Blind testing of shoreline evolution models - BRGM - Bureau de recherches géologiques et minières Accéder directement au contenu
Article Dans Une Revue Scientific Reports Année : 2020

Blind testing of shoreline evolution models

Jennifer Montaño
Giovanni Coco
Jose Antolínez
  • Fonction : Auteur
Tomas Beuzen
  • Fonction : Auteur
Karin Bryan
  • Fonction : Auteur
Laura Cagigal
Mark Davidson
  • Fonction : Auteur
  • PersonId : 1036264
Evan Goldstein
  • Fonction : Auteur
Raimundo Ibaceta
  • Fonction : Auteur
Bonnie Ludka
  • Fonction : Auteur
Sina Masoud-Ansari
  • Fonction : Auteur
Nathaniel Plant
  • Fonction : Auteur
Katherine Ratliff
  • Fonction : Auteur
Ana Rueda
  • Fonction : Auteur
Joshua Simmons
  • Fonction : Auteur
Scott Stephens
  • Fonction : Auteur
Ian Townend
Sean Vitousek
  • Fonction : Auteur
Kilian Vos
  • Fonction : Auteur

Résumé

Beaches around the world continuously adjust to daily and seasonal changes in wave and tide conditions, which are themselves changing over longer timescales. Different approaches to predict multi-year shoreline evolution have been implemented; however, robust and reliable predictions of shoreline evolution are still problematic even in short-term scenarios (shorter than decadal). Here we show results of a modelling competition, where 19 numerical models (a mix of established shoreline models and machine learning techniques) were tested using data collected for tairua beach, new Zealand with 18 years of daily averaged alongshore shoreline position and beach rotation (orientation) data obtained from a camera system. in general, traditional shoreline models and machine learning techniques were able to reproduce shoreline changes during the calibration period (1999-2014) for normal conditions but some of the model struggled to predict extreme and fast oscillations. During the forecast period (unseen data, 2014-2017), both approaches showed a decrease in models' capability to predict the shoreline position. this was more evident for some of the machine learning algorithms. A model ensemble performed better than individual models and enables assessment of uncertainties in model architecture. Research-coordinated approaches (e.g., modelling competitions) can fuel advances in predictive capabilities and provide a forum for the discussion about the advantages/disadvantages of available models. Quantitative prediction of beach erosion and recovery is essential to planning resilient coastal communities with robust strategies to adapt to erosion hazards. Over the last decades, research efforts to understand and predict shoreline evolution have intensified as coastal erosion is likely to be exacerbated by climatic changes 1-5. The social and economic burden of changes in shoreline position are vast, which has inspired development of a growing variety of models based on different approaches and techniques; yet current models can fail (e.g. predicting erosion in accreting conditions). The challenge for shoreline models is, therefore, to provide reliable, robust and realistic predictions of change, with a reasonable computational cost, applicability to a broad variety of systems, and some quantifiable assessment of the uncertainties.

Domaines

Océanographie
Fichier principal
Vignette du fichier
s41598-020-59018-y.pdf (6.05 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02506235 , version 1 (19-09-2020)

Licence

Paternité - Pas de modifications

Identifiants

Citer

Jennifer Montaño, Giovanni Coco, Jose Antolínez, Tomas Beuzen, Karin Bryan, et al.. Blind testing of shoreline evolution models. Scientific Reports, 2020, 10 (1), ⟨10.1038/s41598-020-59018-y⟩. ⟨hal-02506235⟩
225 Consultations
66 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More