H. Van-damme, Concrete material science: Past, present, and future innovations, Cement and Concrete Research, vol.112, pp.5-24, 2018.

H. Van-damme, Concrete material science: Past, present, and future innovations, Cement and Concrete Research, vol.112, pp.5-24, 2018.

P. Mehta and P. J. Monteiro, Materials and Soils, Encyclopedia of Soil Science, Third Edition, pp.1416-1420, 2017.

, , 2006.

F. Bart, C. Cau-di-coumes, F. Frizon, and S. Lorente, Cement-Based Materials for Nuclear Waste Storage, 2013.

V. Hostis and R. Gens, Performance Assessment of Concrete Structures and Engineered Barriers for Nuclear Applications, 2016.

J. P. Broomfield, Corrosion of Steel in Concrete, Corrosion of Steel in Concrete: Understanding, Investigation, and Repair, E & 1423 FN Spon, 1997.

S. Ahmad, Reinforcement corrosion in concrete structures, its monitoring and service life prediction??a review, Cement and Concrete Composites, vol.25, issue.4-5, pp.459-471, 2003.

L. Bertolini, B. Elsener, P. Pedeferri, E. Redaelli, and R. B. Polder, Corrosion of Steel in Concrete, Corrosion of Steel in Concrete: Prevention, 1428 Diagnosis, Repair, 2013.

A. Poursaee, Corrosion of Steel in Concrete Structures, 2016.

R. Fran-ois, S. Laurens, and F. Deby, Corrosion and its Consequences for Reinforced Concrete Structures, 2018.

R. B. Polder, W. H. Peelen, and W. M. Courage, Non-traditional assessment and maintenance methods for aging concrete structures - technical and non-technical issues, Materials and Corrosion, vol.63, issue.12, pp.1147-1153, 2012.

U. M. Angst, Challenges and opportunities in corrosion of steel in concrete, Materials and Structures, vol.51, issue.1, p.1437, 2018.

D. M. Mccann and M. C. Forde, Review of NDT methods in the assessment of concrete and 1439 masonry structures, NDT E Int, vol.34, issue.00, pp.32-35, 2001.

H. Song and V. Saraswathy, Corrosion monitoring of reinforced concrete structures -A review, p.1442

, Graphical Abstract: Angew. Chem. Int. Ed. 28/2007, Angewandte Chemie International Edition, vol.46, issue.28, pp.5251-5263, 2007.

S. K. Verma, S. S. Bhadauria, and S. Akhtar, Review of Nondestructive Testing Methods for Condition Monitoring of Concrete Structures, Journal of Construction Engineering, vol.2013, pp.1-11, 2013.

S. K. Verma, S. S. Bhadauria, and S. Akhtar, Review of Nondestructive Testing Methods for Condition Monitoring of Concrete Structures, Journal of Construction Engineering, vol.2013, pp.1-11, 2013.

A. Zaki, H. K. Chai, D. G. Aggelis, and N. Alver, Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique, Sensors, vol.15, issue.8, pp.19069-19101, 2015.

A. Poursaee, Corrosion measurement and evaluation techniques of steel in concrete structures, Corrosion of Steel in Concrete Structures, pp.169-191, 2016.

A. Poursaee, Corrosion measurement and evaluation techniques of steel in concrete structures, Corrosion of Steel in Concrete Structures, pp.169-191, 2016.

S. Kashif-ur-rehman, Z. Ibrahim, S. A. Memon, and M. Jameel, Nondestructive test methods for concrete bridges: A review, Construction and Building Materials, vol.107, pp.58-86, 2016.

S. Kashif-ur-rehman, Z. Ibrahim, S. A. Memon, and M. Jameel, Nondestructive test methods for concrete bridges: A review, Construction and Building Materials, vol.107, pp.58-86, 2016.

D. Luo, Y. Li, J. Li, K. Lim, N. A. Nazal et al., A Recent Progress of Steel Bar Corrosion Diagnostic Techniques in RC Structures, Sensors, vol.19, issue.1, p.34, 2018.

S. Taheri, A review on five key sensors for monitoring of concrete structures, Construction and Building Materials, vol.204, pp.492-509, 2019.

. Mater, , vol.204, pp.492-509, 2019.

D. Breysse, Non destructive assessment of concrete structures: usual combinations of techniques, Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques, pp.1-16, 2011.

, , pp.1-16, 2012.

J. Balayssac and V. Garnier, Non-Destructive Testing and Evaluation of Civil Engineering 1465 Structures, 2017.

H. F. Taylor, Cement chemistry, Cement Chemistry, 1997.

B. Lothenbach, K. Scrivener, and R. D. Hooton, Supplementary cementitious materials, Cement and Concrete Research, vol.41, issue.12, pp.1244-1256, 2011.

. Res, , vol.41, pp.1244-1256, 2011.

M. C. Juenger and R. Siddique, Recent advances in understanding the role of supplementary cementitious materials in concrete, Cement and Concrete Research, vol.78, pp.71-80, 2015.

M. C. Juenger and R. Siddique, Recent advances in understanding the role of supplementary cementitious materials in concrete, Cement and Concrete Research, vol.78, pp.71-80, 2015.

R. M. Andrew, Global CO<sub>2</sub> emissions from cement production, Earth System Science Data, vol.10, issue.1, pp.195-217, 2018.

J. W. Bullard, H. M. Jennings, R. A. Livingston, A. Nonat, G. W. Scherer et al., Mechanisms of cement hydration, Cement and Concrete Research, vol.41, issue.12, pp.1208-1223, 2011.

J. J. Scrivener and . Thomas, Mechanisms of cement hydration, Cem. Concr. Res, vol.41, pp.1208-1476, 2011.

D. Marchon and R. J. Flatt, Mechanisms of cement hydration, Science and Technology of Concrete Admixtures, vol.1478, pp.129-145, 2016.

S. Gaboreau, D. Prêt, V. Montouillout, P. Henocq, J. Robinet et al., Quantitative mineralogical mapping of hydrated low pH concrete, Cement and Concrete Composites, vol.83, pp.360-373, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619711

, Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM_C192, vol.12

, Practice for Determining Temperatures of Standard ASTM Molds for Test Specimens of Plastics, ASTM_C31, vol.12

N. M. Pellenq and H. Van-damme, Why Does Concrete Set?: The Nature of Cohesion Forces in Hardened Cement-Based Materials, MRS Bulletin, vol.29, issue.5, pp.319-323, 2004.

N. M. Pellenq, N. Lequeux, and H. Van-damme, Engineering the bonding scheme in C?S?H: The iono-covalent framework, Cement and Concrete Research, vol.38, issue.2, pp.159-174, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00265858

H. Manzano, S. Moeini, F. Marinelli, A. C. Van-duin, F. Ulm et al., Confined Water Dissociation in Microporous Defective Silicates: Mechanism, Dipole Distribution, and Impact on Substrate Properties, Journal of the American Chemical Society, vol.134, issue.4, pp.2208-2215, 2012.

H. Manzano, S. Moeini, F. Marinelli, A. C. Van-duin, F. Ulm et al., Confined Water Dissociation in Microporous Defective Silicates: Mechanism, Dipole Distribution, and Impact on Substrate Properties, Journal of the American Chemical Society, vol.134, issue.4, pp.2208-2215, 2012.

P. A. Bonnaud, Q. Ji, B. Coasne, N. M. Pellenq, and K. J. Van-vliet, Thermodynamics of Water Confined in Porous Calcium-Silicate-Hydrates, Langmuir, vol.28, issue.31, pp.11422-11432, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00746067

P. A. Bonnaud, Q. Ji, B. Coasne, N. M. Pellenq, and K. J. Van-vliet, Thermodynamics of Water Confined in Porous Calcium-Silicate-Hydrates, Langmuir, vol.28, issue.31, pp.11422-11432, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00746067

P. A. Bonnaud, Q. Ji, and K. J. Van-vliet, Effects of elevated temperature on the structure and properties of calcium?silicate?hydrate gels: the role of confined water, Soft Matter, vol.9, issue.28, p.6418, 2013.

P. H. Blanc, X. Bourbon, A. Lassin, and E. C. Gaucher, Chemical model for cement-based materials: Temperature dependence of thermodynamic functions for nanocrystalline and crystalline C?S?H phases, Cement and Concrete Research, vol.40, issue.6, pp.851-866, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00561050

P. H. Blanc, X. Bourbon, A. Lassin, and E. C. Gaucher, Chemical model for cement-based materials: Thermodynamic data assessment for phases other than C?S?H, Cement and Concrete Research, vol.40, issue.9, pp.1360-1374, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00561060

C. Roosz, S. Gaboreau, S. Grangeon, D. Prêt, V. Montouillout et al., Distribution of Water in Synthetic Calcium Silicate Hydrates, Langmuir, vol.32, issue.27, pp.6794-6805, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01685288

P. Vieillard and . Henocq, Distribution of water in synthetic calcium silicate hydrates, Langmuir, vol.32, pp.6794-6805, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01685288

C. Roosz, P. Vieillard, P. Blanc, S. Gaboreau, H. Gailhanou et al., Thermodynamic properties of C-S-H, C-A-S-H and M-S-H phases: Results from direct measurements and predictive modelling, Applied Geochemistry, vol.92, pp.140-156, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01898399

P. Denoyel, B. Henocq, . Madé, C. Thermodynamic-properties-of, C. et al., Results from direct measurements and predictive modelling, Appl. Geochemistry, vol.92, pp.1515-140, 1514.
URL : https://hal.archives-ouvertes.fr/hal-01898399

B. Lothenbach and M. Zajac, Application of thermodynamic modelling to hydrated cements, Cement and Concrete Research, vol.123, p.105779, 2019.

B. Lothenbach and M. Zajac, Application of thermodynamic modelling to hydrated cements, Cement and Concrete Research, vol.123, p.105779, 2019.

S. Gaboreau, S. Grangeon, F. Claret, D. Ihiawakrim, O. Ersen et al., Hydration Properties and Interlayer Organization in Synthetic C-S-H, Langmuir, vol.36, issue.32, pp.9449-9464, 2020.
URL : https://hal.archives-ouvertes.fr/hal-03003086

P. Roosz, C. Henocq, and . Carteret, Hydration properties and interlayer organization in synthetic C
URL : https://hal.archives-ouvertes.fr/hal-03003086

S. and L. , , vol.36, pp.9449-9464, 2020.

B. Lothenbach and A. Nonat, Calcium silicate hydrates: Solid and liquid phase composition, Cement and Concrete Research, vol.78, pp.57-70, 2015.

B. Lothenbach and A. Nonat, Calcium silicate hydrates: Solid and liquid phase composition, Cement and Concrete Research, vol.78, pp.57-70, 2015.

C. S. Walker, S. Sutou, C. Oda, M. Mihara, and A. Honda, Calcium silicate hydrate (C-S-H) gel solubility data and a discrete solid phase model at 25 °C based on two binary non-ideal solid solutions, Cement and Concrete Research, vol.79, pp.1-30, 2016.

G. M. Baston, A. P. Clacher, T. G. Heath, F. M. Hunter, V. Smith et al., Calcium silicate hydrate (C-S-H) gel dissolution and pH buffering in a cementitious near field, Mineralogical Magazine, vol.76, issue.8, pp.3045-3053, 2012.

M. , , vol.76, pp.3045-3053, 2012.

H. W. Whittington, J. Mccarter, and M. C. Forde, The conduction of electricity through concrete, Magazine of Concrete Research, vol.33, issue.114, pp.48-60, 1981.

M. , Concr. Res, vol.33, pp.48-60, 1981.

R. A. Patel, Q. T. Phung, S. C. Seetharam, J. Perko, D. Jacques et al., Diffusivity of saturated ordinary Portland cement-based materials: A critical review of experimental and analytical modelling approaches, Cement and Concrete Research, vol.90, pp.52-72, 2016.

. Van-breugel, Diffusivity of saturated ordinary Portland cement-based materials: A critical 1534 review of experimental and analytical modelling approaches, Cem. Concr. Res, vol.90, pp.52-1535, 2016.

M. Parisatto, M. C. Dalconi, L. Valentini, G. Artioli, A. Rack et al., Examining microstructural evolution of Portland cements by in-situ synchrotron micro-tomography, Journal of Materials Science, vol.50, issue.4, pp.1805-1817, 2014.

M. Moradian, Q. Hu, M. Aboustait, M. T. Ley, J. C. Hanan et al., Direct observation of void evolution during cement hydration, Materials & Design, vol.136, pp.137-149, 2017.

Z. Zhang, G. W. Scherer, and A. Bauer, Morphology of cementitious material during early hydration, Cement and Concrete Research, vol.107, pp.85-100, 2018.

A. Elsharief, M. D. Cohen, and J. Olek, Influence of aggregate size, water cement ratio and age on 1546 the microstructure of the interfacial transition zone, Cem. Concr. Res, vol.33, pp.205-214, 1547.

Z. Zhang and U. Angst, A discussion of the paper ?Effect of design parameters on microstructure of steel-concrete interface in reinforced concrete?, Cement and Concrete Research, vol.128, p.105949, 2020.

Z. Zhang and U. Angst, A discussion of the paper ?Effect of design parameters on microstructure of steel-concrete interface in reinforced concrete?, Cement and Concrete Research, vol.128, p.105949, 2020.

A. B. Abell, K. L. Willis, and D. A. Lange, Mercury Intrusion Porosimetry and Image Analysis of Cement-Based Materials, Journal of Colloid and Interface Science, vol.211, issue.1, pp.39-44, 1999.

S. Diamond, The microstructure of cement paste and concrete??a visual primer, Cement and Concrete Composites, vol.26, issue.8, pp.919-933, 2004.

S. Diamond, The microstructure of cement paste and concrete??a visual primer, Cement and Concrete Composites, vol.26, issue.8, pp.919-933, 2004.

K. L. Scrivener, Backscattered electron imaging of cementitious microstructures: understanding and quantification, Cement and Concrete Composites, vol.26, issue.8, pp.935-945, 2004.

K. L. Scrivener, Backscattered electron imaging of cementitious microstructures: understanding and quantification, Cement and Concrete Composites, vol.26, issue.8, pp.935-945, 2004.

H. S. Wong, M. K. Head, and N. R. Buenfeld, Pore segmentation of cement-based materials from backscattered electron images, Cement and Concrete Research, vol.36, issue.6, pp.1083-1090, 2006.

H. S. Wong, M. K. Head, and N. R. Buenfeld, Pore segmentation of cement-based materials from backscattered electron images, Cement and Concrete Research, vol.36, issue.6, pp.1083-1090, 2006.

S. Chung, J. Kim, D. Stephan, and T. Han, Overview of the use of micro-computed tomography (micro-CT) to investigate the relation between the material characteristics and properties of cement-based materials, Construction and Building Materials, vol.229, p.116843, 2019.

S. Chung, J. Kim, D. Stephan, and T. Han, Overview of the use of micro-computed tomography (micro-CT) to investigate the relation between the material characteristics and properties of cement-based materials, Construction and Building Materials, vol.229, p.116843, 2019.

S. Brisard, M. Serdar, and P. J. Monteiro, Multiscale X-ray tomography of cementitious materials: A review, Cement and Concrete Research, vol.128, p.105824, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02384580

P. Leroy, A. Hördt, S. Gaboreau, E. Zimmermann, F. Claret et al., Spectral induced polarization of low-pH cement and concrete, Cement and Concrete Composites, vol.104, p.103397, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02735016

. Huisman, Spectral induced polarization of low-pH cement and concrete, Cem. Concr. Compos. 1571, vol.104, p.103397, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02735016

D. Clover, B. Kinsella, B. Pejcic, and R. De-marco, The influence of microstructure on the corrosion rate of various carbon steels, Journal of Applied Electrochemistry, vol.35, issue.2, pp.139-149, 2005.

