Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Deciphering channel networks from aeromagnetic potential field data: the case of the North Sea Quaternary tunnel valleys

Abstract : S U M M A R Y High-resolution magnetic data and potential field methods have been used to perform a detailed analysis of networks of late Quaternary subglacially cut tunnel valleys (central Viking Graben, Norwegian sector of the North Sea). High-frequency, ribbon-like, sinuous, paired magnetic anomalies interpreted to be the signature of tunnel valleys are identified. Such magnetic anomalies have 1-8 nT amplitudes and reflect a magnetic susceptibility contrast between valley infills and the host sediments. Fractional vertical derivative and horizontal gradient transforms provide the best control on the accurately delineation of tunnel valleys by plotting automatically the extrema. The 2-D forward modelling is a very effective approach to determine the geometric parameters and magnetic susceptibility of the modelled valleys. It allows us to determine the finite-width flat horizontal thin geometry as the most appropriate simple geometry to simulate the magnetic anomaly linked to a channel structure. The application of Euler deconvolution using complex algebra allows us to substantiate the structural index (n = 1.5) for simple palaeovalley geometries and to determine fair valley depth estimates.
Liste complète des métadonnées

Littérature citée [81 références]  Voir  Masquer  Télécharger

https://hal-brgm.archives-ouvertes.fr/hal-02894825
Contributeur : Myriam Chergui <>
Soumis le : jeudi 9 juillet 2020 - 11:40:35
Dernière modification le : mardi 21 juillet 2020 - 05:08:35

Fichier

Deciphering channel networks f...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

S. Brahimi, Pauline Le Maire, J Ghienne, M. Munschy. Deciphering channel networks from aeromagnetic potential field data: the case of the North Sea Quaternary tunnel valleys. Geophysical Journal International, Oxford University Press (OUP), 2020, 220, pp.1447 - 1462. ⟨10.1093/gji/ggz494⟩. ⟨hal-02894825⟩

Partager

Métriques

Consultations de la notice

70

Téléchargements de fichiers

77