B. Lemiere, A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry, J. Geochem. Explor, vol.188, pp.350-363, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01740950

M. S. Middleton, V. Nykänen, J. Melleton, B. Lemiere, P. Sarala et al., Upscaling deep buried geochemical exploration techniques into European business-UpDeep, Proceedings of the Resources for Future Generations-RFG2018, p.1227, 2018.

E. M. Cameron, S. M. Hamilton, M. I. Leybourne, G. E. Hall, and M. B. Mcclenaghan, Finding deeply buried deposits using geochemistry, Geochem. Explor. Environ. Anal, vol.4, pp.7-32, 2004.

D. Heberlein, C. Dunn, and . Sweat, Sap And Emanations-What Trees and Snow Can Reveal About Hidden Mineralization, Proceedings of the Resources for Future Generations-RFG2018, p.1941, 2018.

J. Melleton, B. Lemière, V. Derycke, A. S. Serrand, E. Fournier et al., Exploration geochemistry: Comparison between classic trace elements geochemistry, soil partial leaches, portable XRF, on soils and biogeochemistry in Western Europe Environment. Example from Li-Ta-Sn and W deposits, Proceedings of the Resources for Future Generations-RFG2018, p.1395, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01839209

, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Tackling the Challenges in Commodity Markets and on Raw Materials (COM/2011/0025 Final), p.20, 2011.

, USGS 2015 Minerals Yearbook-Antimony. Available online, p.20, 2018.

X. Guo, Z. Wu, M. He, X. Meng, X. Jin et al., Adsorption of antimony onto iron oxyhydroxides: Adsportion behavior and surface structure, J. Hazard. Mater, vol.276, pp.339-345, 2014.

M. L. Henckens, P. P. Driessen, and E. Worrell, How can we adapt to geological scarcity of antimony? Investigation of antimony's substitutability and of other measures to achieve a sustainable use, Resour. Conserv. Recycl, vol.108, pp.54-62, 2016.

J. He, Y. Wei, T. Zhai, and H. Li, Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries, Mater. Chem. Front, vol.3, pp.437-455, 2018.

, Toxic Substances Portal, p.31, 2020.

I. Herath, M. Vithanage, and J. Bundschuh, Antimony as a global dilemma: Geochemistry, mobility, fate and transport, Environ. Pollut, pp.545-559, 2017.

W. Pohl, Economic Geology: Principles and Practice: Metals, Minerals, Coal and Hydrocarbons-Introduction to Formation and Sustainable Exploitation of Mineral Deposits, 2011.

M. Munoz, P. Courjault-rade, and F. Tollon, The massive stibnite veins of the French Palaeozoic basement: A metallogenic marker of Late Variscan brittle extension, Terra Nova, 2007.

A. Pochon, E. Gloaguen, Y. Branquet, M. Poujol, G. Ruffet et al., Variscan Sb-Au mineralization in Central Brittany (France): A new metallogenic model derived from the Le Semnon district, Ore Geol. Rev, vol.97, pp.109-142, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01796918

R. B. Scratch, G. P. Watson, R. Kerrich, and R. W. Hutchinson, mineralogy, geochemistry, alteration, and hydrothermal regimes, Econ. Geol, vol.79, pp.1159-1186, 1984.

C. L. Sainsbury, Geochemical exploration for antimony in southeastern Alaska. USGS Open-File Rep, pp.55-158, 1955.

E. Marcoux, R. Serment, and A. Allon, Les gites d'antimoine de Vendée

, historique des recherches et synthèse métallogénique, Chron. Rech. Min, vol.476, pp.3-30, 1984.

L. Fur, Y. Allon, A. Biron, R. Lequertier, M. Roussel et al., La découverte du gisement d'antimoine des Brouzils en Vendée (Massif Armoricain, France), Chron. Rech. Min, vol.492, pp.5-18, 1988.

G. Godard, P. Bouton, D. Poncet, G. Carlier, and M. Chevallier, , p.536, 2007.

L. Bailly, V. Bouchot, C. Beny, and J. Milesi, Fluid inclusion study of stibnite using infrared microscopy: An example from the Brouzils antimony deposit (Vendee, Armorican massif, France), Econ. Geol, vol.95, pp.221-226, 2000.

