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Abstract 12 

Ensuring the validity and credibility of Bayesian Belief Network (BBN) as a modelling tool for 13 

expert systems requires appropriate methods for sensitivity analysis (SA), in order to test the 14 

robustness of the BBN diagnostic and prognostic with respect to the parameterisation of the 15 

conditional probability model (CPM). Yet, the most widely used techniques (based on 16 

sensitivity functions for discrete BBNs) only provide a local insight on the CPM influence, i.e. 17 

by varying only one CPM parameter at a time (or a few of them) while keeping the other ones 18 

unchanged. To overcome this limitation, the present study proposes an approach for global SA 19 

relying on Beta Regression using gradient boosting (potentially combined with stability 20 

selection analysis): it presents the benefit of keeping the presentation intuitive through a graph-21 

based approach, while being applicable to a large number of CPM parameters. The 22 

implementation of this approach is investigated for three cases, which cover a large spectrum 23 

of situations: (1) a small discrete BBN, used to capture medical knowledge, demonstrates the 24 

proposed approach; (2) a linear Gaussian BBN, used to assess the damage of reinforced 25 

concrete structures, exemplifies a case where the number of parameters is too large to be easily 26 

processed and interpreted (>40 parameters); (3) a discrete BBN, used for reliability analysis of 27 

nuclear power plant, exemplifies a case where analytical solutions for sensitivity can hardly be 28 
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derived. Finally, provided that the validity of the BBR model is carefully checked, we show 29 

that the proposed approach can provide richer information than traditional SA methods at 30 

different levels: (i) it selects the most influential parameters; (ii) it provides the functional 31 

relation between the CPM parameter and the result of the probabilistic query; and (iii) it 32 

identifies how the CPM parameters can lead to situations of high probability, while quantifying 33 

the confidence in the occurrence of these situations. 34 

 35 

Keywords: Bayesian Network; Sensitivity; Distributional Regression; Beta Distribution; 36 

Gradient Boosting; Stability Selection. 37 

 38 

1 Introduction 39 

Bayesian Belief Network (BBN) is widely recognized as a valuable modelling tool for expert 40 

systems (e.g. Russel et al., 2003). It has been applied in various complex domains, like 41 

ecosystems (Milns et al., 2010), genetics and biology (Scutari et al., 2014), industry (Weber et 42 

al., 2012), finance forecasting (Malagrino et al., 2018), marine safety (Hänninen et al., 2014), 43 

nuclear power plants (Kwag & Gupta 2017), coastal systems (Jäger et al., 2018), multi-hazard 44 

risk assessments (Gehl and D’Ayala, 2016), etc. An expert system has the ability to represent 45 

and reason on knowledge with the purpose of solving problems and giving advice (as defined 46 

by Jackson, 1999), by relying on three components (i.e. knowledge base, observation base, 47 

inference engine). Each of these components can benefit from the key features of BBN: (1) its 48 

capability to represent expert knowledge and to combine and integrate expert knowledge with 49 

information from any kind of sources, including experimental data, historical data, results from 50 

numerical simulations, etc.; (2) its high flexibility to model any causal relationships and to 51 

explicitly display the relationship among variables using a network-based approach, which can 52 

intuitively be understood by experts (Wiegerinck et al., 2010); and (3) its capability to answer 53 

probabilistic queries about them and to find out updated knowledge of the state of a subset of 54 

variables when other variables (the evidence variables) are observed. For instance, probabilistic 55 

queries in reliability assessments may correspond to finding the probability values of some 56 

failure cause given the observed damage level of the considered system. See Appendix A for a 57 

brief overview. The interested reader can also refer to Jensen (2001) for a complete introduction 58 

to BBN. 59 
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Formally, BBN is based on the graphical representation of the probabilistic relations among 60 

random variables by means of a directed acyclic graph composed of nodes (i.e. the states of the 61 

random variables) and arcs (i.e. dependency between nodes). See an example in Fig. 2A. The 62 

nodes connected by an arc are called the parent and child nodes respectively. One child node 63 

may have several parent nodes, meaning that this node is affected by several factors. Similarly, 64 

a parent node could have several child nodes, meaning that this factor may have influences on 65 

several other factors. Conditional probabilities are the probabilities that reflect the degree of 66 

influence of the parent nodes on the child node. The probabilistic dependence (i.e. the relation 67 

cause-effect) is represented via a table called a Conditional Probability Table (CPT) when the 68 

variables X (nodes) are discrete. In this case, the CPT entries correspond to the probability value 69 