R. R. Hussain, J. K. Singh, A. Alhozaimy, A. Al-negheimish, C. Bhattacharya et al., Effect of Reinforcing Bar Microstructure on Passive Film Exposed to Simulated Concrete Pore Solution, ACI Materials Journal, vol.115, issue.2, 2018.

. Singh, Effect of reinforcing bar microstructure on passive film exposed to simulated concrete 1577 pore solution, ACI Mater. J, vol.115, pp.181-190, 2018.

P. K. Katiyar, P. K. Behera, S. Misra, and K. , Comparative corrosion behavior of five different 1579 microstructures of rebar steels in simulated concrete pore solution with and without chloride 1580 addition, J. Mater. Eng. Perform, vol.28, pp.6275-6286, 2019.

H. Torbati-sarraf and A. Poursaee, The influence of phase distribution and microstructure of the carbon steel on its chloride threshold value in a simulated concrete pore solution, Construction and Building Materials, vol.259, p.119784, 2020.

H. Torbati-sarraf and A. Poursaee, The influence of phase distribution and microstructure of the carbon steel on its chloride threshold value in a simulated concrete pore solution, Construction and Building Materials, vol.259, p.119784, 2020.

U. M. Angst, M. R. Geiker, A. Michel, C. Gehlen, H. Wong et al., The steel?concrete interface, Materials and Structures, vol.50, issue.2, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01847546

N. Sagüés and . Buenfeld, The steel-concrete interface, Mater. Struct, vol.50, p.143, 2017.

U. M. Angst, M. R. Geiker, A. Michel, C. Gehlen, H. Wong et al., The steel?concrete interface, Materials and Structures, vol.50, issue.2, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01847546

P. Ghods, O. B. Isgor, G. A. Mcrae, J. Li, and G. P. Gu, Microscopic investigation of mill scale and its proposed effect on the variability of chloride-induced depassivation of carbon steel rebar, Corrosion Science, vol.53, issue.3, pp.946-954, 2011.

P. Ghods, O. B. Isgor, G. A. Mcrae, J. Li, and G. P. Gu, Microscopic investigation of mill scale and its proposed effect on the variability of chloride-induced depassivation of carbon steel rebar, Corrosion Science, vol.53, issue.3, pp.946-954, 2011.

L. Tang, J. M. Frederiksen, U. M. Angst, R. Polder, M. C. Alonso et al., Experiences from RILEM TC 235-CTC in recommending a test method for chloride threshold values in concrete, RILEM Technical Letters, vol.3, pp.25-31, 2018.

. Pacheco, Experiences from RILEM TC 235-CTC in recommending a test method for chloride reinforcing steel in concrete subjected to chloride solution, Constr. Build. Mater, vol.163, pp.1608-508, 2018.

A. J. Al-tayyib, M. S. Khan, I. M. Allam, and A. I. Al-mana, Corrosion behavior of pre-rusted rebars 1610 after placement in concrete, Cem. Concr. Res, vol.20, pp.90059-90066, 1611.

C. M. Hansson and B. So?rensen, The Threshold Concentration of Chloride in Concrete for the Initiation of Reinforcement Corrosion, Corrosion Rates of Steel in Concrete, p.3-3-14

C. M. Hansson and B. So?rensen, The Threshold Concentration of Chloride in Concrete for the Initiation of Reinforcement Corrosion, Corrosion Rates of Steel in Concrete, p.3-3-14

P. Novak, R. Mala, and L. Joska, Influence of pre-rusting on steel corrosion in concrete, Cement and Concrete Research, vol.31, issue.4, pp.589-593, 2001.

, Concr. Res, vol.31, pp.459-467, 2001.

E. Mahallati and M. Saremi, An assessment on the mill scale effects on the electrochemical characteristics of steel bars in concrete under DC-polarization, Cement and Concrete Research, vol.36, issue.7, pp.1324-1329, 2006.

T. U. Mohammed and H. Hamada, Corrosion of Steel Bars in Concrete with Various Steel Surface Conditions, ACI Materials Journal, vol.103, issue.4, pp.233-242, 2006.

D. Boubitsas and L. Tang, The influence of reinforcement steel surface condition on initiation of chloride induced corrosion, Materials and Structures, vol.48, issue.8, pp.2641-2658, 2014.

J. A. González, E. Ramírez, A. Bautista, and S. Feliu, The behaviour of pre-rusted steel in concrete, Cement and Concrete Research, vol.26, issue.3, pp.501-511, 1996.

J. A. González, E. Ramírez, A. Bautista, and S. Feliu, The behaviour of pre-rusted steel in concrete, Cement and Concrete Research, vol.26, issue.3, pp.501-511, 1996.

C. Chalhoub, R. François, and M. Carcasses, Critical chloride threshold values as a function of cement type and steel surface condition, Cement and Concrete Research, vol.134, p.106086, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02901502

C. Chalhoub, R. François, and M. Carcasses, Critical chloride threshold values as a function of cement type and steel surface condition, Cement and Concrete Research, vol.134, p.106086, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02901502

M. J. Martinez-echevarria, M. Lopez-alonso, D. Cantero-romero, and J. Rodríguez-montero, Influence of the previous state of corrosion of rebars in predicting the service life of reinforced concrete structures, Construction and Building Materials, vol.188, pp.915-923, 2018.

M. J. Martinez-echevarria, M. Lopez-alonso, D. Cantero-romero, and J. Rodríguez-montero, Influence of the previous state of corrosion of rebars in predicting the service life of reinforced concrete structures, Construction and Building Materials, vol.188, pp.915-923, 2018.

L. Michel and U. Angst, Towards understanding corrosion initiation in concrete ? Influence of local electrochemical properties of reinforcing steel, MATEC Web of Conferences, vol.199, p.04001, 2018.

L. Michel and U. Angst, Towards understanding corrosion initiation in concrete ? Influence of local electrochemical properties of reinforcing steel, MATEC Web of Conferences, vol.199, p.04001, 2018.

U. M. Angst, M. R. Geiker, A. Michel, C. Gehlen, H. Wong et al., The steel?concrete interface, Materials and Structures, vol.50, issue.2, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01847546

C. Hornbostel, R. Gehlen, M. François, M. Sanchez, H. Criado et al.,

J. Mundra, M. Gulikers, J. Raupach, A. Pacheco, and . Sagüés, The effect of the steel-concrete 1641 interface on chloride-induced corrosion initiation in concrete: a critical review by RILEM TC 1642 262-SCI, Mater. Struct, vol.52, p.88, 2019.

X. R. Nóvoa, Electrochemical aspects of the steel?concrete system. A review, Journal of Solid State Electrochemistry, vol.20, issue.8, pp.2113-2125, 2016.

. Electrochem, , vol.20, pp.2113-2125, 2016.

S. Joiret, M. Keddam, X. R. Nóvoa, M. C. Pérez, C. Rangel et al., Use of EIS, ring-disk 1646 electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M 1647 NaOH, Cem. Concr. Compos, vol.24, pp.22-1648, 2002.

A. Poursaee and C. M. Hansson, Reinforcing steel passivation in mortar and pore solution, Cement and Concrete Research, vol.37, issue.7, pp.1127-1133, 2007.

A. Poursaee and C. M. Hansson, Reinforcing steel passivation in mortar and pore solution, Cement and Concrete Research, vol.37, issue.7, pp.1127-1133, 2007.

S. M. Abd-el-haleem, E. E. Abd-el-aal, S. Abd-el-wanees, and A. Diab, Environmental factors affecting the corrosion behaviour of reinforcing steel: I. The early stage of passive film formation in Ca(OH)2 solutions, Corrosion Science, vol.52, issue.12, pp.3875-3882, 2010.

H. Dormohammadi, Q. Pang, P. Murkute, L. Árnadóttir, and O. Burkan-isgor, Investigation of iron passivity in highly alkaline media using reactive-force field molecular dynamics, Corrosion Science, vol.157, pp.31-40, 2019.

E. Volpi, A. Olietti, M. Stefanoni, and S. P. Trasatti, Electrochemical characterization of mild steel in alkaline solutions simulating concrete environment, Journal of Electroanalytical Chemistry, vol.736, pp.38-46, 2015.

B. Elsener and A. Rossi, Passivation of Steel and Stainless Steel in Alkaline Media Simulating Concrete, Encyclopedia of Interfacial Chemistry, pp.365-375, 2018.

C. Andrade, P. Merino, X. R. Nóvoa, M. C. Pérez, and L. Soler, Passivation of Reinforcing Steel in Concrete, Materials Science Forum, vol.192-194, pp.891-898, 1995.

C. Andrade, P. Merino, X. R. Nóvoa, M. C. Pérez, and L. Soler, Passivation of Reinforcing Steel in Concrete, Materials Science Forum, vol.192-194, pp.891-898, 1995.

X. R. Nóvoa, and M. C. Pérez,, ON THE ROLE OF IRON OXIDES IN THE ELECTROCHEMICAL BEHAVIOUR OF STEEL EMBEDDED IN CONCRETE, Corrosion Reviews, vol.23, issue.2-3, pp.195-216, 2005.

M. Sánchez, J. Gregori, C. Alonso, J. J. García-jareño, H. Takenouti et al., Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores, Electrochimica Acta, vol.52, issue.27, pp.7634-7641, 2007.

J. Williamson and O. B. Isgor, The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar, Corrosion Science, vol.106, pp.82-95, 2016.

A. Poursaee, Corrosion of steel in concrete structures, pp.19-33, 1678.

H. B. Gunay, O. B. Isgor, and P. Ghods, Kinetics of Passivation and Chloride-Induced Depassivation of Iron in Simulated Concrete Pore Solutions Using Electrochemical Quartz Crystal Nanobalance, CORROSION, vol.71, issue.5, pp.615-627, 2015.

M. F. Montemor, A. M. Simões, and M. G. Ferreira, Analytical Characterization of the Passive Film Formed on Steel in Solutions Simulating the Concrete Interstitial Electrolyte, CORROSION, vol.54, issue.5, pp.347-353, 1998.

P. Ghods, O. B. Isgor, G. Mcrae, and T. Miller, The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement, Cement and Concrete Composites, vol.31, issue.1, pp.2-11, 2009.

A. T. Horne, I. G. Richardson, and R. M. Brydson, Quantitative analysis of the microstructure of interfaces in steel reinforced concrete, Cement and Concrete Research, vol.37, issue.12, pp.1613-1623, 2007.

A. Kenny and A. Katz, Statistical relationship between mix properties and the interfacial transition zone around embedded rebar, Cement and Concrete Composites, vol.60, pp.82-91, 2015.

A. Kenny and A. Katz, Statistical relationship between mix properties and the interfacial transition zone around embedded rebar, Cement and Concrete Composites, vol.60, pp.82-91, 2015.

Y. Cai, W. Zhang, L. Yu, M. Chen, C. Yang et al., Characteristics of the steel-concrete interface and their effect on the corrosion of steel bars in concrete, Construction and Building Materials, vol.253, p.119162, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02901538

. Mater, , vol.253, p.119162, 2020.

T. A. Soylev and R. François, Quality of steel?concrete interface and corrosion of reinforcing steel, Cement and Concrete Research, vol.33, issue.9, pp.1407-1415, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02341002

, Cem. Concr. Res, vol.33, pp.87-92, 2003.

G. K. Glass, R. Yang, T. Dickhaus, and N. R. Buenfeld, Backscattered electron imaging of the steel-1701 concrete interface, Corros. Sci, vol.43, issue.00, pp.146-149, 2001.

F. Chen, C. Li, H. Baji, and B. Ma, Quantification of steel-concrete interface in reinforced concrete using Backscattered Electron imaging technique, Construction and Building Materials, vol.179, pp.420-429, 2018.

S. K. Goudar, B. B. Das, S. B. Arya, and S. K.n., Influence of sample preparation techniques on microstructure and nano-mechanical properties of steel-concrete interface, Construction and Building Materials, vol.256, p.119242, 2020.

. Mater, , vol.256, p.119242, 2020.

Z. Zhang, M. Shakoorioskooie, M. Griffa, P. Lura, and U. Angst, A laboratory investigation of cutting damage to the steel-concrete interface, Cement and Concrete Research, vol.138, p.106229, 2020.

Z. Zhang, M. Shakoorioskooie, M. Griffa, P. Lura, and U. Angst, A laboratory investigation of cutting damage to the steel-concrete interface, Cement and Concrete Research, vol.138, p.106229, 2020.

K. Tuutti, , p.1713

. Stockholm, Naturkatastrophen, Geologiska Föreningen i Stockholm Förhandlingar, vol.103, issue.3, pp.376-376, 1982.

C. Andrade and C. Alonso, Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method, Materials and Structures, vol.37, issue.9, pp.623-643, 2004.

C. and Q. Li, Reliability based service life prediction of corrosion affected concrete structures, J. 1719 Struct. Eng, vol.130, p.10, 1570.

M. Raupach, Models for the propagation phase of reinforcement corrosion ? an overview, Materials and Corrosion, vol.57, issue.8, pp.605-613, 2006.

M. Raupach, Models for the propagation phase of reinforcement corrosion ? an overview, Materials and Corrosion, vol.57, issue.8, pp.605-613, 2006.

M. B. Otieno, H. D. Beushausen, and M. G. Alexander, Modelling corrosion propagation in reinforced concrete structures ? A critical review, Cement and Concrete Composites, vol.33, issue.2, pp.240-245, 2011.

D. Chen and S. Mahadevan, Chloride-induced reinforcement corrosion and concrete cracking 1727 simulation, Cem. Concr. Compos, vol.30, pp.227-238, 1728.

F. Chen, H. Baji, and C. Li, A comparative study on factors affecting time to cover cracking as a service life indicator, Construction and Building Materials, vol.163, pp.681-694, 2018.

M. Alexander and H. Beushausen, Durability, service life prediction, and modelling for reinforced concrete structures ? review and critique, Cement and Concrete Research, vol.122, pp.17-29, 2019.

O. B. Isgor and A. G. Razaqpur, Modelling steel corrosion in concrete structures, Materials and Structures, vol.39, issue.3, pp.291-302, 2006.

Z. M. Mir, D. Höche, C. Gomes, R. Sampaio, A. C. Bastos et al., Enhanced Predictive Modelling of Steel Corrosion in Concrete in Submerged Zone Based on a Dynamic Activation Approach, International Journal of Concrete Structures and Materials, vol.13, issue.1, 2019.

. Zheludkevich, Enhanced predictive modelling of steel corrosion in concrete in submerged 1739 zone based on a dynamic activation approach, Int. J. Concr. Struct. Mater, vol.13, p.11, 2019.

Z. M. Mir, D. Höche, C. Gomes, R. Sampaio, A. C. Bastos et al., Enhanced Predictive Modelling of Steel Corrosion in Concrete in Submerged Zone Based on a Dynamic Activation Approach, International Journal of Concrete Structures and Materials, vol.13, issue.1, 2019.

O. A. Kayyali and M. N. Haque, Effect of carbonation on the chloride concentration in pore solution 1742 of mortars with and without flyash, Cem. Concr. Res, vol.18, pp.90056-90063, 1743.

