide range from 2.0 to 22.5 µg/L, 216 

whereas 7Li values are between +5.9 and +13.2‰ (Table 1). Figures 3a and 3b show a clear contrast 217 

for the main course of the Loire River between headwaters and lowlands. This contrast shows a 218 

significant increase in Li concentrations from upstream to downstream (Fig. 3a). This feature is also 219 

associated with a strong decrease in the 7Li values as a function of distance from the spring. These 220 

variations for Li concentration and 7Li are observed for both high and low flow stages. 221 

In addition, when all 7Li values are plotted for both the Loire and its major tributaries (Cher, 222 

Indre, Vienne, Maine, Furan, Arroux and Allier rivers, Fig. 1) in a 7Li vs. Na/Li diagram (Fig. 4), the 223 

data plot in a triangle formed by three endmembers. The first (Na/Li ~8000 and 7Li ~+12‰) is the 224 

upstream Loire at Villerest; the second endmember is close to the Allier river (Na/Li ~500 and 7Li 225 

~+5‰); and the third could be represented by rainwater. This agrees with the conceptual scheme of 226 

the Loire hydrosystem based on δ18O and 87Sr/86Sr data, suggesting that the Loire River is related to a 227 

Massif Central surface-water supply for the main Loire and Allier streams, and to water/groundwater 228 

interactions in the alluvial plains (Négrel et al., 2003). 229 

For the second endmember, the Allier constitutes a major tributary of the Loire that mostly 230 

drains the French Massif Central. As a result, its chemical (Na/Li) and isotopic signatures are 231 

influenced by input from thermo-mineralized waters resulting from hydrothermal activity, as 232 
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demonstrated by Négrel et al. (1997). These thermal springs are well described for the whole Massif 233 

Central area and have low 7Li values (Fig. 4, Millot et al., 2007). The third endmember, 234 

corresponding to rainwater input, is in a good agreement with our long-term monitoring values of 235 

rainwater at Orléans and also near Clermont-Ferrand within the Massif Central, corresponding to the 236 

continental signature of rainwaters in France (Millot et al., 2010c). 237 

It is well known that rainfall on watersheds can supply an important fraction of dissolved 238 

elements in river water (Meybeck, 1983). Atmospheric correction requires knowledge of the 239 

chemical composition of rainwater (op. cit.; Négrel et al., 1993). The correction of atmospheric 240 

contribution to water, for a given element Z, is estimated by reference to the Cl concentration, called 241 

Clref, multiplied by the Z/Cl ratio of rainwater. For the LRB and according to Grosbois et al. (2000), we 242 

considered the Clref at 2.62 μg/L (74 µmol/L). We applied the atmospheric correction to Na, Li and 243 

δ7Li values, as earlier done for other studies on Li isotopes (Dellinger et al., 2015; Négrel and Millot, 244 

2019; Négrel et al., 2020). Here, we used the characterization of rainwater defined by Négrel and Roy 245 

(1998), Négrel et al. (2007) and Millot et al. (2010c), who reported major ions, but also Li 246 

concentrations and isotopes (Millot et al., 2010c). The different rainfall stations in France range from 247 

near-ocean locations (Brest, Dax) to more continental ones (Orléans). The latter has the lowest Li 248 

concentrations (0.37 μg/L) and δ7Li values (+16.1‰). In view of its continental character, this station 249 

is certainly the one that can best match the rain input over the LRB. Table 1 shows that Li in waters 250 

from atmospheric origin ranges from 1.2 to 16.8% and from 1.9 to 28.2%, respectively for low- and 251 

high-flow stages. 252 

Once atmospheric correction was applied to lithium and its isotopes (Table 1; Fig. 5), the Li-253 

isotopic compositions of the Loire River were spatialized along the main course. Figure 5 shows 7Li 254 

values plotted against Li concentrations: we see two parallel lines, one for high flow stages and the 255 

second for low flow ones. The two lines are not interpreted as a mixing scheme for which the trends 256 

may not be linear in such a representation. Nor could this feature be interpreted as a result of a 257 

lithological contrast between the upstream and downstream Loire River (plutonic/volcanic rocks vs. 258 
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sedimentary deposits), in agreement with the results of Kısakürek et al. (2005), Vigier et al (2009) and 259 