A. Pochon, D. Gapais, E. Gloaguen, C. Gumiaux, Y. Branquet et al., Antimony deposits in the Variscan Armorican belt, a link with mafic intrusives?, Terra, vol.28, pp.138-145, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01275567

A. Pochon, Y. Branquet, E. Gloaguen, G. Ruffet, M. Poujol et al., A Sb ± Au mineralizing peak at 360 Ma in the Variscan belt, BSGF. Earth Sci. Bull, vol.190, 2019.
URL : https://hal.archives-ouvertes.fr/insu-02050296

M. Ters, Action morphologique des phénomènes périglaciaires dans la region littorale vendéenne, Bull. Assoc. Géogr. Fr, vol.1953, pp.78-87

, Base de Données Géographique des Sols de France à 1/1,000,000, p.24, 1998.

F. C. Béchennec and . Géologique, , 2020.

G. Hall, A. Buchar, and G. Bonham-carter, Quality Control Assessment of Portable XRF Analysers: Development of Standard Operating Procedures, Performance on Variable Media and Recommended Uses, p.24, 2012.

A. Gray and . Form, Distribution, and Genesis of Precious Metal Mineralization within the Bald Hill Antimony Deposit, 2019.

R. O. Bastos, F. L. Melquiades, and G. E. Biasi, Correction for the effect of soil moisture on in situ XRF analysis using low-energy background, vol.41, pp.304-307, 2012.

L. Ge, W. Lai, and Y. Lin, Influence of and correction for moisture in rocks, soils and sediments on in situ XRF analysis, vol.34, pp.28-34, 2005.

A. G. Caporale, P. Adamo, F. Capozzi, G. Langella, F. Terribile et al., Monitoring metal pollution in soils using portable-XRF and conventional laboratory-based techniques: Evaluation of the performance and limitations according to metal properties and sources, Sci. Total Environ, vol.643, pp.516-526, 2018.

J. Aitchison, The Statistical Analysis of Compositional Data, Monographs on Statistics and Applied Probability

C. Ltd, , p.416, 1986.

P. Filzmoser, K. Hron, and C. Reimann, The bivariate statistical analysis of environmental (compositional) data, Sci. Total Environ, vol.408, pp.4230-4238, 2010.

P. Filzmoser, K. Hron, C. Reimann, and R. Garrett, Robust factor analysis for compositional data, Comput. Geosci, vol.35, pp.1854-1861, 2009.

C. Reimann, P. Filzmoser, K. Hronc, P. Kyn?lová, and R. G. Garrett, A new method for correlation analysis of compositional (environmental) data-A worked example, Sci. Total Environ, pp.965-971, 2017.

K. Nicholson, Contrasting mineralogical-geochemical signatures of manganese oxides; guides to metallogenesis, Econ. Geol, vol.87, pp.1253-1264, 1992.

P. M. Ashley, D. Craw, B. P. Graham, and D. A. Chappell, Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand, J. Geochem. Explor, vol.7, pp.1-14, 2003.

N. Belzile, Y. Chen, and Z. Wang, Oxidation of antimony(III) by amorphous iron and manganese oxyhydroxides, Chem. Geol, vol.174, pp.379-387, 2001.

K. E. Young, C. A. Evans, K. V. Hodges, J. E. Bleacher, and T. G. Graff, A review of the handheld X-ray fluorescence spectrometer as a tool for field geologic investigations on Earth and in planetary surface exploration, Appl. Geochem, vol.72, pp.77-87, 2016.

S. J. Cook and C. E. Dunn, Final report on Results of the Cordilleran Geochemistry Project: A comparative assessment of soil geochemical methods for detecting buried mineral deposits, Geosci. BC Pap, vol.7, p.225, 2007.

B. E. Baker, An application of soil humix substances to geochemical exploration, Appl. Geochem, vol.2, pp.307-310, 1986.

J. R. Robbat, Dynamic Workplans and Field Analytics: The Keys to Cost-Effective Site Investigations; Case Study, 1997.

, US Department of Energy. Adaptive Sampling and Analysis Programs

M. H. Ramsey and K. A. Boon, Can in situ geochemical measurements be more fit-for-purpose than those made ex situ?, Appl. Geochem, vol.27, pp.969-976, 2012.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI