K. Awuah-offei and A. Adekpedjou, Application of life cycle assessment in the mining 717 industry, The International Journal of Life Cycle Assessment, vol.16, issue.1, pp.82-89, 2011.

C. P. Balde, F. Wang, R. Kuehr, and J. Huisman, The global e-waste monitor 2014: Quantities, 719 flows and resources, 2015.

M. Bandyopadhyay, S. Datta, and S. K. Sanyal, A mass transfer model for the 721 hydrometallurgical extraction of Te(IV) by tri-n-butyl phosphate, Hydrometallurgy, vol.43, issue.1, pp.722-175, 1996.

M. Bigum, L. Brogaard, and T. H. Christensen, Metal recovery from high-grade WEEE: A life 724 cycle assessment, J. Hazard. Mater, pp.207-208, 2012.

P. Botane, S. Brochot, P. D'hugues, and P. Spolaore, Material size distribution in concurrent 726 bio-leaching and precipitation: Experimental procedure and modelling, Hydrometallurgy, vol.727, pp.7-14, 2013.

H. Brandl, R. Bosshard, and M. Wegmann, Computer-munching microbes: Metal leaching 729 from electronic scrap by bacteria and fungi, Hydrometallurgy, vol.59, issue.2-3, pp.319-326, 2001.

H. Brandl, S. Lehmann, M. A. Faramarzi, and D. Martinelli, Biomobilization of silver, gold, and 731 platinum from solid waste materials by HCN-forming microorganisms, Hydrometallurgy, vol.732, pp.14-17, 2008.

R. Bransgrove, G. R. Rollinson, B. J. Williamson, and C. G. Bryan, Analysis of Sulfidic Coal 734 Production Wastes using Biokinetic Tests Combined with QEMSCAN, p.735, 2018.

, Sustainable Minerals '18

K. Breivik, J. M. Armitage, F. Wania, and K. C. Jones, Tracking the Global Generation and 737 Exports of e-Waste. Do Existing Estimates Add up? Environmental Science & Technology, vol.738, pp.8735-8743, 2014.

S. Brochot, M. V. Durance, J. Villeneuve, P. Hugues, and M. Mugabi, Modelling of the 740 bioleaching of sulphide ores: application for the simulation of the bioleaching/gravity section 741 of the Kasese Cobalt Company Ltd process plant, Miner. Eng, vol.17, issue.2, pp.253-260, 2004.

S. Brochot, J. Villeneuve, J. Guillaneau, M. Durance, and F. Bourgeois, USIM PAC 3: Design 743 and optimization of mineral processing plants from crushing to refining. Mular, AL, Halbe, DN 744 and Barratt, DJ Mineral Processing Plant Design, Practice and Control, pp.477-494, 2002.

C. G. Bryan, The use of pyrite as a source of lixiviant in the bioleaching of electronic 746 waste, Hydrometallurgy, vol.152, pp.33-43, 2015.

J. Cara, Biodesulphurisation of high sulphur coal by heap leaching, Fuel, vol.84, issue.14, pp.1905-748, 1910.

I. C. Cardona and M. A. Márquez, Biodesulfurization of two Colombian coals with native 750 microorganisms, Fuel Process. Technol, vol.90, issue.9, pp.1099-1106, 2009.

P. Charbonnier, Management of mining, quarrying and ore-processing waste in the European 752 Union. BRGM service EPI, 2001.

T. D. Chi, J. Lee, B. D. Pandey, K. Yoo, and J. Jeong, Bioleaching of gold and copper from 754 waste mobile phone PCBs by using a cyanogenic bacterium, Miner. Eng, vol.24, issue.11, pp.1219-1222, 2011.

M. Choi, K. Cho, D. Kim, and D. Kim, Microbial Recovery of Copper from Printed 756 Circuit Boards of Waste Computer by Acidithiobacillus ferrooxidans, Journal of 757 Environmental Science and Health, Part A, vol.39, pp.2973-2982, 2004.

J. W. Coetzee, An activity model for multi-component ion exchange, Miner. Eng, vol.16, issue.6, pp.519-759, 2003.

J. W. Coetzee and F. W. Petersen, A simplified resistance model for reversible multicomponent 761 ion exchange, Hydrometallurgy, vol.76, issue.1-2, pp.19-24, 2005.

J. Cui and E. Forssberg, Mechanical recycling of waste electric and electronic equipment: a 763 review, J. Hazard. Mater, vol.99, issue.3, pp.243-263, 2003.

J. Cui and L. Zhang, Metallurgical recovery of metals from electronic waste: A review, J. 765 Hazard. Mater, vol.158, issue.2-3, pp.228-256, 2008.

P. Hugues, Continuous bioleaching of a pyrite concentrate in stirred reactors: 767 Population dynamics and exopolysaccharide production vs, 2008.

, Hydrometallurgy, vol.94, issue.1-4, pp.34-41

D. Dreisinger and N. Abed, A fundamental study of the reductive leaching of chalcopyrite 770 using metallic iron part I: kinetic analysis, Hydrometallurgy, vol.66, issue.1-3, pp.37-57, 2002.

, Reference Document on Best Available Techniques for Management of Tailings and Waste-772 Rock in Mining Activities, EC, 2009.

, National Strategy for Electronics Stewardship, EPA, 2011.

. Eurostat, Supply, transformation and consumption of solid fossil fuels, 2020.

M. A. Faramarzi, M. Stagars, E. Pensini, W. Krebs, and H. Brandl, Metal solubilization from 776 metal-containing solid materials by cyanogenic Chromobacterium violaceum, J. Biotechnol, vol.777, issue.1-3, pp.321-326, 2004.

V. Fonti, C. Joulian, and C. G. Bryan, Biopprospecting and the Microbial Ecology of a Coal 779 Production Waste Dump, International Biohydrometallurgy Symposium, 2019.

F. Friedler, Process integration, modelling and optimisation for energy saving and pollution 781 reduction, Appl. Therm. Eng, vol.30, issue.16, pp.2270-2280, 2010.

R. A. Frosch, Industrial ecology: a philosophical introduction, Proceedings of the National 783 Academy of Sciences, vol.89, pp.800-803, 1992.

E. D. Gálvez, R. E. Swaney, C. M. Malatesta, and L. A. Cisternas, An ASCEND library for the 785 modeling, simulation and optimization of solvent extraction for metal recovery, Computer Aided Chemical Engineering, pp.403-408, 2005.

V. Goodship, A. Stevels, and J. Huisman, Waste electrical and electronic equipment (WEEE) 788 handbook, 2019.

N. F. Gray, Environmental impact and remediation of acid mine drainage: a management 790 problem, Environ. Geol, vol.30, issue.1, pp.62-71, 1997.

A. Guezennec, K. Bru, J. Jacob, and P. Hugues, Co-processing of sulfidic mining wastes 792 and metal-rich post-consumer wastes by biohydrometallurgy, Miner. Eng, vol.75, pp.45-53, 2015.

, G?ówny Urz?d Statystyczny -Statistics Poland) Ochrona ?rodowiska 2018, G?ówny Urz?d 794 Statystyczny -Statistics Poland, 2018.

K. B. Hallberg, B. Johnson, and D. , Biodiversity of acidophilic prokaryotes, Adv. Appl, 2001.

. Microbiol, , pp.37-84

H. He, Biodesulfurization of coal with Acidithiobacillus caldus and analysis of the 798 interfacial interaction between cells and pyrite, Fuel Process. Technol, vol.101, pp.73-77, 2012.

R. Heijungs, Harmonization of methods for impact assessment. Environmental Science and 800 Pollution Research, vol.2, pp.217-224, 1995.

J. Herzig, J. Szczepa?ska, S. Witczak, and I. Twardowska, Chlorides in the Carboniferous rocks 802 of the Upper Silesian coal basin: Environmental contamination and prognosis, Fuel, vol.65, issue.8, pp.803-1134, 1986.

M. R. Hoffmann, B. C. Faust, F. A. Panda, H. H. Koo, and H. M. Tsuchiya, Kinetics of the Removal 805 of Iron Pyrite from Coal by Microbial Catalysis, Applied and Environmental Microbiology, vol.806, issue.2, pp.259-271, 1981.

K. Huang, J. Guo, and Z. Xu, Recycling of waste printed circuit boards: A review of current 808 technologies and treatment status in China, J. Hazard. Mater, vol.164, issue.2-3, pp.399-408, 2009.

A. Hubau, Recovery of metals in a double-stage continuous bioreactor for acidic 810 bioleaching of printed circuit boards (PCBs), Sep. Purif. Technol, vol.238, p.116481, 2020.

J. Huisman, Review of Directive, Waste Electrical and Electronic Equipment, vol.812, 2002.

S. Ilyas, M. A. Anwar, S. B. Niazi, and M. Ghauri, Bioleaching of metals from electronic 814 scrap by moderately thermophilic acidophilic bacteria, Hydrometallurgy, vol.88, issue.1-4, pp.180-188, 2007.

A. Jarvis and P. Younger, Broading the scope of mine water environmental impact 816 assessment: a UK perspective, Environmental Impact Assessment Review, vol.20, pp.85-96, 2000.

A. C. Kasper, Printed wiring boards for mobile phones: Characterization and recycling of 818 copper, Waste Manage. (Oxford), vol.31, issue.12, pp.2536-2545, 2011.