X. Zhu, G. Zi, Z. Cao, and X. Cheng, Combined effect of carbonation and chloride ingress in concrete, Construction and Building Materials, vol.110, pp.369-380, 2016.

J. Geng, D. Easterbrook, Q. Liu, and L. Li, Effect of carbonation on release of bound chlorides in chloride-contaminated concrete, Magazine of Concrete Research, vol.68, issue.7, pp.353-363, 2016.

J. Geng, D. Easterbrook, Q. Liu, and L. Li, Effect of carbonation on release of bound chlorides in chloride-contaminated concrete, Magazine of Concrete Research, vol.68, issue.7, pp.353-363, 2016.

J. A. Gonzalez, J. S. Algaba, and C. Andrade, Corrosion of Reinforcing Bars in Carbonated Concrete, British Corrosion Journal, vol.15, issue.3, pp.135-139, 1980.

J. A. Gonzalez, J. S. Algaba, and C. Andrade, Corrosion of Reinforcing Bars in Carbonated Concrete, British Corrosion Journal, vol.15, issue.3, pp.135-139, 1980.

C. Alonso and C. Andrade, Corrosion of steel reinforcement in carbonated mortar containing chlorides, Advances in Cement Research, vol.1, issue.3, pp.155-163, 1988.

D. A. Hausmann, Steel corrosion in concrete. How does it occur?, J. Mater. Prot, vol.6, pp.19-1755, 1967.

M. Stratmann and J. Müller, The mechanism of the oxygen reduction on rust-covered metal 1757 substrates, Corros. Sci, vol.36, pp.90161-90170, 1994.

C. M. Hansson, Comments on electrochemical measurements of the rate of corrosion of steel 1759 in concrete, Cem. Concr. Res, vol.14, issue.84, pp.90135-90137, 1984.

M. Pourbaix, Thermodynamics and corrosion, Corrosion Science, vol.30, issue.10, pp.963-988, 1990.

R. François, S. Laurens, and F. Deby, Steel Corrosion in Reinforced Concrete, in: Corros. Its 1764 Consequences Reinf, Concr. Struct, pp.1-41, 2018.

M. Stefanoni, U. M. Angst, and B. Elsener, Electrochemistry and capillary condensation theory reveal the mechanism of corrosion in dense porous media, Scientific Reports, vol.8, issue.1, p.7407, 2018.

M. Stefanoni, U. M. Angst, and B. Elsener, Electrochemistry and capillary condensation theory reveal the mechanism of corrosion in dense porous media, Scientific Reports, vol.8, issue.1, 2018.

M. Stefanoni, U. M. Angst, and B. Elsener, Kinetics of electrochemical dissolution of metals in porous media, Nature Materials, vol.18, issue.9, pp.942-947, 2019.

M. Pour-ghaz, O. B. Isgor, and P. Ghods, The effect of temperature on the corrosion of steel in concrete. Part 1: Simulated polarization resistance tests and model development, Corrosion Science, vol.51, issue.2, pp.415-425, 2009.

. Sci, , vol.51, pp.415-425, 2009.

M. Pour-ghaz, O. Burkan-isgor, and P. Ghods, The effect of temperature on the corrosion of steel in concrete. Part 2: Model verification and parametric study, Corrosion Science, vol.51, issue.2, pp.426-433, 2009.

E. Rossi, R. Polder, O. Copuroglu, T. Nijland, and B. ?avija, The influence of defects at the steel/concrete interface for chloride-induced pitting corrosion of naturally-deteriorated 20-years-old specimens studied through X-ray Computed Tomography, Construction and Building Materials, vol.235, p.117474, 2020.

B. Huet, V. L?hostis, G. Santarini, D. Feron, and H. Idrissi, Steel corrosion in concrete: Determinist modeling of cathodic reaction as a function of water saturation degree, Corrosion Science, vol.49, issue.4, pp.1918-1932, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434205

C. Cao, M. M. Cheung, and B. Y. Chan, Modelling of interaction between corrosion-induced concrete cover crack and steel corrosion rate, Corrosion Science, vol.69, pp.97-109, 2013.

Y. Zhao and W. Jin, Steel Corrosion-Induced Concrete Cracking Model, Steel Corrosion-Induced Concrete Cracking, pp.159-170, 2016.

. Heinemann, , pp.19-29, 2016.

M. Stefanoni, Z. Zhang, U. Angst, and B. Elsener, The kinetic competition between transport and oxidation of ferrous ions governs precipitation of corrosion products in carbonated concrete, RILEM Technical Letters, vol.3, pp.8-16, 2018.

P. H. Blanc, A. Lassin, P. Piantone, M. Azaroual, N. Jacquemet et al., Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials, Applied Geochemistry, vol.27, issue.10, pp.2107-2116, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00846739

B. ?avija and M. Lukovi?, Carbonation of cement paste: Understanding, challenges, and opportunities, Construction and Building Materials, vol.117, pp.285-301, 2016.

V. G. Papadakis, C. G. Vayenas, and M. N. Fardis, Fundamental Modeling and Experimental Investigation of Concrete Carbonation, ACI Materials Journal, vol.88, issue.4, pp.363-373, 1991.

, Fundamental Modeling and Experimental Investigation of Concrete Carbonation, ACI Materials Journal, vol.88, issue.4, 1991.

V. G. Papadakis, C. G. Vayenas, and M. N. Fardis, Physical and Chemical Characteristics Affecting the Durability of Concrete, ACI Materials Journal, vol.88, issue.2, pp.186-196, 1991.

Y. F. Houst and F. H. Wittmann, Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste, Cement and Concrete Research, vol.24, issue.6, pp.1165-1176, 1994.

P. Castro, M. A. Sanjuán, and J. Genescá, Carbonation of concretes in the Mexican Gulf, Building and Environment, vol.35, issue.2, pp.145-149, 2000.

. Environ, , vol.35, pp.9-17, 2000.

J. H. Visser, Influence of the carbon dioxide concentration on the resistance to carbonation of concrete, Construction and Building Materials, vol.67, pp.8-13, 2014.

A. Morandeau, M. Thiéry, and P. Dangla, Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties, Cement and Concrete Research, vol.56, pp.153-170, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00922073

I. Galan, C. Andrade, and M. Castellote, Natural and accelerated CO2 binding kinetics in cement paste at different relative humidities, Cement and Concrete Research, vol.49, pp.21-28, 2013.

Q. Vu, G. Pham, A. Chonier, E. Brouard, S. Rathnarajan et al., Impact of different climates 1820 on the resistance of concrete to natural carbonation, Constr. Build. Mater, vol.216, pp.450-1821, 2019.

S. K. Roy, P. K. Beng, and D. O. Northwood, The carbonation of concrete structures in the tropical environment of singapore and a comparison with published data for temperate climates, Magazine of Concrete Research, vol.48, issue.177, pp.293-300, 1996.

M. , Concr. Res, vol.48, pp.293-300, 1996.

M. N. Haque and H. Al-khaiat, Carbonation of concrete structures in hot dry coastal regions, Cement and Concrete Composites, vol.19, issue.2, pp.123-129, 1997.

, Concr. Compos, vol.19, pp.47-56, 1997.

A. Leemann and F. Moro, Carbonation of concrete: the role of CO2 concentration, relative humidity and CO2 buffer capacity, Materials and Structures, vol.50, issue.1, 2016.

E. Drouet, S. Poyet, P. Le-bescop, J. Torrenti, and X. Bourbon, Carbonation of hardened cement pastes: Influence of temperature, Cement and Concrete Research, vol.115, pp.445-459, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01982390

E. Drouet, S. Poyet, P. Le-bescop, J. Torrenti, and X. Bourbon, Carbonation of hardened cement pastes: Influence of temperature, Cement and Concrete Research, vol.115, pp.445-459, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01982390

A. V. Saetta, B. A. Schrefler, and R. V. Vitaliani, The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials, Cement and Concrete Research, vol.23, issue.4, pp.761-772, 1993.

A. V. Saetta and R. V. Vitaliani, Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures, Cement and Concrete Research, vol.34, issue.4, pp.571-579, 2004.

O. B. Isgor and A. G. Razaqpur, Finite element modeling of coupled heat transfer, moisture 1840 transport and carbonation processes in concrete structures, Cem. Concr. Compos, vol.26, pp.125-132, 2004.

V. G. Papadakis, C. G. Vayenas, and M. N. Fardis, A reaction engineering approach to the problem of concrete carbonation, AIChE Journal, vol.35, issue.10, pp.1639-1650, 1989.

B. Johannesson and P. Utgenannt, Microstructural changes caused by carbonation of cement 1845 mortar, Cem. Concr. Res, vol.31, pp.498-1846, 2001.

W. Ashraf, Carbonation of cement-based materials: Challenges and opportunities, Construction and Building Materials, vol.120, pp.558-570, 2016.

W. Ashraf, Carbonation of cement-based materials: Challenges and opportunities, Construction and Building Materials, vol.120, pp.558-570, 2016.

S. E. Pihlajavaara, Some results of the effect of carbonation on the porosity and pore size distribution of cement paste, Matériaux et Constructions, vol.1, issue.6, pp.521-527, 1968.

M. Auroy, S. Poyet, P. Le-bescop, J. Torrenti, T. Charpentier et al., Impact of carbonation on unsaturated water transport properties of cement-based materials, Cement and Concrete Research, vol.74, pp.44-58, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01272793

M. Auroy, S. Poyet, P. Le-bescop, J. Torrenti, T. Charpentier et al., Impact of carbonation on unsaturated water transport properties of cement-based materials, Cement and Concrete Research, vol.74, pp.44-58, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01272793

V. T. Ngala and C. L. Page, Effects of carbonation on pore structure and diffusional properties of 1856 hydrated cement pastes, Cem. Concr. Res, vol.27, pp.102-108, 1857.

S. Laurens and F. Deby, Electrochemical Methods, Non-Destructive Testing and Evaluation of Civil Engineering Structures, pp.173-197, 2018.

S. Laurens and F. Deby, Electrochemical Methods, Non-Destructive Testing and Evaluation of Civil Engineering Structures, pp.173-197, 2018.

M. Castellote, L. Fernandez, C. Andrade, and C. Alonso, Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations, Materials and Structures, vol.42, issue.4, pp.515-525, 2008.

M. Auroy, S. Poyet, P. Le-bescop, J. Torrenti, T. Charpentier et al., Comparison between natural and accelerated carbonation (3% CO2): Impact on mineralogy, microstructure, water retention and cracking, Cement and Concrete Research, vol.109, pp.64-80, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01771687

B. Huet, V. L?hostis, F. Miserque, and H. Idrissi, Electrochemical behavior of mild steel in concrete: Influence of pH and carbonate content of concrete pore solution, Electrochimica Acta, vol.51, issue.1, pp.172-180, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00436834

V. Marcos-meson, A. Michel, A. Solgaard, G. Fischer, C. Edvardsen et al., Corrosion resistance of steel fibre reinforced concrete - A literature review, Cement and Concrete Research, vol.103, pp.1-20, 2018.

M. Thiery, Modelling of atmospheric carbonation of cement based materials considering the 1874 kinetic effects and modifications of the microstructure and the hydric state, Ecole des Ponts 1875 ParisTech, 2005.

M. G. Sohail, S. Laurens, F. Deby, and J. P. Balayssac, Significance of macrocell corrosion of reinforcing steel in partially carbonated concrete: numerical and experimental investigation, Materials and Structures, vol.48, issue.1-2, pp.217-233, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01849734

. Mater and . Struct, , vol.48, pp.217-233, 2015.

A. B. Revert, K. De-weerdt, K. Hornbostel, and M. R. Geiker, Carbonation-induced corrosion: 1880 Investigation of the corrosion onset, Constr. Build. Mater, vol.162, pp.847-856, 2018.

A. Belda-revert, K. De-weerdt, K. Hornbostel, and M. R. Geiker, Carbonation-induced corrosion: Investigation of the corrosion onset, Construction and Building Materials, vol.162, pp.847-856, 2018.

L. J. Parrott and D. C. Killoh, Carbonation in a 36 year old, in-situ concrete, Cem. Concr. Res, vol.19, pp.90017-90020, 1989.

R. M. Ghantous, R. François, S. Poyet, V. L&apos;hostis, F. Bernachy-barbe et al., Relation between crack opening and extent of the damage induced at the steel/mortar interface, Construction and Building Materials, vol.193, pp.97-104, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01973385

A. Nasser, A. Clément, S. Laurens, and A. Castel, Influence of steel?concrete interface condition on galvanic corrosion currents in carbonated concrete, Corrosion Science, vol.52, issue.9, pp.2878-2890, 2010.

C. M. Hansson, A. Poursaee, and A. Laurent, Macrocell and microcell corrosion of steel in ordinary Portland cement and high performance concretes, Cement and Concrete Research, vol.36, issue.11, pp.2098-2102, 2006.

A. Poursaee and C. M. Hansson, Potential pitfalls in assessing chloride-induced corrosion of steel in concrete, Cement and Concrete Research, vol.39, issue.5, pp.391-400, 2009.

A. B. Revert, K. Hornbostel, K. De-weerdt, and M. R. Geiker, Macrocell corrosion in carbonated Portland and Portland-fly ash concrete - Contribution and mechanism, Cement and Concrete Research, vol.116, pp.273-283, 2019.

M. Stefanoni, U. Angst, and B. Elsener, Corrosion rate of carbon steel in carbonated concrete ? A critical review, Cement and Concrete Research, vol.103, pp.35-48, 2018.

P. Dangla and W. Dridi, Rebar corrosion in carbonated concrete exposed to variable humidity conditions. Interpretation of Tuutti?s curve, Corrosion Science, vol.51, issue.8, pp.1747-1756, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00906071

M. Stefanoni, U. Angst, and B. Elsener, The mechanism controlling corrosion of steel in carbonated cementitious materials in wetting and drying exposure, Cement and Concrete Composites, vol.113, p.103717, 2020.

M. U. Khan, S. Ahmad, and H. J. Al-gahtani, Chloride-Induced Corrosion of Steel in Concrete: An Overview on Chloride Diffusion and Prediction of Corrosion Initiation Time, International Journal of Corrosion, vol.2017, pp.1-9, 2017.

M. A. Pech-canul and P. Castro, Corrosion measurements of steel reinforcement in concrete exposed to a tropical marine atmosphere, Cement and Concrete Research, vol.32, issue.3, pp.491-498, 2002.

M. Balonis, B. Lothenbach, G. Le-saout, and F. P. Glasser, Impact of chloride on the mineralogy of hydrated Portland cement systems, Cement and Concrete Research, vol.40, issue.7, pp.1009-1022, 2010.

B. Guo, Y. Hong, G. Qiao, J. Ou, and Z. Li, Thermodynamic modeling of the essential physicochemical interactions between the pore solution and the cement hydrates in chloride-contaminated cement-based materials, Journal of Colloid and Interface Science, vol.531, pp.56-63, 2018.

Y. Guo, T. Zhang, W. Tian, J. Wei, and Q. Yu, Physically and chemically bound chlorides in hydrated cement pastes: a comparison study of the effects of silica fume and metakaolin, Journal of Materials Science, vol.54, issue.3, pp.2152-2169, 2018.

P. T. Nguyen and O. Amiri, Study of the chloride transport in unsaturated concrete: Highlighting of electrical double layer, temperature and hysteresis effects, Construction and Building Materials, vol.122, pp.284-293, 2016.