Millot et al. (2010a) that showed that Li isotopes cannot be used as lithological tracers in river basins. 260 

This general picture might thus be better explained in terms of water/rock interaction: in the 261 

upstream environments of the Loire basin, short water-residence times and rock weathering may 262 

enhance processes that fractionate Li isotopes, such as adsorption and/or secondary-mineral-phase 263 

formation, producing high 7Li in rivers (Négrel and Millot, 2019). By contrast, in the lowlands of the 264 

Loire basin, longer water-residence time could enhance Li dissolution, with lower isotopic 265 

fractionation (low 7Li) approaching that of continental bedrock. Such a Li-isotope distribution has 266 

already been reported for other large river basins, worldwide (Lemarchand et al., 2010; Millot et al., 267 

2010b; Liu et al., 2013; 2015; Dellinger et al., 2014; 2015; Wang et al., 2015). 268 

More specifically, the Li-isotopic composition measured in the Loire basin rivers shows that 269 

the dissolved load is significantly enriched in 7Li when compared to suspended river load. Lithium 270 

concentrations in suspended Loire sediment at Montjean (Table 2) contain 41 to 73 µg/g and are 271 

clearly 6Li enriched; 7Li values being negative (-8.7 to -7.6‰), compared to dissolved loads (+5.0 and 272 

+13.0‰). This result agrees with the fact that 6Li is preferentially incorporated into suspended 273 

sediment during weathering as also observed for other river basins worldwide (Huh et al. 1998, 2001, 274 

Pogge von Strandmann et al. 2006, Millot et al., 2010b).  275 

Finally, the relationship between 7Li and Al/Li in the suspended sediment (Fig. 6) could also 276 

raise the question of the control by different mineral phases (clay minerals vs. oxy-hydroxide of Fe or 277 

Mn, or carbonates) during Li-isotopic fractionation between water and solids. The variation of the 278 

Al/Li ratio could reflect a compositional variation of clay minerals in suspended sediments. It is also 279 

likely that the suspended sediments consist of both fine (clay rich) and coarse (carbonate rich) 280 

factions. 281 

Unfortunately, we do not dispose over specific mineral-characterization data on our samples 282 

for further discussion of this point, but it is interesting to observe an inverse correlation between the 283 

Li-isotope signatures of suspended sediments and the river discharge (Fig. 7). This trend could 284 
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possibly suggest at least two different sources for suspended sediments, one during high flow and 285 

the other during low flow, agreeing with the results from Sr-isotopic ratios of the Loire sediments 286 

(Négrel et al., 2000; Négrel and Roy, 2002).  287 

A final point that might explain such a relationship could be that the δ7Li content in solids 288 

may reflect weathering intensity (i.e., soil formation/transformation, coarse/fine material), as argued 289 

by Dellinger et al. (2014; 2015). Consequently, different pools of river sediments are likely to be 290 

transported as a function of the river regime.  291 

5.2 Anthropogenic origin of Li in the Egoutier watershed 292 

Human activities such as industry, agriculture and domestic inputs, generally increase the quantity 293 

and modify the quality of chemical compounds in the dissolved and suspended load of rivers (Viers et 294 

al., 2009; Royer, 2016; Vanwalleghem et al., 2017). Human factors can also act as another key 295 

process for Li in rivers (Choi et al., 2019; Négrel et al., 2020). Therefore, the mass-balance for the 296 

budget of catchments and river basins should include anthropogenic disturbance.  297 

Here, we investigate the effect of wastewater release by tracing its impact through using Li 298 

isotopes in the small Egoutier watershed (13 km², 5 km long). As a case study, we studied this small 299 

watershed with a low housing density in the LRB (Ledieu et al., 2020). Its spring is located in a pristine 300 

forested area, but some kilometres downstream it is affected by metal-rich effluents from a hospital 301 

water-treatment plant as well as by input from an industrial area (Fig. 2, Desaulty and Millot, 2017). 302 

Within the course of the Egoutier, we clearly see the impact of both human activities. When 303 

