A. F. Osorio, S. Montoya-vargas, C. A. Cartagena, J. Espinosa, A. Orfila et al., Virtual BUOY: A video-based approach for measuring near-shore wave peak period, Comput. Geosci, vol.133, p.104302, 2019.

R. Almar, C. Blenkinsopp, L. P. Almeida, R. Cienfuegos, and P. A. Catalán, Wave runup video motion detection using the Radon Transform, vol.130, pp.46-51, 2017.

R. Ibaceta, R. Almar, P. A. Catalán, C. E. Blenkinsopp, L. P. Almeida et al., Assessing the performance of a low-cost method for video-monitoring the water surface and bed level in the swash zone of natural beaches, Remote. Sens, vol.10, p.49, 2018.

U. Andriolo, Nearshore Wave Transformation Domains from Video Imagery, J. Mar. Sci. Eng, vol.7, p.186, 2019.

E. W. Bergsma, D. C. Conley, M. A. Davidson, and T. J. O'hare, Video-based nearshore bathymetry estimation in macro-tidal environments, Mar. Geol, vol.374, pp.31-41, 2016.

N. Valentini, A. Saponieri, and L. Damiani, A new video monitoring system in support of Coastal Zone Management at Apulia Region, Italy. Ocean. Coast. Manag, vol.142, pp.122-135, 2017.

G. A. Ondoa, R. Almar, B. Castelle, L. Testut, F. Léger et al., Sea Level at the Coast from Video-Sensed Waves: Comparison to Tidal Gauges and Satellite Altimetry, J. Atmos. Ocean. Technol, vol.36, pp.1591-1603, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02385633

C. Díaz-gil, S. L. Smee, L. Cotgrove, G. Follana-berná, H. Hinz et al., Using stereoscopic video cameras to evaluate seagrass meadows nursery function in the Mediterranean, Mar. Biol, vol.164, p.137, 2017.

B. Beliaeff and D. Pelletier, A general framework for indicator design and use with application to the assessment of coastal water quality and marine protected area management, Ocean. Coast. Manag, vol.54, pp.84-92, 2011.

M. A. Bracs, I. L. Turner, K. D. Splinter, A. D. Short, C. Lane et al., Evaluation of Opportunistic Shoreline Monitoring Capability Utilizing Existing "Surfcam, Infrastructure. J. Coast. Res, vol.319, pp.542-554, 2016.

M. D. Harley, M. A. Kinsela, E. Sánchez-garcía, and K. Vos, Shoreline change mapping using crowd-sourced smartphone images, Coast. Eng, vol.150, pp.175-189, 2019.

U. Andriolo, E. Sánchez-garcía, R. Taborda, U. Andriolo, E. Sánchez-garcía et al., Operational Use of Surfcam Online Streaming Images for Coastal Morphodynamic Studies, Remote. Sens, vol.11, p.78, 2019.

S. Quartel, E. A. Addink, and B. G. Ruessink, Object-oriented extraction of beach morphology from video images, Int. J. Appl. Earth Obs. Geoinf, vol.8, pp.256-269, 2006.

N. Valentini, A. Saponieri, M. G. Molfetta, and L. Damiani, New algorithms for shoreline monitoring from coastal video systems, Earth Sci. Inform, vol.10, pp.495-506, 2017.

S. G. Aarninkhof, I. L. Turner, T. D. Dronkers, M. Caljouw, and L. Nipius, A video-based technique for mapping intertidal beach bathymetry, Coast. Eng, vol.49, pp.275-289, 2003.

B. M. Hoonhout, M. Radermacher, F. Baart, and L. J. Van-der-maaten, An automated method for semantic classification of regions in coastal images, Coast. Eng, vol.105, pp.1-12, 2015.

E. Othman, Y. Bazi, N. Alajlan, H. Alhichri, and F. Melgani, Using convolutional features and a sparse autoencoder for land-use scene classification, Int. J. Remote. Sens, pp.2149-2167, 2016.

D. Buscombe and A. Ritchie, Landscape Classification with Deep Neural Networks, vol.8, p.244, 2018.

Y. Chen, D. Ming, and X. Lv, Superpixel based land cover classification of VHR satellite image combining multi-scale CNN and scale parameter estimation, Earth Sci. Informatics, vol.12, pp.341-363, 2019.

J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.7-12, 2015.

C. C. Aggarwal, Data Classification: Algorithms and Applications, 2014.

P. Roy, S. Ghosh, S. Bhattacharya, and U. Pal, Effects of degradations on deep neural network architectures. arXiv 2018

M. Wang, X. Liu, Y. Gao, X. Ma, and N. Q. Soomro, Superpixel segmentation: A benchmark. Signal Process, Image Commun, vol.56, pp.28-39, 2017.

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua et al., SLIC superpixels compared to state-of-the-art superpixel methods, IEEE Trans. Pattern Anal. Mach. Intell, vol.34, pp.2274-2282, 2012.