Y. Zhang, M. Zhang, and G. Ye, Influence of moisture condition on chloride diffusion in partially saturated ordinary Portland cement mortar, Materials and Structures, vol.51, issue.2, p.36, 2018.

Y. Zhang, M. Zhang, and G. Ye, Influence of moisture condition on chloride diffusion in partially saturated ordinary Portland cement mortar, Materials and Structures, vol.51, issue.2, 2018.

S. Caré, Influence of aggregates on chloride diffusion coefficient into mortar, Cem. Concr. Res, vol.33, pp.9-16, 1932.

P. P. Win, M. Watanabe, and A. Machida, Penetration profile of chloride ion in cracked reinforced concrete, Cement and Concrete Research, vol.34, issue.7, pp.1073-1079, 2004.

A. Poursaee and C. M. Hansson, The influence of longitudinal cracks on the corrosion protection afforded reinforcing steel in high performance concrete, Cement and Concrete Research, vol.38, issue.8-9, pp.1098-1105, 2008.

J. Shi and J. Ming, Influence of defects at the steel-mortar interface on the corrosion behavior of steel, Construction and Building Materials, vol.136, pp.118-125, 2017.

F. U. Shaikh, Effect of Cracking on Corrosion of Steel in Concrete, International Journal of Concrete Structures and Materials, vol.12, issue.1, 2018.

E. Samson and J. Marchand, Modeling the transport of ions in unsaturated cement-based materials, Computers & Structures, vol.85, issue.23-24, pp.1740-1756, 2007.

V. Q. Tran, A. Soive, and V. Baroghel-bouny, Modelisation of chloride reactive transport in concrete including thermodynamic equilibrium, kinetic control and surface complexation, Cement and Concrete Research, vol.110, pp.70-85, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01865242

. Res, , vol.110, pp.70-85, 2018.

U. M. Angst, Predicting the time to corrosion initiation in reinforced concrete structures exposed to chlorides, Cement and Concrete Research, vol.115, pp.559-567, 2019.

A. Covelo, B. Díaz, L. Freire, X. R. Nóvoa, and M. C. Pérez, Microstructural changes in a cementitious membrane due to the application of a DC electric field, Journal of Environmental Science and Health, Part A, vol.43, issue.8, pp.985-993, 2008.

M. A. Heine, D. S. Keir, and M. J. Pryor, The Specific Effects of Chloride and Sulfate Ions on Oxide Covered Aluminum, Journal of The Electrochemical Society, vol.112, issue.1, p.24, 1965.

M. A. Heine, D. S. Keir, and M. J. Pryor, The Specific Effects of Chloride and Sulfate Ions on Oxide Covered Aluminum, Journal of The Electrochemical Society, vol.112, issue.1, p.24, 1965.

D. D. Macdonald, The Point Defect Model for the Passive State, Journal of The Electrochemical Society, vol.139, issue.12, pp.3434-3449, 1992.

P. Marcus, V. Maurice, and H. Strehblow, Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure, Corrosion Science, vol.50, issue.9, pp.2698-2704, 2008.

P. Ghods, O. Burkan-isgor, F. Bensebaa, and D. Kingston, Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution, Corrosion Science, vol.58, pp.159-167, 2012.

P. Ghods, O. B. Isgor, G. J. Carpenter, J. Li, G. A. Mcrae et al., Nano-scale study of passive films and chloride-induced depassivation of carbon steel rebar in simulated concrete pore solutions using FIB/TEM, Cement and Concrete Research, vol.47, pp.55-68, 2013.

H. B. Gunay, P. Ghods, O. B. Isgor, G. J. Carpenter, and X. Wu, Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS, Applied Surface Science, vol.274, pp.195-202, 2013.

H. B. Gunay, P. Ghods, O. B. Isgor, G. J. Carpenter, and X. Wu, Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS, Applied Surface Science, vol.274, pp.195-202, 2013.

J. Xu and L. Jiang, Investigation on chloride threshold level for corrosion of reinforcing steel in the 1975 saturated Ca(OH)2 solution simulating the electrolytic environments of concrete

. Eng and . Mater, 50-Year Teach, Res. Anniv. Prof. Sun Wei, pp.111-119, 2008.

Q. Pang, H. Dormohammadi, O. B. Isgor, and L. Árnadóttir, The effect of surface vacancies on the interactions of Cl with a ?-Fe2O3 (0001) surface and the role of Cl in depassivation, Corrosion Science, vol.154, pp.61-69, 2019.

Q. Pang, H. Dormohammadi, O. B. Isgor, and L. Árnadóttir, The effect of surface vacancies on the interactions of Cl with a ?-Fe2O3 (0001) surface and the role of Cl in depassivation, Corrosion Science, vol.154, pp.61-69, 2019.

H. Dormohammadi, Q. Pang, P. Murkute, L. Árnadóttir, and O. B. Isgor, Investigation of chloride-induced depassivation of iron in alkaline media by reactive force field molecular dynamics, npj Materials Degradation, vol.3, issue.1, 2019.

H. Dormohammadi, Q. Pang, P. Murkute, L. Árnadóttir, and O. B. Isgor, Investigation of chloride-induced depassivation of iron in alkaline media by reactive force field molecular dynamics, npj Materials Degradation, vol.3, issue.1, p.19, 2019.

G. K. Glass and N. R. Buenfeld, The presentation of the chloride threshold level for corrosion of 1984 steel in concrete, Corros. Sci, vol.39, issue.97, pp.9-16, 1997.

U. Angst, B. Elsener, C. K. Larsen, and Ø. Vennesland, Critical chloride content in reinforced concrete ? A review, Cement and Concrete Research, vol.39, issue.12, pp.1122-1138, 2009.

B. Mart??n-pérez, H. Zibara, R. D. Hooton, and M. D. Thomas, A study of the effect of chloride binding on service life predictions, Cement and Concrete Research, vol.30, issue.8, pp.1215-1223, 2000.

M. Saillio, V. Baroghel-bouny, and F. Barberon, Chloride binding in sound and carbonated cementitious materials with various types of binder, Construction and Building Materials, vol.68, pp.82-91, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01213434

C. Alonso, C. Andrade, M. Castellote, and P. Castro, Chloride threshold values to depassivate 1996 reinforcing bars embedded in a standardized OPC mortar, Cem. Concr. Res, vol.30, pp.265-274, 2000.

U. M. Angst, B. Elsener, C. K. Larsen, and Ø. Vennesland, Chloride induced reinforcement corrosion: Electrochemical monitoring of initiation stage and chloride threshold values, Corrosion Science, vol.53, issue.4, pp.1451-1464, 2011.

N. Silva, Chloride Induced Corrosion of Reinforcement Steel in Concrete, 2013.

R. B. Figueira, A. Sadovski, A. P. Melo, and E. V. Pereira, Chloride threshold value to initiate reinforcement corrosion in simulated concrete pore solutions: The influence of surface finishing and pH, Construction and Building Materials, vol.141, pp.183-200, 2017.

K. Y. Ann and H. Song, Chloride threshold level for corrosion of steel in concrete, Corrosion Science, vol.49, issue.11, pp.4113-4133, 2007.

Y. Cao, C. Gehlen, U. Angst, L. Wang, Z. Wang et al., Critical chloride content in reinforced concrete ? An updated review considering Chinese experience, Cement and Concrete Research, vol.117, pp.58-68, 2019.

A. Kenny and A. Katz, Steel-concrete interface influence on chloride threshold for corrosion ? Empirical reinforcement to theory, Construction and Building Materials, vol.244, p.118376, 2020.

A. Kenny and A. Katz, Steel-concrete interface influence on chloride threshold for corrosion ? Empirical reinforcement to theory, Construction and Building Materials, vol.244, p.118376, 2020.

U. M. Angst, B. Elsener, C. K. Larsen, and Ø. Vennesland, Chloride induced reinforcement corrosion: Electrochemical monitoring of initiation stage and chloride threshold values, Corrosion Science, vol.53, issue.4, pp.1451-1464, 2011.

H. Godin, Review. Pages d'Exil, publ. par Colin Burns. Zola, E., French Studies, vol.19, issue.3, pp.308-308, 1965.
URL : https://hal.archives-ouvertes.fr/hal-00883351

C. L. Page, Initiation of chloride-induced corrosion of steel in concrete: role of the interfacial zone, Materials and Corrosion, vol.60, issue.8, pp.586-592, 2009.

U. M. Angst and B. Elsener, The size effect in corrosion greatly influences the predicted life span of concrete infrastructures, Science Advances, vol.3, issue.8, p.e1700751, 2017.

J. A. Gonzalez, A. Molina, E. Otero, and W. López, On the mechanism of steel corrosion in concrete: the role of oxygen diffusion, Magazine of Concrete Research, vol.42, issue.150, pp.23-27, 1990.

J. A. González, E. Otero, S. Feliu, and W. López, Initial steps of corrosion in the steel/Ca(OH)2 + Cl? system: The role of heterogeneities on the steel surface and oxygen supply, Cement and Concrete Research, vol.23, issue.1, pp.33-40, 1993.

T. D. Marcotte, Characterization of chloride-induced corrosion products that form in steel-2029 reinforced cementitious materials, 2001.

K. K. Sagoe-crentsil and F. P. Glasser, ?Green rust?, iron solubility and the role of chloride in the corrosion of steel at high pH, Cement and Concrete Research, vol.23, issue.4, pp.785-791, 1993.

U. Angst, B. Elsener, C. K. Larsen, and Ø. Vennesland, Chloride induced reinforcement corrosion: Rate limiting step of early pitting corrosion, Electrochimica Acta, vol.56, issue.17, pp.5877-5889, 2011.

U. Angst, B. Elsener, C. K. Larsen, and Ø. Vennesland, Chloride induced reinforcement corrosion: Rate limiting step of early pitting corrosion, Electrochimica Acta, vol.56, issue.17, pp.5877-5889, 2011.

M. Pourbaix, Applications of electrochemistry in corrosion science and in practice, Corrosion Science, vol.14, issue.1, pp.25-82, 1974.

U. Angst, B. Elsener, A. Jamali, and B. Adey, Concrete cover cracking owing to reinforcement corrosion - theoretical considerations and practical experience, Materials and Corrosion, vol.63, issue.12, pp.1069-1077, 2012.

J. Warkus and M. Raupach, Modelling of reinforcement corrosion - geometrical effects on macrocell corrosion, Materials and Corrosion, vol.61, issue.6, pp.494-504, 2009.

J. A. González, C. Andrade, C. Alonso, and S. Feliu, Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded steel reinforcement, Cement and Concrete Research, vol.25, issue.2, pp.257-264, 1995.

L. Yu, R. François, V. H. Dang, V. L?hostis, and R. Gagné, Distribution of corrosion and pitting factor of steel in corroded RC beams, Construction and Building Materials, vol.95, pp.384-392, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01849754

R. François, S. Laurens, and F. Deby, Which Parameter to Quantify Corrosion Intensity?, Corrosion and its Consequences for Reinforced Concrete Structures, pp.63-76, 2018.

C. Arya and P. R. , Chaudhury, Arya Khumar, 2011.

. Vassie, Influence of cathode-to-anode area ratio and separation distance on 2054 galvanic corrosion currents of steel in concrete containing chlorides, Cem. Concr. Res, vol.25, pp.989-998, 1995.

C. Chalhoub, R. François, and M. Carcasses, Effect of Cathode?Anode distance and electrical resistivity on macrocell corrosion currents and cathodic response in cases of chloride induced corrosion in reinforced concrete structures, Construction and Building Materials, vol.245, p.118337, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02873195

C. Chalhoub, R. François, and M. Carcasses, Effect of Cathode?Anode distance and electrical resistivity on macrocell corrosion currents and cathodic response in cases of chloride induced corrosion in reinforced concrete structures, Construction and Building Materials, vol.245, p.118337, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02873195

L. Bourreau, L. Gaillet, V. Bouteiller, F. Schoefs, B. Thauvin et al., Spatial identification of exposure zones of concrete structures exposed to a marine environment with respect to reinforcement corrosion, Structure and Infrastructure Engineering, vol.16, issue.2, pp.346-354, 2019.

S. J. Jaffer and C. M. Hansson, Chloride-induced corrosion products of steel in cracked-concrete subjected to different loading conditions, Cement and Concrete Research, vol.39, issue.2, pp.116-125, 2009.

R. M. Cornell and U. Schwertmann, The Iron Oxides, The Iron Oxides: Structure, Properties, Reactions, Occurrences, 2068 and Uses, 2003.

J. A. González, J. M. Miranda, E. Otero, and S. Feliu, Effect of electrochemically reactive rust layers on the corrosion of steel in a Ca(OH)2 solution, Corrosion Science, vol.49, issue.2, pp.436-448, 2007.

M. Stefanoni, U. Angst, and B. Elsener, Local electrochemistry of reinforcement steel ? Distribution of open circuit and pitting potentials on steels with different surface condition, Corrosion Science, vol.98, pp.610-618, 2015.

M. Stefanoni, U. Angst, and B. Elsener, Local electrochemistry of reinforcement steel ? Distribution of open circuit and pitting potentials on steels with different surface condition, Corrosion Science, vol.98, pp.610-618, 2015.

Y. Ji, M. Wu, Z. Tan, F. Gao, and F. Liu, Process control of reinforcement corrosion in concrete. Part 2: Time-dependent dominating factors under different environmental conditions, Construction and Building Materials, vol.73, pp.214-221, 2014.

Y. Ji, M. Wu, Z. Tan, F. Gao, and F. Liu, Process control of reinforcement corrosion in concrete. Part 2: Time-dependent dominating factors under different environmental conditions, Construction and Building Materials, vol.73, pp.214-221, 2014.

Y. Ji, G. Zhan, Z. Tan, Y. Hu, and F. Gao, Process control of reinforcement corrosion in concrete. Part 1: Effect of corrosion products, Construction and Building Materials, vol.79, pp.214-222, 2015.

E. Burger, J. Monnier, P. Berger, D. Neff, V. L?hostis et al., The long-term corrosion of mild steel in depassivated concrete: Localizing the oxygen reduction sites in corrosion products by isotopic tracer method, Journal of Materials Research, vol.26, issue.24, pp.3107-3115, 2011.

I. Azoulay, C. Rémazeilles, and P. H. Refait, Corrosion of steel in carbonated media: The oxidation processes of chukanovite (Fe2(OH)2CO3), Corrosion Science, vol.85, pp.101-108, 2014.

A. Köliö, M. Honkanen, J. Lahdensivu, M. Vippola, and M. Pentti, Corrosion products of carbonation induced corrosion in existing reinforced concrete facades, Cement and Concrete Research, vol.78, pp.200-207, 2015.

J. Hadi, P. Wersin, V. Serneels, and J. Greneche, Eighteen years of steel?bentonite interaction in the FEBEX in situ test at the Grimsel Test Site in Switzerland, Clays and Clay Minerals, vol.67, issue.2, pp.111-131, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02268625

K. K. Sagoe-crentsil and F. P. Glasser, Constitution of Green Rust and Its Significance to the Corrosion of Steel in Portland Cement, CORROSION, vol.49, issue.6, pp.457-463, 1993.

K. K. Sagoe-crentsil and F. P. Glasser, Constitution of Green Rust and Its Significance to the Corrosion of Steel in Portland Cement, CORROSION, vol.49, issue.6, pp.457-463, 1993.

K. Suda, S. Misra, and K. Motohashi, Corrosion products of reinforcing bars embedded in concrete, Corrosion Science, vol.35, issue.5-8, pp.1543-1549, 1993.

