Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

On the morphology and amplitude of 2D and 3D thermal anomalies induced by buoyancy-driven flow within and around fault zones

Laurent Guillou-Frottier 1, 2, 3, * Hugo Duwiquet 2, 1, 4 Gaëtan Launay 5 Audrey Taillefer 6 Vincent Roche 7 Gaétan Link 8 
* Auteur correspondant
3 Géodynamique - UMR7327
BRGM - Bureau de Recherches Géologiques et Minières (BRGM), ISTO - Institut des Sciences de la Terre d'Orléans - UMR7327 : UMR7327, INSU - CNRS - Institut national des sciences de l'Univers, UO - Université d'Orléans : UMR7327
Abstract : In the first kilometers of the subsurface, temperature anomalies due to heat conduction processes rarely exceed 20-30 • C. When fault zones are sufficiently permeable , fluid flow may lead to much larger thermal anomalies , as evidenced by the emergence of thermal springs or by fault-related geothermal reservoirs. Hydrothermal convec-tion triggered by buoyancy effects creates thermal anomalies whose morphology and amplitude are not well known, especially when depth-and time-dependent permeability is considered. Exploitation of shallow thermal anomalies for heat and power production partly depends on the volume and temperature of the hydrothermal reservoir. This study presents a non-exhaustive numerical investigation of fluid flow models within and around simplified fault zones, wherein realistic fluid and rock properties are accounted for, as are appropriate boundary conditions. 2D simplified models point out relevant physical mechanisms for geological problems, such as "ther-mal inheritance" or pulsating plumes. When permeability is increased, the classic "finger-like" upwellings evolve towards a "bulb-like" geometry, resulting in a large volume of hot fluid at shallow depth. In simplified 3D models wherein the fault zone dip angle and fault zone thickness are varied , the anomalously hot reservoir exhibits a kilometer-sized "hot air balloon" morphology or, when permeability is depth-dependent, a "funnel-shaped" geometry. For thick faults, the number of thermal anomalies increases but not the amplitude. The largest amplitude (up to 80-90 • C) is obtained for vertical fault zones. At the top of a vertical, 100 m wide fault zone, temperature anomalies greater than 30 • C may extend laterally over more than 1 km from the fault boundary. These preliminary results should motivate further geothermal investigations of more elaborated models wherein topography and fault intersections would be accounted for.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [87 références]  Voir  Masquer  Télécharger
Contributeur : Laurent Guillou-Frottier Connectez-vous pour contacter le contributeur
Soumis le : mercredi 26 août 2020 - 16:34:06
Dernière modification le : vendredi 5 août 2022 - 10:31:02
Archivage à long terme le : : mardi 1 décembre 2020 - 07:51:47


Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité - Pas de modifications 4.0 International License



Laurent Guillou-Frottier, Hugo Duwiquet, Gaëtan Launay, Audrey Taillefer, Vincent Roche, et al.. On the morphology and amplitude of 2D and 3D thermal anomalies induced by buoyancy-driven flow within and around fault zones. Solid Earth, European Geosciences Union, 2020, 11 (4), pp.1571-1595. ⟨10.5194/se-11-1571-2020⟩. ⟨hal-02922955⟩



Consultations de la notice


Téléchargements de fichiers