X. Lv, D. Ming, Y. Y. Chen, and M. Wang, Very high resolution remote sensing image classification with SEEDS-CNN and scale effect analysis for superpixel CNN classification, Int. J. Remote. Sens, pp.506-531, 2019.

L. C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and A. L. Yuille, Semantic image segmentation with task-specific edge detection using CNNs and a discriminatively trained domain transform, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016.

D. Marmanis, K. Schindler, J. D. Wegner, S. Galliani, M. Datcu et al., Classification with an edge: Improving semantic image segmentation with boundary detection, Isprs J. Photogramm. Remote. Sens, vol.135, pp.158-172, 2018.

P. Krähenbühl and V. Koltun, Efficient inference in fully connected crfs with Gaussian edge potentials, Proceedings of the Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems, pp.12-15, 2011.

L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille et al., Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, IEEE Trans. Pattern Anal. Mach. Intell, vol.40, pp.834-848, 2018.

R. P. Stumpf, Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms, Hum. Ecol. Risk Assess. Int. J, vol.7, pp.1363-1368, 2001.

M. Wang and C. Hu, Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations, Remote. Sens. Environ, vol.183, pp.350-367, 2016.

J. Gower, E. Young, and S. King, Satellite images suggest a new Sargassum source region in 2011, Remote. Sens. Lett, pp.764-773, 2013.

C. Louime, J. Fortune, and G. Gervais, <i>Sargassum</i> Invasion of Coastal Environments: A Growing Concern, Am. J. Environ. Sci, vol.13, pp.58-64, 2017.

C. Hu, A novel ocean color index to detect floating algae in the global oceans, Remote. Sens. Environ, vol.113, pp.2118-2129, 2009.

J. P. Maréchal, C. Hellio, and C. Hu, A simple, fast, and reliable method to predict Sargassum washing ashore in the Lesser Antilles, Remote. Sens. Appl. Soc. Environ, vol.5, pp.54-63, 2017.

M. Wang and C. Hu, Predicting Sargassum blooms in the Caribbean Sea from MODIS observations, Geophys. Res. Lett, vol.44, pp.3265-3273, 2017.

S. Cox, H. O. Mcconney, and P. , Summary Report on the Review of Draft National Sargassum Plans for Four Countries Eastern Caribbean; Report Prepared for the Climate Change Adaptation in the Eastern Caribbean Fisheries Sector (CC4FISH) Project of the Food and Agriculture Organization (FAO) and the Global Environment Facility (GEF); Centre for Resource Management and Environmental Studies, p.20, 2019.

A. Nachbaur, Y. Balouin, A. Nicolae-lerma, L. Douris, and R. Pedreros, Définition des cellules sédimentaires du littoral martiniquais

, BRGM/RP-64499-FR

F. Orleans, , 2015.

P. Dollar and C. L. Zitnick, Fast Edge Detection Using Structured Forests, IEEE Trans. Pattern Anal. Mach. Intell, vol.37, pp.1558-1570, 2015.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Adv. Neural Inf. Process. Syst, pp.1097-1105, 2012.

J. Zhang, M. Marsza?ek, S. Lazebnik, and C. Schmid, Local features and kernels for classification of texture and object categories: A comprehensive study, Int. J. Comput. Vis, vol.73, pp.213-238, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00548574

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang et al., Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv 2018

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 2015.

F. Nelli, Deep Learning with TensorFlow, Python Data Analytics, 2018.

J. Deng, W. Dong, R. Socher, L. Li, K. Li et al., ImageNet: A large-scale hierarchical image database, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.20-25, 2009.

L. C. Chen, G. Papandreou, K. Murphy, and A. L. Yuille, Semantic Image Segmentation With Deep Con-Volutional Nets and Fully Connected CRFs, Proceedings of the International Conference on Learning Representations, pp.14-16, 2015.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen et al., Large-Scale Machine Learning on Heterogeneous Systems. Software. 2015. Available online, p.23, 2019.

J. I. Orlando and M. Blaschko, Learning fully-connected CRFs for blood vessel segmentation in retinal images, Med. Image Comput. Comput. Assist. Interv, vol.17, issue.1, pp.634-675, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01024226

M. Van-den-bergh, X. Boix, G. Roig, and L. Van-gool, SEEDS: Superpixels Extracted Via Energy-Driven Sampling, Int. J. Comput. Vis, vol.111, pp.298-314, 2015.

R. A. Holman and J. Stanley, The history and technical capabilities of Argus, Coast. Eng, vol.6, pp.477-491, 2007.

B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik, Semantic contours from inverse detectors, Proceedings of the 2011 International Conference on Computer Vision, pp.991-998, 2011.

N. Valentini, Y. Balouin, T. Laigre, C. Bouvier, R. Belon et al., Investigation on the capabilities of low-cost and smartphone-based coastal imagery for deriving coastal state video indicators: Applications on the upper mediterranean, Coast. Sediments, pp.2635-2648, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02076694

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution, Sample Availability: Samples and codes for the article are available from the authors. c 2020 by the authors. Licensee MDPI