K. Suda, S. Misra, and K. Motohashi, Corrosion products of reinforcing bars embedded in concrete, Corrosion Science, vol.35, issue.5-8, pp.1543-1549, 1993.

V. L&apos;hostis, E. Amblard, W. Guillot, C. Paris, and L. Bellot-gurlet, Characterisation of the steel concrete interface submitted to chloride-induced-corrosion, Materials and Corrosion, vol.64, issue.3, pp.185-194, 2012.

J. Shi, J. Ming, Y. Zhang, and J. Jiang, Corrosion products and corrosion-induced cracks of low-alloy steel and low-carbon steel in concrete, Cement and Concrete Composites, vol.88, pp.121-129, 2018.

P. Refait and J. R. Génin, The mechanisms of oxidation of ferrous hydroxychloride ?-Fe2(OH)3Cl in aqueous solution: The formation of akaganeite vs goethite, Corrosion Science, vol.39, issue.3, pp.539-553, 1997.

, Fe2(OH)3Cl in aqueous solution: The formation of akaganeite vs goethite, Corros. Sci, vol.39, pp.86102-86103, 1997.

C. Rémazeilles and P. H. Refait, On the formation of ?-FeOOH (akaganéite) in chloride-containing environments, Corrosion Science, vol.49, issue.2, pp.844-857, 2007.

Y. Zhao, Y. Wu, and W. Jin, Distribution of millscale on corroded steel bars and penetration of steel corrosion products in concrete, Corrosion Science, vol.66, pp.160-168, 2013.

K. K. Aligizaki, M. R. De-rooij, and D. D. Macdonald, Analysis of iron oxides accumulating at the 2114 interface between aggregates and cement paste, Cem. Concr. Res, vol.30, pp.392-398, 1941.

H. S. Wong, Y. X. Zhao, A. R. Karimi, N. R. Buenfeld, and W. L. Jin, On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion, Corrosion Science, vol.52, issue.7, pp.2469-2480, 2010.

T. D. Marcotte and C. M. Hansson, Corrosion products that form on steel within cement paste, Materials and Structures, vol.40, issue.3, pp.325-340, 2006.

. Mater and . Struct, , vol.40, pp.325-340, 2007.

Y. Zhao, H. Ren, H. Dai, and W. Jin, Composition and expansion coefficient of rust based on X-ray diffraction and thermal analysis, Corrosion Science, vol.53, issue.5, pp.1646-1658, 2011.

G. Fang, W. Ding, Y. Liu, J. Zhang, F. Xing et al., Identification of corrosion products and 3D distribution in reinforced concrete using X-ray micro computed tomography, Construction and Building Materials, vol.207, pp.304-315, 2019.

. Mater, , vol.207, pp.304-315, 2019.

C. Lu, W. Jin, and R. Liu, Reinforcement corrosion-induced cover cracking and its time prediction for reinforced concrete structures, Corrosion Science, vol.53, issue.4, pp.1337-1347, 2011.

B. Sanz, J. Planas, and J. M. Sancho, A closer look to the mechanical behavior of the oxide layer in concrete reinforcement corrosion, International Journal of Solids and Structures, vol.62, pp.256-268, 2015.

Y. Liu and R. E. Weyers, Modeling the Time-to-Corrosion Cracking in Chloride Contaminated Reinforced Concrete Structures, ACI Materials Journal, vol.95, issue.6, pp.675-680, 1998.

A. Poursaee, Temperature dependence of the formation of the passivation layer on carbon steel in high alkaline environment of concrete pore solution, Electrochemistry Communications, vol.73, pp.24-28, 2016.

B. Díaz, B. Guitián, X. R. Nóvoa, and M. C. Pérez, The effect of long-term atmospheric aging and temperature on the electrochemical behaviour of steel rebars in mortar, Corrosion Science, vol.140, pp.143-150, 2018.

J. M. Deus, L. Freire, M. F. Montemor, and X. R. Nóvoa, The corrosion potential of stainless steel rebars in concrete: Temperature effect, Corrosion Science, vol.65, pp.556-560, 2012.

A. ?esen, T. Kosec, and A. Legat, Characterization of steel corrosion in mortar by various electrochemical and physical techniques, Corrosion Science, vol.75, pp.47-57, 2013.

B. ?avija, M. Lukovi?, S. A. Hosseini, J. Pacheco, and E. Schlangen, Corrosion induced cover 2149 cracking studied by X-ray computed tomography, nanoindentation, and energy dispersive X-2150 ray spectrometry (EDS), Mater. Struct, vol.48, pp.2043-2062, 2015.

B. Dong, G. Fang, Y. Liu, P. Dong, J. Zhang et al., Monitoring reinforcement corrosion and corrosion-induced cracking by X-ray microcomputed tomography method, Cement and Concrete Research, vol.100, pp.311-321, 2017.

B. Dong, G. Fang, Y. Liu, P. Dong, J. Zhang et al., Monitoring reinforcement corrosion and corrosion-induced cracking by X-ray microcomputed tomography method, Cement and Concrete Research, vol.100, pp.311-321, 2017.

G. Fang, Y. Liu, S. Qin, W. Ding, J. Zhang et al., Visualized tracing of crack self-healing features in cement/microcapsule system with X-ray microcomputed tomography, Construction and Building Materials, vol.179, pp.336-347, 2018.

B. Dong, G. Shi, P. Dong, W. Ding, X. Teng et al., Visualized tracing of rebar corrosion evolution in concrete with x-ray micro-computed tomography method, Cement and Concrete Composites, vol.92, pp.102-109, 2018.

B. Dong, G. Shi, P. Dong, W. Ding, X. Teng et al., Visualized tracing of rebar corrosion evolution in concrete with x-ray micro-computed tomography method, Cement and Concrete Composites, vol.92, pp.102-109, 2018.

W. Chitty, P. Dillmann, V. L?hostis, and C. Lombard, Long-term corrosion resistance of metallic reinforcements in concrete?a study of corrosion mechanisms based on archaeological artefacts, Corrosion Science, vol.47, issue.6, pp.1555-1581, 2005.

V. L&apos;hostis, D. Neff, L. Bellot-gurlet, and P. Dillmann, Characterization of long-term corrosion of rebars embedded in concretes sampled on French historical buildings aged from 50 to 80 years, Materials and Corrosion, vol.60, issue.2, pp.93-98, 2009.

Y. Zhao, H. Ding, and W. Jin, Development of the corrosion-filled paste and corrosion layer at the steel/concrete interface, Corrosion Science, vol.87, pp.199-210, 2014.

Y. Zhao, X. Zhang, and W. Jin, Influence of environment on the development of corrosion product-filled paste and a corrosion layer at the steel/concrete interface, Corrosion Science, vol.124, pp.1-9, 2017.

Y. Zhao, B. Hu, J. Yu, and W. Jin, Non-uniform distribution of rust layer around steel bar in concrete, Corrosion Science, vol.53, issue.12, pp.4300-4308, 2011.

C. Cao and M. M. Cheung, Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures, Construction and Building Materials, vol.51, pp.75-81, 2014.

C. Cao and M. M. Cheung, Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures, Construction and Building Materials, vol.51, pp.75-81, 2014.

Y. Zhao, J. Dong, Y. Wu, and W. Jin, Corrosion-induced concrete cracking model considering corrosion product-filled paste at the concrete/steel interface, Construction and Building Materials, vol.116, pp.273-280, 2016.

X. Xi, S. Yang, and C. Li, A non-uniform corrosion model and meso-scale fracture modelling of concrete, Cement and Concrete Research, vol.108, pp.87-102, 2018.

A. Jamali, U. Angst, B. Adey, and B. Elsener, Modeling of corrosion-induced concrete cover cracking: A critical analysis, Construction and Building Materials, vol.42, pp.225-237, 2013.

C. Andrade and I. Martínez, Techniques for measuring the corrosion rate (polarization resistance) and the corrosion potential of reinforced concrete structures, Non-Destructive Evaluation of Reinforced Concrete Structures, pp.284-316, 2010.

. Concr and . Struct, , pp.284-316, 2010.

R. Francois, G. Arliguie, and D. Bardy, Electrode potential measurements of concrete 2192 reinforcement for corrosion evaluation, Cem. Concr. Res, vol.24, pp.90127-90136, 1994.

K. Reichling and M. Raupach, Method to determine electrochemical potential gradients without reinforcement connection in concrete structures, Cement and Concrete Composites, vol.47, pp.3-8, 2014.

S. Garcia and F. Deby, Numerical and Experimental Development of Gradient Potential Measurement for Corrosion Detection in Reinforced Concrete, RILEM Bookseries, pp.71-86, 2018.

. Concr, . Struct, and . Cefracor, , pp.71-86, 2019.

M. Pour-ghaz, O. B. Isgor, and P. Ghods, Quantitative Interpretation of Half-Cell Potential Measurements in Concrete Structures, Journal of Materials in Civil Engineering, vol.21, issue.9, pp.467-475, 2009.

S. K. Verma, S. S. Bhadauria, and S. Akhtar, Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures, The Scientific World Journal, vol.2014, pp.1-9, 2014.

U. Angst, Ø. Vennesland, and R. Myrdal, Diffusion potentials as source of error in electrochemical measurements in concrete, Materials and Structures, vol.42, issue.3, pp.365-375, 2008.

P. Castro, A. A. Sagüés, E. I. Moreno, L. Maldonado, and J. Genescá, Characterization of Activated Titanium Solid Reference Electrodes for Corrosion Testing of Steel in Concrete, CORROSION, vol.52, issue.8, pp.609-617, 1996.

G. S. Duffó and S. B. Farina, Development of an embeddable sensor to monitor the corrosion process of new and existing reinforced concrete structures, Construction and Building Materials, vol.23, issue.8, pp.2746-2751, 2009.

S. P. Karthick, S. Muralidharan, V. Saraswathy, and K. Thangavel, Long-term relative performance of embedded sensor and surface mounted electrode for corrosion monitoring of steel in concrete structures, Sensors and Actuators B: Chemical, vol.192, pp.303-309, 2014.

M. Jin, Y. Jiang, L. Jiang, H. Chu, F. Zhi et al., Fabrication and characterization of pseudo reference electrode based on graphene-cement composites for corrosion monitoring in reinforced concrete structure, Construction and Building Materials, vol.204, pp.144-157, 2019.

A. Sassolini, N. Colozza, E. Papa, K. Hermansson, I. Cacciotti et al., Screen-printed electrode as a cost-effective and miniaturized analytical tool for corrosion monitoring of reinforced concrete, Electrochemistry Communications, vol.98, pp.69-72, 2019.

Ø. Vennesland, M. Raupach, and C. Andrade, Recommendation of Rilem TC 154-EMC: 2227 "Electrochemical techniques for measuring corrosion in concrete"-measurements with 2228 embedded probes, Mater. Struct, vol.40, pp.745-758, 2007.

A. Leibbrandt, B. Elsener, C. Hürzeler, G. Caprati, R. Flatt et al., Climbing robot for 2231 corrosion monitoring and sensor for potential mapping, WO2013156142A1, 2013.

B. Elsener, C. Andrade, J. Gulikers, R. Polder, and M. Raupach, Half-cell potential measurements?Potential mapping on reinforced concrete structures, Materials and Structures, vol.36, issue.7, pp.461-471, 2003.

, Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete, pp.876-885

K. Reichling, M. Raupach, J. Broomfield, J. Gulikers, V. L&apos;hostis et al., Full surface inspection methods regarding reinforcement corrosion of concrete structures, Materials and Corrosion, vol.64, issue.2, pp.116-127, 2012.

U. Pepenar, G. Schneck, G. Sergi, and . Taché, Full surface inspection methods regarding 2240 reinforcement corrosion of concrete structures, Mater. Corros, vol.64, pp.116-127, 2013.

E. Sassine, S. Laurens, R. François, and E. Ringot, A critical discussion on rebar electrical continuity and usual interpretation thresholds in the field of half-cell potential measurements in steel reinforced concrete, Materials and Structures, vol.51, issue.4, p.93, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01876351

G. Y. Koga, B. Albert, and R. P. Nogueira, Revisiting the ASTM C876 standard for corrosion of reinforcing steel: On the correlation between corrosion potential and polarization resistance during the curing of different cement mortars, Electrochemistry Communications, vol.94, pp.1-4, 2018.

P. Gu and J. J. Beaudoin, Recommendations of RILEM TC 154-EMC: Electrochemical techniques for measuring metallic corrosion Half-cell potential measurements - Potential mapping on reinforced concrete structures, Materials and Structures, vol.36, issue.261, pp.461-471, 2003.

W. Yodsudjai and T. Pattarakittam, Factors influencing half-cell potential measurement and its relationship with corrosion level, Measurement, vol.104, pp.159-168, 2017.

J. Lataste, G. Villain, and J. Balayssac, Electrical Methods, Non-Destructive Testing and Evaluation of Civil Engineering Structures, pp.139-172, 2018.
URL : https://hal.archives-ouvertes.fr/hal-00397612

J. Lataste, G. Villain, and J. Balayssac, Electrical Methods, Non-Destructive Testing and Evaluation of Civil Engineering Structures, pp.139-172, 2018.
URL : https://hal.archives-ouvertes.fr/hal-00397612

R. B. Polder, Test methods for on site measurement of resistivity of concrete -a RILEM TC-2257 154 technical recommendation, Constr. Build. Mater, vol.15, pp.61-62, 2001.

P. Azarsa and R. Gupta, Electrical Resistivity of Concrete for Durability Evaluation: A Review, Advances in Materials Science and Engineering, vol.2017, pp.1-30, 2017.

. Mater and . Sci, 2017 (2017) 1-30

F. Presuel-moreno, Y. Wu, and Y. Liu, Effect of curing regime on concrete resistivity and aging factor over time, Construction and Building Materials, vol.48, pp.874-882, 2013.

R. Plooy, S. P. Lopes, G. Villain, and X. Dérobert, Development of a multi-ring resistivity cell 2265 and multi-electrode resistivity probe for investigation of cover concrete condition, NDT E Int. 2266, vol.54, pp.27-36, 2013.

R. Spragg, C. Qiao, T. Barrett, and J. Weiss, Assessing a concrete's resistance to chloride ion ingress using the formation factor, Corrosion of Steel in Concrete Structures, pp.211-238, 2016.

A. J. Garzon, J. Sanchez, C. Andrade, N. Rebolledo, E. Menéndez et al., Modification of four point method to measure the concrete electrical resistivity in presence of reinforcing bars, Cement and Concrete Composites, vol.53, pp.249-257, 2014.

R. Polder, C. Andrade, B. Elsener, Ø. Vennesland, J. Gulikers et al., Test methods for on site measurement of resistivity of concrete, Materials and Structures, vol.33, issue.10, pp.603-611, 2000.

H. Layssi, P. Ghods, A. R. Alizadeh, and M. Salehi, Electrical resistivity of concrete: Concepts, 2278 applications, and measurement techniques, pp.41-46, 2015.

W. J. Weiss, R. P. Spragg, O. B. Isgor, M. T. Ley, and T. Van-dam, Toward Performance Specifications for Concrete: Linking Resistivity, RCPT and Diffusion Predictions Using the Formation Factor for Use in Specifications, High Tech Concrete: Where Technology and Engineering Meet, pp.2057-2065, 2017.

W. J. Weiss, T. J. Barrett, C. Qiao, and H. Todak, Toward a Specification for Transport Properties of Concrete Based on the Formation Factor of a Sealed Specimen, Advances in Civil Engineering Materials, vol.5, issue.1, p.20160004, 2016.

