Accéder directement au contenu Accéder directement à la navigation
Chapitre d'ouvrage

Performance Prediction of Acoustic Wave Numerical Kernel on Intel Xeon Phi Processor

Abstract : Fast and accurate seismic processing workflow is a critical component for oil and gas exploration. In order to understand complex geological structures, the numerical kernels used mainly arise from the discretization of Partial Differential Equations (PDEs) and High Performance Computing methods play a major in seismic imaging. This leads to continuous efforts to adapt the softwares to support the new features of each architecture design and maintain performance level. In this context, predicting the performance on target processors is critical. This is particularly true regarding the high number of parameters to be tuned both at the hardware and the software levels (architectural features, compiler flags, memory policies, multithreading strategies). This paper focuses on the use of Machine Learning to predict the performance of acoustic wave numerical kernel on Intel Xeon Phi many-cores architecture. Low-level hardware counters (e.g. cache-misses and TLB misses) on a limited number of executions are used to build our predictive model. Our results show that performance can be predicted by simulations of hardware counters with high accuracy.
Type de document :
Chapitre d'ouvrage
Liste complète des métadonnées
Contributeur : Myriam Chergui Connectez-vous pour contacter le contributeur
Soumis le : mardi 2 juin 2020 - 14:19:19
Dernière modification le : mercredi 3 août 2022 - 04:05:13




Victor H. Martinez, Matheus S Serpa, Fabrice Dupros, Edson Padoin, Philippe Navaux. Performance Prediction of Acoustic Wave Numerical Kernel on Intel Xeon Phi Processor. Latin American High Performance Computing Conference, pp.101-110, 2018, ⟨10.1007/978-3-319-73353-1_7⟩. ⟨hal-02734703⟩



Consultations de la notice