C. Kazadi-mbamba, S. T. Harrison, J. P. Franzidis, and J. L. Broadhurst, Mitigating acid rock 820 drainage risks while recovering low-sulfur coal from ultrafine colliery wastes using froth 821 flotation, Miner. Eng, vol.29, pp.13-21, 2012.

A. Khaliq, M. A. Rhamdhani, G. Brooks, and S. Masood, Metal Extraction Processes for 823 Electronic Waste and Existing Industrial Routes: A Review and Australian Perspective, 2014.

, Resources, vol.3, issue.1, pp.152-179

D. J. Kingsnorth, Meeting the challenges of supply this decade, 2011.

J. Klein, Technological and economic aspects of coal biodesulfurisation, Biodegradation, vol.9, issue.3, pp.827-293, 1998.

V. Kouloumpis and X. Yan, Life cycle environmental impacts of a novel value-creating method 829 to co-process coal mine and electronic wastes, Society of Environmental Toxicology and 830 Chemistry (SETAC), 2019.

T. Lehner, Integrated recycling of non-ferrous metals at Boliden Ltd. Ronnskar smelter, 832 Electronics and the Environment, Proceedings of the 1998 IEEE 833 International Symposium, pp.42-47, 1998.

A. Levasseur, P. Lesage, M. Margni, L. Deschênes, and R. Samson, Considering Time in LCA: 835 Dynamic LCA and Its Application to Global Warming Impact Assessments, Science & Technology, vol.836, issue.8, pp.3169-3174, 2010.

G. Lewis, S. Gaydardzhiev, D. Bastin, and P. Bareel, Bio hydrometallurgical recovery of 838 metals from Fine Shredder Residues, Miner. Eng, vol.24, issue.11, pp.1166-1171, 2011.

G. Liang, Y. Mo, and Q. Zhou, Novel strategies of bioleaching metals from printed circuit 840 boards (PCBs) in mixed cultivation of two acidophiles, Enzyme Microb. Technol, vol.47, issue.7, pp.322-841, 2010.

B. Lottermoser, Mine Wastes: Characterization, Treatment and Environmental Impacts, 2010.

H. Springer-berlin,

B. G. Lottermoser, Recycling, Reuse and Rehabilitation of Mine Wastes, Elements, vol.7, issue.6, pp.405-845, 2011.

M. P. Luda, Recycling of Printed Circuit Boards, pp.285-298, 2011.

S. Lundstedt, Recycling and disposal of electronic waste: Health hazards and environmental 849 impacts, 2011.

F. E. Mark and T. Lehner, Plastics recovery from waste electrical & electronic equipment in 851 non-ferrous metal processes. Association of plastics manufactures in Europe, pp.1-23, 2000.

A. D. Milan, A. Ahmadi, and S. M. Hosseini, Biodesulfurization of a Coarse-Grained High 853 Sulfur Coal in a Full-Scale Packed-Bed Bioreactor, Solid State Phenomena, vol.262, pp.207-210, 2017.

N. Miskolczi, L. Bartha, G. Y. Deák, B. Jóver, and D. Kalló, Kinetic Model of the Chemical 855 Recycling of Waste Polyethylene into Fuels, Process Safety and Environmental Protection, vol.856, issue.3, pp.223-229, 2004.

J. Moltó, R. Font, A. Gálvez, and J. A. Conesa, Pyrolysis and combustion of electronic wastes, J. 858 Anal. Appl. Pyrolysis, vol.84, issue.1, pp.68-78, 2009.

D. H. Morin and P. Hugues, Bioleaching of a cobalt-containing pyrite in stirred reactors: a 860 case study from laboratory scale to industrial application, pp.35-55, 2007.

I. C. Nnorom and O. Osibanjo, Overview of electronic waste (e-waste) management practices 862 and legislations, and their poor applications in the developing countries. Resources, 863 Conservation and Recycling, vol.52, pp.843-858, 2008.

M. Oguchi, H. Sakanakura, A. Terazono, and H. Takigami, Fate of metals contained in waste 865 electrical and electronic equipment in a municipal waste treatment process. Waste Manage, vol.866, pp.96-103, 2012.

G. J. Olson and R. M. Kelly, Chemical and microbiological problems associated with research on 868 the biodesulfurization of coal. A review. Resources, Conservation and Recycling, vol.5, pp.183-869, 1991.

N. Ors, G. Rossi, P. Trois, P. D. Valenti, and A. Zecchin, Coal biodesulfurization: design criteria 871 of a pilot plant, Resources, Conservation and Recycling, vol.5, issue.2, pp.211-230, 1991.

O. Östensson, Mineral and metals production: an overview. Caromb Consulting, vol.873, 2006.

E. K. Papadimitriou, J. R. Barton, and E. I. Stentiford, Sources and levels of potentially toxic 874 elements in the biodegradable fraction of autoclaved non-segregated household waste and 875 its compost/ digestate, Waste Manage. Res, vol.26, issue.5, pp.419-430, 2008.

, ELECTRONIC WASTE RECOVERY STUDY, PHA Consulting Associates, PHA, 2006.

A. Quek and R. Balasubramanian, Mathematical modeling of rubber tire pyrolysis, J. Anal, 2012.

. Appl and . Pyrolysis, , vol.95, pp.1-13

D. E. Rawlings and D. B. Johnson, , 2007.

C. Reid, V. Bécaert, M. Aubertin, R. K. Rosenbaum, and L. Deschênes, Life cycle assessment of 881 mine tailings management in Canada, Journal of Cleaner Production, vol.17, issue.4, pp.471-479, 2009.

M. A. Rivero-hudec, M. Sodhi, and D. Goglia-arora, Biorecovery of Metals from Electronic, vol.883, 2009.

, Waste, 7th Latin American and Caribbean Conference for Engineering and Technology

G. Rossi, The Microbial Desulfurization of Coal, Geobiotechnology II: Energy Resources, Subsurface Technologies, Organic Pollutants 887 and Mining Legal Principles, pp.147-167, 2014.

M. M. Saleh, J. W. Weidner, and B. G. Ateya, Electrowinning of Non-Noble Metals with 889 Simultaneous Hydrogen Evolution at Flow-Through Porous Electrodes: I . Theoretical, J. 890 Electrochem. Soc, vol.142, issue.12, pp.4113-4121, 1995.

A. Schippers, T. Rohwerder, and W. Sand, Intermediary sulfur compounds in pyrite oxidation: 892 implications for bioleaching and biodepyritization of coal, Appl. Microbiol. Biotechnol, vol.52, issue.1, pp.893-104, 1999.

R. Smith, State of the art in process integration, Appl. Therm. Eng, vol.20, pp.1337-1345, 2000.

S. Stefaniak and I. Twardowska, Impact of engineering constructions made of carboniferous 896 waste rock on groundwater deterioration, 897 International Mine Water Association Symposium -Mine Water and Innovative Thinking, p.898, 2010.

N. S. Sydney, , pp.599-602

J. Szczepañska-plewa, S. Stefaniak, and I. Twardowska, Coal mining waste management and 900 its impact on the groundwater chemical status exemplified in the Upper Silesia coal basin 901 (Poland), Biuletyn Pa?stwowego Instytutu Geologicznego, vol.441, pp.157-166, 2010.

A. Tuncuk, V. Stazi, A. Akcil, E. Y. Yazici, and H. Deveci, Aqueous metal recovery techniques 903 from e-scrap: Hydrometallurgy in recycling, Miner. Eng, vol.25, issue.1, pp.28-37, 2012.

R. Verburg, N. Bezuidenhout, T. Chatwin, and K. Ferguson, The global acid rock drainage 905 guide (GARD Guide). Mine Water Environ, vol.28, p.305, 2009.

E. A. Vestola, Acid bioleaching of solid waste materials from copper, steel and recycling 907 industries, Hydrometallurgy, vol.103, issue.1-4, pp.74-79, 2010.

J. Wang, J. Bai, J. Xu, and B. Liang, Bioleaching of metals from printed wire boards by 909, 2009.

, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture, J. Hazard. 910 Mater, vol.172, issue.2-3, pp.1100-1105

R. Widmer, H. Oswald-krapf, D. Sinha-khetriwal, M. Schnellmann, and H. Böni, Global 912 perspectives on e-waste, Environmental Impact Assessment Review, issue.5, pp.436-913, 2005.

Y. Xiang, Bioleaching of copper from waste printed circuit boards by bacterial consortium 915 enriched from acid mine drainage, J. Hazard. Mater, vol.184, issue.1-3, pp.812-818, 2010.

T. Yang, Z. Xu, J. Wen, and L. Yang, Factors influencing bioleaching copper from waste printed 917 circuit boards by Acidithiobacillus ferrooxidans, Hydrometallurgy, vol.97, issue.1-2, pp.29-32, 2009.

Y. B. Yang, A. N. Phan, C. Ryu, V. Sharifi, and J. Swithenbank, Mathematical modelling of slow 919 pyrolysis of segregated solid wastes in a packed-bed pyrolyser, Fuel, vol.86, issue.1-2, pp.169-180, 2007.

N. Zhu, Bioleaching of metal concentrates of waste printed circuit boards by mixed 921 culture of acidophilic bacteria, J. Hazard. Mater, vol.192, issue.2, pp.614-619, 2011.