R. He, H. Ma, R. B. Hafiz, C. Fu, X. Jin et al., Determining porosity and pore network connectivity of cement-based materials by a modified non-contact electrical resistivity measurement: Experiment and theory, Materials & Design, vol.156, pp.82-92, 2018.

H. Sallehi, P. Ghods, and O. B. Isgor, Formation factor of fresh cementitious pastes, Cement and Concrete Composites, vol.91, pp.174-188, 2018.

H. Sallehi, P. Ghods, and O. B. Isgor, Formation factor of fresh cementitious pastes, Cement and Concrete Composites, vol.91, pp.174-188, 2018.

X. Lu, Application of the Nernst-Einstein equation to concrete, Cem. Concr. Res, vol.27, pp.200-201, 1997.

K. A. Snyder, Diffusion Coefficient, Electrolytes, vol.3, pp.328-355, 2014.

K. A. Snyder, X. Feng, B. D. Keen, and T. O. Mason, Estimating the electrical conductivity of cement paste pore solutions from OH?, K+ and Na+ concentrations, Cement and Concrete Research, vol.33, issue.6, pp.793-798, 2003.

D. P. Bentz, A virtual rapid chloride permeability test, Cement and Concrete Composites, vol.29, issue.10, pp.723-731, 2007.

M. T. Chang, P. Suraneni, O. B. Isgor, D. Trejo, and W. J. Weiss, Using X-ray fluorescence to assess the chemical composition and resistivity of simulated cementitious pore solutions, International Journal of Advances in Engineering Sciences and Applied Mathematics, vol.9, issue.3, pp.136-143, 2017.

M. T. Chang, P. Suraneni, O. B. Isgor, D. Trejo, and W. J. Weiss, Using X-ray fluorescence to assess the chemical composition and resistivity of simulated cementitious pore solutions, International Journal of Advances in Engineering Sciences and Applied Mathematics, vol.9, issue.3, pp.136-143, 2017.

Y. Bu, D. Luo, and J. Weiss, Using Fick?s Second Law and Nernst?Planck Approach in Prediction of Chloride Ingress in Concrete Materials, Advances in Civil Engineering Materials, vol.3, issue.1, p.20140018, 2014.

Y. Bu, D. Luo, and J. Weiss, Using Fick?s Second Law and Nernst?Planck Approach in Prediction of Chloride Ingress in Concrete Materials, Advances in Civil Engineering Materials, vol.3, issue.1, p.20140018, 2014.

C. A. Appelo, Solute transport solved with the Nernst-Planck equation for concrete pores with ?free? water and a double layer, Cement and Concrete Research, vol.101, pp.102-113, 2017.

C. Qiao, A. T. Coyle, O. B. Isgor, and W. J. Weiss, Prediction of Chloride Ingress in Saturated Concrete Using Formation Factor and Chloride Binding Isotherm, Advances in Civil Engineering Materials, vol.7, issue.1, p.20170141, 2018.

V. Azad, A. R. Erbektas, C. Qiao, O. B. Isgor, and W. J. Weiss, Relating the formation factor and 2315 chloride binding parameters to the apparent chloride diffusion coefficient of concrete

. Mater, Civ. Eng, vol.31, p.4018392, 2019.

O. Sengul, Use of electrical resistivity as an indicator for durability, Construction and Building Materials, vol.73, pp.434-441, 2014.

M. K. Moradllo, C. Qiao, B. Isgor, S. Reese, and W. J. Weiss, Relating Formation Factor of Concrete to Water Absorption, ACI Materials Journal, vol.115, issue.6, pp.887-898, 2018.

O. B. Isgor and W. J. Weiss, A nearly self-sufficient framework for modelling reactive-transport 2322 processes in concrete, Mater. Struct, vol.52, 2019.

R. Spragg, C. Villani, K. Snyder, D. Bentz, J. W. Bullard et al., Factors that Influence Electrical Resistivity Measurements in Cementitious Systems, Transportation Research Record: Journal of the Transportation Research Board, vol.2342, issue.1, pp.90-98, 2013.

Y. Wang and Y. Xi, The Effect of Temperature on Moisture Transport in Concrete, Materials, vol.10, issue.8, p.926, 2017.

A. Aït-mokhtar, R. Belarbi, F. Benboudjema, N. Burlion, B. Capra et al., Experimental investigation of the variability of concrete durability properties, Cement and Concrete Research, vol.45, pp.21-36, 2013.

F. Cussigh, F. Deby, T. Jacquemot, J. F. De-larrard, P. L. Lataste et al.,

T. Rougeau, A. Rougelot, J. Sellier, J. M. Séménadisse, A. Torrenti et al.,

A. Aït-mokhtar, R. Belarbi, F. Benboudjema, N. Burlion, B. Capra et al., Experimental investigation of the variability of concrete durability properties, Cement and Concrete Research, vol.45, pp.21-36, 2013.

B. Lothenbach, F. Winnefeld, C. Alder, E. Wieland, and P. Lunk, Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes, Cement and Concrete Research, vol.37, issue.4, pp.483-491, 2007.

Y. Liu and F. J. Presuel-moreno, Normalization of Temperature Effect on Concrete Resistivity by Method Using Arrhenius Law, ACI Materials Journal, vol.111, issue.4, 2014.

P. A. Claisse, H. I. El-sayad, and I. G. Shaaban, Permeability and Pore Volume of Carbonated Concrete, ACI Materials Journal, vol.96, issue.3, pp.378-381, 1999.

U. M. Angst and B. Elsener, On Applicability of Wenner Method for Resistivity Measurements of Concrete, ACI Materials Journal, vol.111, issue.6, pp.661-672, 2014.

C. Chen, J. Chang, and W. Yeih, The effects of specimen parameters on the resistivity of concrete, Construction and Building Materials, vol.71, pp.35-43, 2014.

M. Salehi, P. Ghods, and O. B. Isgor, Numerical Study on the Effect of Cracking on Surface Resistivity of Plain and Reinforced Concrete Elements, Journal of Materials in Civil Engineering, vol.27, issue.12, p.04015053, 2015.

M. Salehi, P. Ghods, and O. B. Isgor, Numerical Study on the Effect of Cracking on Surface Resistivity of Plain and Reinforced Concrete Elements, Journal of Materials in Civil Engineering, vol.27, issue.12, p.04015053, 2015.

?. Sadowski, New non-destructive method for linear polarisation resistance corrosion rate 2351 measurement, Arch. Civ. Mech. Eng, vol.10, issue.12, pp.60053-60056, 2010.

A. Q. Nguyen, G. Klysz, F. Deby, and J. Balayssac, Evaluation of water content gradient using a new configuration of linear array four-point probe for electrical resistivity measurement, Cement and Concrete Composites, vol.83, pp.308-322, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01847553

A. Q. Nguyen, G. Klysz, F. Deby, and J. Balayssac, Evaluation of water content gradient using a new configuration of linear array four-point probe for electrical resistivity measurement, Cement and Concrete Composites, vol.83, pp.308-322, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01847553

S. G. Millard, REINFORCED CONCRETE RESISTIVITY MEASUREMENT TECHNIQUES., Proceedings of the Institution of Civil Engineers, vol.91, issue.1, pp.71-88, 1991.

K. R. Gowers and S. G. Millard, Measurement of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner Technique, ACI Materials Journal, vol.96, issue.5, pp.536-541, 1999.

, Measurement of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner Technique, ACI Materials Journal, vol.96, issue.5, 1999.

O. Sengul and O. E. Gjorv, Effect of Embedded Steel on Electrical Resistivity Measurements on Concrete Structures, ACI Materials Journal, vol.106, issue.1, pp.11-18, 2009.

F. Presuel-moreno, Y. Liu, and Y. Wu, Numerical modeling of the effects of rebar presence and/or multilayered concrete resistivity on the apparent resistivity measured via the Wenner method, Construction and Building Materials, vol.48, pp.16-25, 2013.

M. Salehi, P. Ghods, O. Burkan, and . Isgor, Numerical investigation of the role of embedded 2368 reinforcement mesh on electrical resistivity measurements of concrete using the Wenner 2369 probe technique, Mater. Struct, vol.49, pp.301-316, 2016.

W. Morris, E. I. Moreno, and A. A. Sagüés, Practical evaluation of resistivity of concrete in test cylinders using a Wenner array probe, Cement and Concrete Research, vol.26, issue.12, pp.1779-1787, 1996.

O. Sengul and O. E. Gjorv, Electrical Resistivity Measurements for Quality Control During Concrete Construction, ACI Materials Journal, vol.105, issue.6, pp.541-547, 2008.

P. Ghosh and Q. Tran, Influence of parameters on surface resistivity of concrete, Cement and Concrete Composites, vol.62, pp.134-145, 2015.

P. Ghosh and Q. Tran, Influence of parameters on surface resistivity of concrete, Cement and Concrete Composites, vol.62, pp.134-145, 2015.

J. Sanchez, C. Andrade, J. Torres, N. Rebolledo, and J. Fullea, Determination of reinforced concrete durability with on-site resistivity measurements, Materials and Structures, vol.50, issue.1, p.41, 2016.

J. Sanchez, C. Andrade, J. Torres, N. Rebolledo, and J. Fullea, Determination of reinforced concrete durability with on-site resistivity measurements, Materials and Structures, vol.50, issue.1, 2016.

K. Hornbostel, C. K. Larsen, and M. R. Geiker, Relationship between concrete resistivity and corrosion rate ? A literature review, Cement and Concrete Composites, vol.39, pp.60-72, 2013.

C. Alonso, C. Andrade, and J. A. González, Relation between resistivity and corrosion rate of 2385 reinforcements in carbonated mortar made with several cement types, Cem. Concr. Res, vol.18, pp.90091-90100, 1988.

S. Feliu, J. A. González, S. Feliu, and C. Andrade, Relationship between conductivity of concrete and corrosion of reinforcing bars, British Corrosion Journal, vol.24, issue.3, pp.195-198, 1989.

B. Yu, J. Liu, and Z. Chen, Probabilistic evaluation method for corrosion risk of steel reinforcement based on concrete resistivity, Construction and Building Materials, vol.138, pp.101-113, 2017.

R. B. Figueira, Electrochemical Sensors for Monitoring the Corrosion Conditions of Reinforced Concrete Structures: A Review, Applied Sciences, vol.7, issue.11, p.1157, 2017.

W. Morris, A. Vico, M. Vazquez, and S. R. Sanchez, Corrosion of reinforcing steel evaluated by 2396 means of concrete resistivity measurements, Corros. Sci, vol.44, pp.33-39, 2002.

J. Gulikers, Theoretical considerations on the supposed linear relationship between concrete resistivity and corrosion rate of steel reinforcement, Materials and Corrosion, vol.56, issue.6, pp.393-403, 2005.

S. Ahmad, An experimental study on correlation between concrete resistivity and reinforcement corrosion rate, Anti-Corrosion Methods and Materials, vol.61, issue.3, pp.158-165, 2014.

F. , Inspection and evaluation of a network of concrete bridges based on multiple NDT techniques, Structure and Infrastructure Engineering, pp.1-20, 2020.

K. Hornbostel, B. Elsener, U. M. Angst, C. K. Larsen, and M. R. Geiker, Limitations of the use of concrete bulk resistivity as an indicator for the rate of chloride-induced macro-cell corrosion, Structural Concrete, vol.18, issue.2, pp.326-333, 2017.

. Struct and . Concr, , vol.18, pp.326-333, 2017.

K. Hornbostel, U. M. Angst, B. Elsener, C. K. Larsen, and M. R. Geiker, On the limitations of predicting the ohmic resistance in a macro-cell in mortar from bulk resistivity measurements, Cement and Concrete Research, vol.76, pp.147-158, 2015.

K. Hornbostel, U. M. Angst, B. Elsener, C. K. Larsen, and M. R. Geiker, On the limitations of predicting the ohmic resistance in a macro-cell in mortar from bulk resistivity measurements, Cement and Concrete Research, vol.76, pp.147-158, 2015.

K. Hornbostel, U. M. Angst, B. Elsener, C. K. Larsen, and M. R. Geiker, Influence of mortar resistivity on the rate-limiting step of chloride-induced macro-cell corrosion of reinforcing steel, Corrosion Science, vol.110, pp.46-56, 2016.

. Sci, , vol.110, pp.46-56, 2016.

A. T. Coyle, R. P. Spragg, P. Suraneni, A. N. Amirkhanian, and W. J. Weiss, Comparison of Linear Temperature Corrections and Activation Energy Temperature Corrections for Electrical Resistivity Measurements of Concrete, Advances in Civil Engineering Materials, vol.7, issue.1, p.20170135, 2018.

A. T. Coyle, R. P. Spragg, P. Suraneni, A. N. Amirkhanian, and W. J. Weiss, Comparison of Linear Temperature Corrections and Activation Energy Temperature Corrections for Electrical Resistivity Measurements of Concrete, Advances in Civil Engineering Materials, vol.7, issue.1, p.20170135, 2018.

J. M. Deus, B. Díaz, L. Freire, and X. R. Nóvoa, The electrochemical behaviour of steel rebars in concrete: an Electrochemical Impedance Spectroscopy study of the effect of temperature, Electrochimica Acta, vol.131, pp.106-115, 2014.

J. M. Deus, B. Díaz, L. Freire, and X. R. Nóvoa, The electrochemical behaviour of steel rebars in concrete: an Electrochemical Impedance Spectroscopy study of the effect of temperature, Electrochimica Acta, vol.131, pp.106-115, 2014.

K. Reichling, M. Raupach, and N. Klitzsch, Determination of the distribution of electrical resistivity in reinforced concrete structures using electrical resistivity tomography, Materials and Corrosion, vol.66, issue.8, pp.763-771, 2014.

K. Karhunen, A. Seppänen, A. Lehikoinen, P. J. Monteiro, and J. P. Kaipio, Electrical Resistance Tomography imaging of concrete, Cement and Concrete Research, vol.40, issue.1, pp.137-145, 2010.

M. H. Loke and J. W. Lane, Inversion of data from electrical imaging surveys in water-covered areas, ASEG Extended Abstracts, vol.2004, issue.1, pp.1-4, 2004.

D. Smyl, Electrical tomography for characterizing transport properties in cement-based materials: A review, Construction and Building Materials, vol.244, p.118299, 2020.

D. Smyl, Electrical tomography for characterizing transport properties in cement-based materials: A review, Construction and Building Materials, vol.244, p.118299, 2020.

M. A. Alhajj, S. Palma-lopes, and G. Villain, Accounting for steel rebar effect on resistivity profiles in view of reinforced concrete structure survey, Construction and Building Materials, vol.223, pp.898-909, 2019.

J. Priou, Y. Lecieux, M. Chevreuil, V. Gaillard, C. Lupi et al.,

. Schoefs, situ DC electrical resistivity mapping performed in a reinforced concrete wharf 2439 using embedded sensors, vol.211, pp.244-260, 2019.

J. Badr, Y. Fargier, S. Palma-lopes, F. Deby, J. Balayssac et al., Design and validation of a multi-electrode embedded sensor to monitor resistivity profiles over depth in concrete, Construction and Building Materials, vol.223, pp.310-321, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02395991

G. Cottineau and . Villain, Design and validation of a multi-electrode embedded sensor to monitor 2443 resistivity profiles over depth in concrete, Constr. Build. Mater, vol.223, pp.310-321, 2019.