Li concentrations are plotted as a function of distance from the spring (Fig. 8a), we see two different 304 

inputs: one from the waste water treatment plant (WWTP) related to the psychiatric hospital and the 305 

second from the stream draining the industrial area.  306 

Whereas the natural background for Li in river waters is 5 to 6 µg/L, the values for the 307 

Hospital WWTP release and the industrial area are 12.7 µg/L and 9.4 µg/L, respectively. In addition, 308 

Li-isotopic compositions are rather homogeneous in water of the Egoutier watershed, with 7Li 309 

values of around +0.5‰±1.2 along the main course of the stream (n=7, grey arrow on Fig. 8b), but 310 
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the signatures of the hospital and industrial area releases are very different. The WWTP water has a 311 

positive 7Li value of +4.2‰, whereas the stream draining the industrial area has a negative value at -312 

3.1‰. The two anthropogenic signatures are quite different for Li isotopes. As mentioned before, the 313 

hospital is a psychiatric one and it is likely that the Li released by the WWTP mainly comes from 314 

pharmaceutical products, such as Li carbonate used for bipolar disease treatment (Machado-Vieira et 315 

al., 2009). The nearby industrial area is mostly impacted by effluents from a slaughterhouse and 316 

animal-processing operations (Desaulty and Millot, 2017).  317 

These observations in the Egoutier watershed completely agree with recent work by Choi et 318 

al. (2019), who investigated the impact of anthropogenic input on lithium content in river- and tap 319 

waters within the metropolitan area of Seoul, South Korea. They showed that Li-enriched 320 

wastewater can affect tap waters. They also report Li-isotopic signatures of both therapeutic drugs 321 

(Li carbonate) and detergents that are compatible with our findings for the wastewater treatment 322 

plant releases in the Egoutier, which combine waste from the laundry and the psychiatric hospital. 323 

This example of the Egoutier watershed shows how Li isotopes can distinguish between 324 

natural and anthropic origins at the scale of a small watershed. This ability was recently evoked for 325 

Seoul (South Korea; Choi et al. 2019) as well as for the Dommel catchment (Belgium and 326 

Netherlands; Négrel et al., 2020). In both cases, lithium and its isotopes are effective tracers of 327 

wastewater releases in populated areas, as well as of industrial discharge (smelter effluents) into a 328 

river, respectively.  329 

Further investigations are now needed to more precisely determine the Li-isotopic 330 

compositions of pharmaceutical formulations, but also the role of wastewater treatment processes 331 

in the distribution of metals between liquid and solid phases within a treatment plant. The latter 332 

point is particularly relevant, as Choi and al. (2019) showed that there is no significant difference 333 

between influent and effluent waters for both Li concentrations and Li isotope compositions, thus 334 

making this tracer a perfect conservative tool for tracing Li pollution in the environment.  335 



14 

 

This study can be considered as pioneering, since Li is found naturally in drinking water (Eyre-336 

Watt et al., 2020; Ewuzie et al., 2020) with various origins. In clinical practice, it is widely used in the 337 

treatment of bipolar and of mood disorders. And, very importantly because of the increasing 338 

production of lithium-ion batteries worldwide (Naish et al., 2008; Conolly 2010; Christmann et al., 339 

2015), Li pollution in surface- and groundwaters could become a major issue in coming years, as 340 

recently suggested by Choi et al. (2019). 341 

6- CONCLUDING REMARKS AND FUTURE DIRECTIONS 342 

A large variability of Li-isotopic ratios exists within the Loire river basin (LRB) and 7Li is strongly 343 

spatialized between the Loire headwaters and lowlands. In addition, the Allier river, a major tributary 344 

in the French Massif Central, is clearly influenced by the contribution of thermo-mineral springs with 345 

lower 7Li. Suspended river sediments are 6Li enriched (7Li from -8.7 to -7.6‰) compared to river 346 

waters (+5.0 to +13.3‰), agreeing with the fact that 6Li is preferentially incorporated in suspended 347 

sediments.  348 

Overall, although the weathering mechanisms operating in the LRB must be defined in much 349 

more detail, our work confirms that Li isotopes cannot be used as lithological tracers for river waters. 350 

However, we also show that Li isotopes are good tracers of river weathering conditions, with an 351 

innovative application for tracing anthropogenic Li sources in a small, urbanized watershed. Further 352 

work is now required for better characterizing the chemical and isotopic signals of pharmaceutical 353 

formulations containing Li as well as those of Li-ion batteries. More specifically, leaks from landfills 354 

containing electronic products must be investigated for determining whether curative work is 355 

needed to stop the spread of pollutants. To conclude, lithium and 7Li are good proxies for studying 356 

weathering and anthropogenic activities. 357 
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Figure and Table Captions 601 

Figure 1: Map showing the Loire River Basin within France (right). The geological map shows the 602 

different sampling points for the Loire River mainstream and the different tributaries. 603 

Figure 2: Map of the Egoutier watershed. 2a: General location of the sampling points, 2b: Land cover 604 

map, 2c: Geological map. Modified from Desaulty and Millot (2017). The locations of the hospital and 605 

the industrial area are shown on 2b. 606 

Figure 3: : Li concentrations (µg/L, Fig. 3a) and Li isotopic compositions (7Li, ‰, Fig. 3b) in the Loire 607 

mainstream for low- and high-flow stages plotted as a function of distance from the source (km). 608 

Figure 4: 7Li (‰) plotted as a function of Na/Li mass ratio for the Loire River mainstream. Na 609 

concentrations are from Desaulty and Millot (2017). 610 

Figure 5: 7Li rainwater corrected (‰) plotted as a function of Li concentrations after rainwater 611 

correction (µg/L) for both low- and high-flow water samples. See text for explanation. 612 

Figure 6: 7Li (‰) plotted as a function of the Al/Li mass ratio for suspended Loire sediments of the 613 

Loire at Montjean. Al data are from Desaulty and Millot (2017). (Determination coefficient R² = 0.60, 614 

Correlation Coefficient R = 0.78). 615 

Figure 7: Li isotopic compositions (7Li, ‰) in the Loire River sediments at Montjean as a function of 616 

river discharge (m3/s) (Coefficient of determination R² = 0.48, Correlation coefficient R = 0.69). 617 

Figure 8: Li concentrations (µg/L, Fig. 8a) and Li isotopic compositions (7Li, ‰, Fig. 8b) in Egoutier 618 

waters plotted as a function of distance from the source (km). 619 

 620 

Table 1: 621 

Major elements (Na, Cl), trace (Li) concentrations and Li-isotopic compositions (7Li, ‰) of Loire 622 

waters and its main tributaries, at both high- and low-flow stages. The * means after atmospheric 623 

correction (see text for explanations). River discharge data are also reported here. 624 

Table 2: 625 



26 

 

Aluminium and Lithium concentrations and Li-isotopic compositions (7Li, ‰) of suspended river 626 

sediments sampled at Montjean/Loire. River discharge data are also reported here. 627 

Table 3: 628 

Li concentrations and Li isotopic compositions (7Li, ‰) of Egoutier catchment waters. 629 

  630 
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Table 2 667 

 668 

  669 

River Sampling location Sampling date Al Li 
7Li discharge

µg/g µg/g ‰ m3/s

Loire Montjean/Loire July 2012 45779 56 -8.7 384

Loire Montjean/Loire August 2012 46525 51 -8.3 181

Loire Montjean/Loire September 2012 50735 59 -8.6 153

Loire Montjean/Loire April 2013 75021 68 -7.6 62.75

Loire Montjean/Loire May 2013 74611 73 -8.2 64.69

Loire Montjean/Loire June 2013 67308 73 -7.8 69.78

Loire Montjean/Loire July 2013 38580 41 -8.3 78.47
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Table 3 670 

 671 

 672 

River Sampling location Li 
7Li

µg/L ‰

Egoutier Source  5.3 1.1

Egoutier point 2  8.4 2.9

Egoutier point 2 bis  12.7 4.2

Egoutier point 3  6.9 0.0

Egoutier point 4  5.7 0.3

Egoutier point 5  9.4 -3.1

Egoutier point 6  5.4 0.7

Egoutier point 7  5.8 -0.2

Egoutier end 5.9 -1.2