M. Fares, G. Villain, S. Bonnet, S. Palma-lopes, B. Thauvin et al., Determining chloride content profiles in concrete using an electrical resistivity tomography device, Cement and Concrete Composites, vol.94, pp.315-326, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01895339

M. Fares, G. Villain, S. Bonnet, S. Palma-lopes, B. Thauvin et al., Determining chloride content profiles in concrete using an electrical resistivity tomography device, Cement and Concrete Composites, vol.94, pp.315-326, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01895339

S. Bonnet and J. Balayssac, Combination of the Wenner resistivimeter and Torrent permeameter methods for assessing carbonation depth and saturation level of concrete, Construction and Building Materials, vol.188, pp.1149-1165, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01917049

D. Smyl, M. Hallaji, A. Seppänen, and M. Pour-ghaz, Three-Dimensional Electrical Impedance Tomography to Monitor Unsaturated Moisture Ingress in Cement-Based Materials, Transport in Porous Media, vol.115, issue.1, pp.101-124, 2016.

D. Smyl, M. Hallaji, A. Seppänen, and M. Pour-ghaz, Three-Dimensional Electrical Impedance Tomography to Monitor Unsaturated Moisture Ingress in Cement-Based Materials, Transport in Porous Media, vol.115, issue.1, pp.101-124, 2016.

D. Smyl, R. Rashetnia, A. Seppänen, and M. Pour-ghaz, Can Electrical Resistance Tomography be used for imaging unsaturated moisture flow in cement-based materials with discrete cracks?, Cement and Concrete Research, vol.91, pp.61-72, 2017.

D. Smyl, R. Rashetnia, A. Seppänen, and M. Pour-ghaz, Can Electrical Resistance Tomography be used for imaging unsaturated moisture flow in cement-based materials with discrete cracks?, Cement and Concrete Research, vol.91, pp.61-72, 2017.

E. V. Pereira, M. M. Salta, and I. T. Fonseca, On the measurement of the polarisation resistance of reinforcing steel with embedded sensors: A comparative study, Materials and Corrosion, vol.66, issue.10, pp.1029-1038, 2015.

C. Andrade, L. Soler, C. Alonso, X. R. Nóvoa, and M. Keddam, The importance of geometrical considerations in the measurement of steel corrosion in concrete by means of AC impedance, Corrosion Science, vol.37, issue.12, pp.2013-2023, 1995.

, Corros. Sci, vol.37, pp.95-97, 1995.

S. Rengaraju, L. Neelakantan, and R. G. Pillai, Investigation on the polarization resistance of steel embedded in highly resistive cementitious systems ? An attempt and challenges, Electrochimica Acta, vol.308, pp.131-141, 2019.

S. Rengaraju, L. Neelakantan, and R. G. Pillai, Investigation on the polarization resistance of steel embedded in highly resistive cementitious systems ? An attempt and challenges, Electrochimica Acta, vol.308, pp.131-141, 2019.

B. B. Isgor, U. Angst, M. Geiker, C. Halmen, C. Hansson et al., Recommended practice for reporting experimental data produced from studies on corrosion of steel in cementitious systems, RILEM Technical Letters, vol.4, pp.22-32, 2019.

. Vaddey, Recommended practice for reporting experimental data produced from studies on 2469 corrosion of steel in cementitious systems, RILEM Tech. Lett, vol.4, pp.22-32, 2019.

M. Stern and A. L. Geaby, Electrochemical Polarization, Journal of The Electrochemical Society, vol.104, issue.1, p.56, 1957.

M. Stern and A. L. Geaby, Electrochemical Polarization, Journal of The Electrochemical Society, vol.104, issue.1, p.56, 1957.

A. Guyader, F. Huet, and R. P. Nogueira, Polarization Resistance Measurements: Potentiostatically or Galvanostatically?, CORROSION, vol.65, issue.2, pp.136-144, 2009.

S. Ahmad and B. Bhattacharjee, A simple arrangement and procedure for in-situ measurement of corrosion rate of rebar embedded in concrete, Corrosion Science, vol.37, issue.5, pp.781-791, 1995.

A. Fahim, P. Ghods, O. B. Isgor, and M. D. Thomas, A critical examination of corrosion rate measurement techniques applied to reinforcing steel in concrete, Materials and Corrosion, vol.69, issue.12, pp.1784-1799, 2018.

A. A. Sagüés, S. C. Kranc, and E. I. Moreno, The time-domain response of a corroding system with constant phase angle interfacial component: Application to steel in concrete, Corrosion Science, vol.37, issue.7, pp.1097-1113, 1995.

C. J. Newton and J. M. Sykes, A galvanostatic pulse technique for investigation of steel corrosion in 2485 concrete, Corros. Sci, vol.28, pp.90101-90102, 1988.

B. Elsener, O. Klinghoffer, T. Frolund, E. Rislund, Y. Schiegg et al., Assessment of 2487 reinforcement corrosion by means of galvanostatic pulse technique, Repair Concr. Struct, p.2488

N. Svolvaer, Master index to volumes 391?400, Physics Letters B, vol.391-400, pp.1-121, 1997.

A. Poursaee, Potentiostatic transient technique, a simple approach to estimate the corrosion current density and Stern?Geary constant of reinforcing steel in concrete, Cement and Concrete Research, vol.40, issue.9, pp.1451-1458, 2010.

J. E. Ramón, J. M. Gandía-romero, R. Bataller, M. Alcañiz, M. Valcuende et al., Potential step voltammetry: An approach to corrosion rate measurement of reinforcements in concrete, Cement and Concrete Composites, vol.110, p.103590, 2020.

J. E. Ramón, J. M. Gandía-romero, R. Bataller, M. Alcañiz, M. Valcuende et al., Potential step voltammetry: An approach to corrosion rate measurement of reinforcements in concrete, Cement and Concrete Composites, vol.110, p.103590, 2020.

D. M. Bastidas, J. A. González, S. Feliu, A. Cobo, and J. M. Miranda, A Quantitative Study of Concrete-Embedded Steel Corrosion Using Potentiostatic Pulses, CORROSION, vol.63, issue.12, pp.1094-1100, 2007.

D. M. Bastidas, J. A. González, S. Feliu, A. Cobo, and J. M. Miranda, A Quantitative Study of Concrete-Embedded Steel Corrosion Using Potentiostatic Pulses, CORROSION, vol.63, issue.12, pp.1094-1100, 2007.

P. Rodrí and J. A. González, Use of the coulostatic method for measuring corrosion rates of embedded metal in concrete, Magazine of Concrete Research, vol.46, issue.167, pp.91-97, 1994.

G. K. Glass, An assessment of the coulostatic method applied to the corrosion of steel in concrete, Corrosion Science, vol.37, issue.4, pp.597-605, 1995.

V. Feliu, J. A. Gonz?lez, and S. Feliu, Modelling of the steel?concrete interface to obtain information on reinforcement bar corrosion, Journal of Applied Electrochemistry, vol.35, issue.5, pp.429-436, 2005.

S. Feliu, J. A. González, M. L. Escudero, S. Feliu, and M. C. Andrade, Possibilities of the Guard Ring for Electrical Signal Confinement in the Polarization Measurements of Reinforcements, CORROSION, vol.46, issue.12, pp.1015-1020, 1990.

A. Fahim, P. Ghods, O. B. Isgor, and M. D. Thomas, A critical examination of corrosion rate measurement techniques applied to reinforcing steel in concrete, Materials and Corrosion, vol.69, issue.12, pp.1784-1799, 2018.

P. V. Nygaard and M. R. Geiker, Measuring the corrosion rate of steel in concrete - effect of measurement technique, polarisation time and current, Materials and Corrosion, vol.63, issue.3, pp.200-214, 2010.

S. Laurens, P. Hénocq, N. Rouleau, F. Deby, E. Samson et al., Steady-state polarization response of chloride-induced macrocell corrosion systems in steel reinforced concrete ? numerical and experimental investigations, Cement and Concrete Research, vol.79, pp.272-290, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01849688

U. Angst and M. Büchler, A new perspective on measuring the corrosion rate of localized corrosion, Materials and Corrosion, vol.71, issue.5, pp.808-823, 2020.

D. G. John, P. C. Searson, and J. L. Dawson, Use of AC Impedance Technique in Studies on Steel in Concrete in Immersed Conditions, British Corrosion Journal, vol.16, issue.2, pp.102-106, 1981.

M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy, Electrochemical Impedance Spectroscopy, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02880772

D. V. Ribeiro and J. C. Abrantes, Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach, Construction and Building Materials, vol.111, pp.98-104, 2016.

G. Liu, Y. Zhang, M. Wu, and R. Huang, Study of depassivation of carbon steel in simulated concrete pore solution using different equivalent circuits, Construction and Building Materials, vol.157, pp.357-362, 2017.

J. Diard, J. Le-canut, B. Le-gorrec, and C. Montella, Copper electrodissolution in 1M HCl at low current densities. II. Electrochemical impedance spectroscopy study, Electrochimica Acta, vol.43, issue.16-17, pp.2485-2501, 1998.

M. E. Orazem, B. Tribollet, and . Circuits, Electrical Circuits, Electrochemical Impedance Spectroscopy, pp.75-88, 2017.

M. E. Orazem and B. Tribollet, Equivalent Circuit Analogs, Electrochemical Impedance Spectroscopy, pp.191-206, 2017.

M. E. Orazem and B. Tribollet, Constant-Phase Elements, Electrochemical Impedance Spectroscopy, pp.395-419, 2017.

M. R. Shoar-abouzari, F. Berkemeier, G. Schmitz, and D. Wilmer, On the physical interpretation of constant phase elements, Solid State Ionics, vol.180, issue.14-16, pp.922-927, 2009.

M. Keddam, H. Takenouti, X. R. Nóvoa, C. Andrade, and C. Alonso, Impedance measurements on 2545 cement paste, Cem. Concr. Res, vol.27, issue.97, pp.117-125, 1997.

Z. Xu, P. Gu, P. Xie, and J. J. Beaudoin, Application of A.C. impedance techniques in studies of 2548 porous cementitious materials, Relationship between ACIS behavior and the porous 2549 microstructure, vol.23, p.90039, 1993.
URL : https://hal.archives-ouvertes.fr/hal-01358277

X. Hu, C. Shi, X. Liu, J. Zhang, and G. De-schutter, A review on microstructural characterization of cement-based materials by AC impedance spectroscopy, Cement and Concrete Composites, vol.100, pp.1-14, 2019.

B. Díaz, X. R. Nóvoa, and M. C. Pérez, Study of the chloride diffusion in mortar: A new method of 2555 determining diffusion coefficients based on impedance measurements, Cem. Concr. Compos. 2556, vol.28, pp.237-245, 2006.

I. Sánchez, M. P. López, J. M. Ortega, and M. Á. Climent, Impedance spectroscopy: An efficient tool to determine the non-steady-state chloride diffusion coefficient in building materials, Materials and Corrosion, vol.62, issue.2, pp.139-145, 2010.

I. Sánchez, M. P. López, J. M. Ortega, and M. Á. Climent, Impedance spectroscopy: An efficient tool to determine the non-steady-state chloride diffusion coefficient in building materials, Materials and Corrosion, vol.62, issue.2, pp.139-145, 2010.

H. Mercado-mendoza, S. Lorente, and X. Bourbon, The Diffusion Coefficient of Ionic Species Through Unsaturated Materials, Transport in Porous Media, vol.96, issue.3, pp.469-481, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01850803

S. Chakri, I. Frateur, M. E. Orazem, E. M. Sutter, T. T. Tran et al., Improved EIS Analysis of the Electrochemical Behaviour of Carbon Steel in Alkaline Solution, Electrochimica Acta, vol.246, pp.924-930, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01555457

S. Chakri, I. Frateur, M. E. Orazem, E. M. Sutter, T. T. Tran et al., Improved EIS Analysis of the Electrochemical Behaviour of Carbon Steel in Alkaline Solution, Electrochimica Acta, vol.246, pp.924-930, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01555457

R. Vedalakshmi, S. Manoharan, H. Song, and N. Palaniswamy, Application of harmonic analysis in measuring the corrosion rate of rebar in concrete, Corrosion Science, vol.51, issue.11, pp.2777-2789, 2009.

U. M. Angst and B. Elsener, Measuring corrosion rates: A novel AC method based on processing and analysing signals recorded in the time domain, Corrosion Science, vol.89, pp.307-317, 2014.

H. Wojtas, Determination of corrosion rate of reinforcement with a modulated guard ring electrode; analysis of errors due to lateral current distribution, Corrosion Science, vol.46, issue.7, pp.1621-1632, 2004.

S. Feliu, J. A. González, J. M. Miranda, and V. Feliu, Possibilities and problems of in situ techniques for measuring steel corrosion rates in large reinforced concrete structures, Corrosion Science, vol.47, issue.1, pp.217-238, 2005.

A. Poursaee and C. M. Hansson, Galvanostatic pulse technique with the current confinement guard ring: The laboratory and finite element analysis, Corrosion Science, vol.50, issue.10, pp.2739-2746, 2008.

P. V. Nygaard, M. R. Geiker, and B. Elsener, Corrosion rate of steel in concrete: evaluation of confinement techniques for on-site corrosion rate measurements, Materials and Structures, vol.42, issue.8, pp.1059-1076, 2008.

A. Clément, S. Laurens, G. Arliguie, and F. Deby, Numerical study of the linear polarisation resistance technique applied to reinforced concrete for corrosion assessment, European Journal of Environmental and Civil Engineering, vol.16, issue.3-4, pp.491-504, 2012.

. Civ and . Eng, , vol.16, pp.491-504, 2012.

O. K. Gepraegs and C. M. Hansson, A Comparative Evaluation of Three Commercial Instruments for Field Measurements of Reinforcing Steel Corrosion Rates, Journal of ASTM International, vol.2, issue.8, p.11789, 2005.

O. K. Gepraegs and C. M. Hansson, A Comparative Evaluation of Three Commercial Instruments for Field Measurements of Reinforcing Steel Corrosion Rates, Journal of ASTM International, vol.2, issue.8, p.11789, 2005.

J. Marchand, S. Laurens, Y. Protière, and E. Samson, A numerical study of polarization tests applied 2591 to corrosion in reinforced concrete, Spec. Publ, vol.312, pp.1-12, 2016.

J. Zhang, P. J. Monteiro, and H. F. Morrison, Noninvasive Surface Measurement of Corrosion Impedance of Reinforcing Bar in Concrete?Part 1: Experimental Results, ACI Materials Journal, vol.98, issue.2, pp.116-125, 2001.

S. S. Hubbard, J. Zhang, P. J. Monteiro, J. E. Peterson, and Y. Rubin, Experimental Detection of Reinforcing Bar Corrosion Using Nondestructive Geophysical Techniques, ACI Materials Journal, vol.100, issue.6, pp.501-510, 2003.

P. J. Monteiro, F. Morrison, and W. Frangos, Non-Destructive Measurement of Corrosion State of Reinforcing Steel in Concrete, ACI Materials Journal, vol.95, issue.6, pp.704-709, 1998.

J. Zhang, P. J. Monteiro, and H. F. Morrison, Noninvasive Surface Measurement of Corrosion Impedance of Reinforcing Bar in Concrete?Part 2: Forward Modeling, ACI Materials Journal, vol.99, issue.3, pp.2602-242, 2002.

J. Zhang, P. J. Monteiro, H. F. Morrison, and M. Mancio, Noninvasive Surface Measurement of Corrosion Impedance of Reinforcing Bar in Concrete? Part 3: Effect of Geometry and Material Properties, ACI Materials Journal, vol.101, issue.4, pp.273-280, 2004.

A. Fahim, P. Ghods, R. Alizadeh, M. Salehi, and S. Decarufel, CEPRA: A New Test Method for Rebar Corrosion Rate Measurement, Advances in Electrochemical Techniques for Corrosion Monitoring and Laboratory Corrosion Measurements, vol.2608, pp.59-80, 2019.

Y. Lim, T. Noguchi, and S. Shin, Formulation of a Nondestructive Technique for Evaluating Steel Corrosion in Concrete Structures, ISIJ International, vol.49, issue.2, pp.275-283, 2009.

Y. Lim, T. Noguchi, and S. Shin, Corrosion Evaluation by Estimating the Surface Resistivity of Reinforcing Bar, Journal of Advanced Concrete Technology, vol.8, issue.2, pp.113-119, 2010.

C. Andrade, I. Martínez, and M. Castellote, Feasibility of determining corrosion rates by means of stray current-induced polarisation, Journal of Applied Electrochemistry, vol.38, issue.10, pp.1467-1476, 2008.

C. Andrade and I. Martínez, Metal Corrosion Rate Determination of Different Solutions and Reinforced Concrete Specimens by Means of a Noncontacting Corrosion Method, CORROSION, vol.66, issue.5, p.056001-056001-10, 2010.

C. Andrade, J. Sanchez, I. Martinez, and N. Rebolledo, Analogue circuit of the inductive polarization resistance, Electrochimica Acta, vol.56, issue.4, pp.1874-1880, 2011.

M. Keddam, X. R. Nóvoa, and V. Vivier, The concept of floating electrode for contact-less electrochemical measurements: Application to reinforcing steel-bar corrosion in concrete, Corrosion Science, vol.51, issue.8, pp.1795-1801, 2009.

M. Keddam, X. R. Nóvoa, and V. Vivier, The concept of floating electrode for contact-less electrochemical measurements: Application to reinforcing steel-bar corrosion in concrete, Corrosion Science, vol.51, issue.8, pp.1795-1801, 2009.

M. Keddam, X. R. Nóvoa, B. Puga, and V. Vivier, Impedance based method for non-contact determination of the corrosion rate in buried metallic structures, European Journal of Environmental and Civil Engineering, vol.15, issue.7, pp.1097-1103, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00824245

J. Yu, A. Sasamoto, and M. Iwata, Wenner method of impedance measurement for health evaluation of reinforced concrete structures, Construction and Building Materials, vol.197, pp.576-586, 2019.

C. L. Alexander and M. E. Orazem, Indirect electrochemical impedance spectroscopy for corrosion detection in external post-tensioned tendons: 1. Proof of concept, Corrosion Science, vol.164, p.108331, 2020.

C. L. Alexander and M. E. Orazem, Indirect Impedance for Corrosion Detection of External Post-tensioned Tendons: 2. Multiple Steel Strands, Corrosion Science, vol.164, p.108330, 2020.

C. L. Alexander and M. E. Orazem, Indirect Impedance for Corrosion Detection of External Post-tensioned Tendons: 2. Multiple Steel Strands, Corrosion Science, vol.164, p.108330, 2020.

F. Abdulsamad, N. Florsch, M. Schmutz, and C. Camerlynck, Assessing the high frequency behavior of non-polarizable electrodes for spectral induced polarization measurements, Journal of Applied Geophysics, vol.135, pp.449-455, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01458028

C. L. Alexander and M. E. Orazem, Indirect electrochemical impedance spectroscopy for corrosion detection in external post-tensioned tendons: 1. Proof of concept, Corrosion Science, vol.164, p.108331, 2020.

R. Rodrigues, S. Gaboreau, J. Gance, I. Ignatiadis, and S. Betelu, Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring, Construction and Building Materials, p.121240, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02979786

C. Andrade and J. A. González, Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements, Materials and Corrosion, vol.29, issue.8, pp.515-519, 1978.

G. Song, Theoretical analysis of the measurement of polarisation resistance in reinforced 2649 concrete, Cem. Concr. Compos, vol.22, issue.00, pp.40-48, 2000.

C. Alonso, C. Andrade, X. R. Nóvoa, M. Izquierdo, and M. C. Pérez, Effect of protective oxide scales 2652 in the macrogalvanic behaviour of concrete reinforcements, Corros. Sci, vol.40, pp.40-47, 1998.

D. A. Jones and N. D. Greene, Electrochemical measurement of low corrosion rates, Corrosion, vol.22, pp.198-205, 1966.

D. A. Jones, Principles and Prevention of Corrosion, N.J, 1996.

E. Gileadi and E. Kirowa-eisner, Some observations concerning the Tafel equation and its relevance to charge transfer in corrosion, Corrosion Science, vol.47, issue.12, pp.3068-3085, 2005.

J. Ge and O. B. Isgor, Effects of Tafel slope, exchange current density and electrode potential on the corrosion of steel in concrete, Materials and Corrosion, vol.58, issue.8, pp.573-582, 2007.

J. A. González, J. M. Miranda, N. Birbilis, and S. Feliu, Electrochemical Techniques for Studying Corrosion of Reinforcing Steel: Limitations and Advantages, CORROSION, vol.61, issue.1, pp.37-50, 2005.

J. A. González, J. M. Miranda, N. Birbilis, and S. Feliu, Electrochemical Techniques for Studying Corrosion of Reinforcing Steel: Limitations and Advantages, CORROSION, vol.61, issue.1, pp.37-50, 2005.

B. Yu, L. Yang, M. Wu, and B. Li, Practical model for predicting corrosion rate of steel reinforcement in concrete structures, Construction and Building Materials, vol.54, pp.385-401, 2014.

J. A. González, A. Molina, M. L. Escudero, and C. Andrade, Errors in the electrochemical evaluation 2671 of very small corrosion rates-I. Polarization resistance method applied to corrosion of steel 2672 in concrete, Corros. Sci, vol.25, pp.90021-90027, 1985.

I. Martínez and C. Andrade, Polarization resistance measurements of bars embedded in concrete with different chloride concentrations: EIS and DC comparison, Materials and Corrosion, vol.62, issue.10, pp.932-942, 2010.

J. A. González, A. Molina, M. L. Escudero, and C. Andrade, Errors in the electrochemical evaluation 2677 of very small corrosion rates-II. Other electrochemical techniques applied to corrosion of 2678 steel in concrete, Corros. Sci, vol.25, issue.85, pp.90030-90037, 1985.

M. Kou?il, P. Novák, and M. Bojko, Limitations of the linear polarization method to determine stainless steel corrosion rate in concrete environment, Cement and Concrete Composites, vol.28, issue.3, pp.220-225, 2006.

U. Angst and M. Büchler, On the applicability of the Stern-Geary relationship to determine instantaneous corrosion rates in macro-cell corrosion, Materials and Corrosion, vol.66, issue.10, pp.1017-1028, 2014.

B. Elsener, Corrosion rate of steel in concrete?Measurements beyond the Tafel law, Corrosion Science, vol.47, issue.12, pp.3019-3033, 2005.

. Sci, , vol.47, pp.3019-3033, 2005.

C. Andrade, C. Alonso, and J. , Sarr a, Corrosion rate evolution in concrete structures exposed to the 2689 atmosphere, Cem. Concr. Compos, vol.24, issue.01, pp.26-35, 2002.

C. Andrade, Correction to: Propagation of reinforcement corrosion: principles, testing and modelling, Materials and Structures, vol.53, issue.1, 2019.

. Struct, , vol.52, 2019.

C. Andrade, J. Sarr??a, and C. Alonso, Relative humidity in the interior of concrete exposed to natural and artificial weathering, Cement and Concrete Research, vol.29, issue.8, pp.1249-1259, 1999.

J. Jiang and Y. Yuan, Development and prediction strategy of steel corrosion rate in concrete under natural climate, Construction and Building Materials, vol.44, pp.287-292, 2013.

T. Ja?niok and M. Ja?niok, Influence of Rapid Changes of Moisture Content in Concrete and Temperature on Corrosion Rate of Reinforcing Steel, Procedia Engineering, vol.108, pp.316-323, 2015.

C. Andrade and A. Castillo, Evolution of reinforcement corrosion due to climatic variations, Materials and Corrosion, vol.54, issue.6, pp.379-386, 2003.

, Corros, vol.54, pp.379-386, 2003.

C. Käthler, U. M. Angst, G. Ebell, and B. Elsener, Chloride-induced reinforcement 2705 corrosion in cracked concrete: the influence of time of wetness on corrosion propagation, p.2706

C. Boschmann-käthler, U. M. Angst, G. Ebell, and B. Elsener, Chloride-induced reinforcement corrosion in cracked concrete: the influence of time of wetness on corrosion propagation, Corrosion Engineering, Science and Technology, pp.1-10, 2020.

V. Bouteiller, J. Cherrier, V. L?hostis, N. Rebolledo, C. Andrade et al., Influence of humidity and temperature on the corrosion of reinforced concrete prisms, European Journal of Environmental and Civil Engineering, vol.16, issue.3-4, pp.471-480, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00724479

. Civ and . Eng, , vol.16, pp.471-480, 2012.

B. Yu, J. Liu, and B. Li, Improved numerical model for steel reinforcement corrosion in concrete 2711 considering influences of temperature and relative humidity, Constr. Build. Mater, vol.142, pp.2712-175, 2017.

A. Chauhan and U. K. Sharma, Influence of temperature and relative humidity variations on non-2714 uniform corrosion of reinforced concrete, Structures, vol.19, pp.296-308, 2019.

Y. A. Villagrán-zaccardi, A. Bértora, and A. A. Di-maio, Temperature and humidity influences on the 2717 on-site active marine corrosion of reinforced concrete elements, Mater. Struct, vol.46, pp.2718-1527, 2013.

V. Bouteiller, E. Marie-victoire, and C. Cremona, Mathematical relation of steel thickness loss with 2720 time related to reinforced concrete contaminated by chlorides, Constr. Build. Mater, vol.124, pp.764-775, 2016.

A. Michel, P. V. Nygaard, and M. R. Geiker, Experimental investigation on the short-term impact of 2723 temperature and moisture on reinforcement corrosion, Corros. Sci, vol.72, pp.26-34, 2013.

U. M. Angst, Durable concrete structures: Cracks & corrosion and corrosion & cracks

P. Pijaudier-cabot and . Grassl, 10th Int. Conf. Fract. Mech. Concr. Concr

. Struct and F. Bayonne, , pp.1-10, 2019.

M. Ja?niok and T. Ja?niok, Evaluation of maximum and minimum corrosion rate of steel rebars in 2729 concrete structures, based on laboratory measurements on drilled cores, Procedia Eng, vol.193, pp.486-493, 2017.

D. Breysse, G. Klysz, X. Dérobert, C. Sirieix, and J. F. Lataste, How to combine several non-2732 destructive techniques for a better assessment of concrete structures, Cem. Concr. Res, vol.38, pp.783-793, 2008.

G. Loreto, M. D. Benedetti, A. De-luca, and A. Nanni, Assessment of reinforced concrete structures 2735 in marine environment: a case study, Corros. Rev, vol.37, pp.57-69, 2019.

L. Sadowski, Methodology for assessing the probability of corrosion in concrete structures on 2738 the basis of half-cell potential and concrete resistivity measurements, Sci. World J, p.714501, 2013.

V. Garnier, B. Piwakowski, O. Abraham, G. Villain, C. Payan et al., Acoustic techniques for 2741 concrete evaluation: Improvements, comparisons and consistency, Constr. Build. Mater, vol.43, pp.598-613, 2013.

P. Ziehl and M. Elbatanouny, Acoustic emission monitoring for corrosion damage detection and 2744 classification, Corros. Steel Concr. Struct, pp.193-209, 2016.

C. Van-steen, L. Pahlavan, M. Wevers, and E. Verstrynge, Localisation and characterisation of 2747 corrosion damage in reinforced concrete by means of acoustic emission and X-ray computed 2748 tomography, Constr. Build. Mater, vol.197, pp.21-29, 2019.

M. R. Clark, D. M. Mccann, and M. C. Forde, Application of infrared thermography to the non-2751 destructive testing of concrete and masonry bridges, NDT E Int, vol.36, pp.60-69, 2003.

X. Dérobert, Z. M. Sbartaï, and J. Dumoulin, Electromagnetic Methods, in: Non-Destructive Test

. Eval, . Civ, . Eng, and . Struct, , pp.50003-50003, 2018.

W. Lai, X. Dérobert, and P. Annan, A review of ground penetrating radar application in 2757 civil engineering: A 30-year journey from locating and testing to imaging and diagnosis, NDT E 2758 Int, vol.96, pp.58-78, 2018.

F. Tosti and C. Ferrante, Using ground penetrating radar methods to investigate reinforced 2760 concrete structures, Surv. Geophys, pp.1-46, 2019.

X. Dérobert, J. Iaquinta, G. Klysz, and J. Balayssac, Use of capacitive and GPR techniques for the 2763 non-destructive evaluation of cover concrete, NDT E Int, vol.41, pp.44-52, 2008.

S. Hong, H. Wiggenhauser, R. Helmerich, B. Dong, P. Dong et al., Long-term monitoring of reinforcement corrosion in concrete using ground penetrating radar, Corrosion Science, vol.114, pp.123-132, 2017.

M. Fares, Y. Fargier, G. Villain, X. Derobert, and S. P. Lopes, Determining the permittivity profile inside reinforced concrete using capacitive probes, NDT & E International, vol.79, pp.150-161, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01425157

A. Voss, P. Hosseini, M. Pour-ghaz, M. Vauhkonen, and A. Seppänen, Three-dimensional electrical capacitance tomography ? A tool for characterizing moisture transport properties of cement-based materials, Materials & Design, vol.181, p.107967, 2019.

R. Plooy, G. Villain, S. P. Lopes, A. Ihamouten, X. Dérobert et al., Electromagnetic 2776 non-destructive evaluation techniques for the monitoring of water and chloride ingress into 2777 concrete: a comparative study, Mater. Struct, vol.48, pp.369-386, 2015.

X. Dérobert, J. F. Lataste, J. Balayssac, and S. Laurens, Evaluation of chloride contamination in concrete using electromagnetic non-destructive testing methods, NDT & E International, vol.89, pp.19-29, 2017.

Y. Seguí-femenias, U. Angst, F. Moro, and B. Elsener, Development of a novel methodology to 2783 assess the corrosion threshold in concrete based on simultaneous monitoring of pH and free 2784 chloride concentration, Sensors, vol.18, p.3101, 2018.

Z. Zhang, J. Hu, Y. Ma, Y. Wang, H. Huang et al., A state-of-the-art review on Ag/AgCl ion-selective electrode used for non-destructive chloride detection in concrete, Composites Part B: Engineering, vol.200, p.108289, 2020.

Z. Zhang, J. Hu, Y. Ma, Y. Wang, H. Huang et al., A state-of-the-art review on Ag/AgCl ion-selective electrode used for non-destructive chloride detection in concrete, Composites Part B: Engineering, vol.200, p.108289, 2020.

O. Anterrieu, B. Giroux, E. Gloaguen, and C. Carde, Non-destructive data assimilation as a tool to diagnose corrosion rate in reinforced concrete structures, Journal of Building Engineering, vol.23, pp.193-206, 2019.