P(𝑋𝑖 = 𝑘| Pa(𝑋𝑖) = 𝑗) where k denotes the kth possible level (either a discrete value or a 70 

category) that node Xi can take given that its parents Pa(𝑋𝑖) takes the jth possible level. When 71 

the variables are continuous, the conditional distribution given its parents can typically be 72 

represented by means of a continuous probability distribution. The most popular model is the 73 

Gaussian distribution, as follows: 74 

 75 

P(𝑋𝑖 = 𝑦| Pa(𝑋𝑖) = 𝒙) = 𝐺(𝑦|𝑚0 + 𝑍𝒙, 𝑆)      (Eq. 1) 76 

 77 

where G is the Gaussian probability distribution whose mean is parameterized by a linear 78 

regression model with intercept m0 and regression coefficients Z, and 𝑆 is the conditional 79 

variance.  80 

When the nodes are both discrete and continuous, different hybrid techniques exist in the 81 

literature (e.g., Murphy 1999; Shenoy, 2006; Beuzen et al., 2018). 82 

Whatever the nature of the nodes, the pillar of any BBN-based results (either evidence 83 

propagation or inference) is the specification of the parameters of the conditional probability 84 

model (denoted CPM), i.e. the CPT entries or the regression coefficients of the linear Gaussian 85 

regression model. This process is recognized in the literature as one of the most delicate part of 86 

the BBN development (e.g., Chen & Pollino 2012; Druzdzel & van der Gaag 2000, etc.), which 87 

raises the question of confidence in the diagnosis or prognosis derived from the BBN-based 88 

expert systems (see discussion by Pitchforth & Mengersen, 2013). In the validation framework 89 

of BBN, sensitivity analysis (SA) tools play a major role in order to study how the output of a 90 
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model varies with variation of the CPM parameters. Subsequently, the results from SA can be 91 

used as a basis for parameter tuning, as well as for studying the robustness of the model output 92 

to changes in the parameters (Coupé & van der Gaag 2002; Laskey et al. 1995). 93 

For discrete BBNs, a widespread SA method relies on the use of sensitivity functions (Coupé 94 

& van der Gaag 2002; Castillo et al., 1997), which describe how the considered output 95 

probability varies as one CPT entry value is changed. Some recent extensions have been 96 

proposed to conduct multi-way SA like the framework by Leonelli et al. (2017), i.e. SA when 97 

several CPT entries are allowed to vary. Effects of parameter changes can be described by the 98 

Chan–Darwiche (CD) distances (Chan–Darwiche 2002; 2005). The CD distance is used to 99 

quantify global changes by measuring how the overall distribution behaves when one (or more) 100 

parameter is varied. Likewise, SA approaches have been developed for continuous BBNs 101 

(mostly based on linear Gaussian regression) either based on computing partial derivatives 102 

(Castillo & Kjærulff 2003) or based on the use of divergence measures (Gómez-Villegas et al., 103 

2007), with generalisation to multi-way SA (Gómez-Villegas et al., 2013).  104 

Yet, several limitations of the existing SA methods exist.  105 

(1) The SA methods differ depending on the type of BBN (discrete, continuous, hybrid); 106 

(2) Though simple and efficient to implement, the approach based on sensitivity functions 107 

(combined with CD-distance analysis) remains local, because the values of only one parameter 108 

of the CPM is varied, while the other ones are kept constant. Multi-way SA methods have been 109 

proposed, but can rapidly become intractable. The SA procedure for Gaussian BBN presents 110 

the same limitation as being based on partial derivatives; 111 

(3) The SA is usually performed by focusing on one type of co-variation of the different 112 

parameters (like proportional, uniform and order-preserving co-variation, see e.g., Renooij, 113 

2014). 114 

In the present study, we propose an alternative approach for SA, whose characteristics should 115 

complement the existing ones and overcome the afore-described limitations. The proposed 116 

approach should be: 117 

- Global: since the sensitivity of any BBN-based probability of interest is affected by 118 

multiple variations in the CPM parameters, the sensitivity is studied in a global manner 119 

and the different parameters are allowed to be varied all together; 120 
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- Generic: it should apply to any kind of BBN, i.e. discrete, Gaussian or hybrid, with 121 

limited restriction on the type of variations of the CPM parameters; 122 

- Robust to the number of parameters: the number of parameters can rapidly increase (in 123 

relation with number of nodes), typically reaching several dozens even for a moderate 124 

number of BBN nodes, which can hamper the interpretation of any global SA; 125 

- Concise: the presentation of the SA results should be as intuitive as the sensitivity 126 

function method by using a graph-based approach. 127 

To do so, we address the problem of SA for BBN with the viewpoint of regression by 128 

considering the BBN-based probabilistic queries P as the predictand and the CPM parameters 129 

as the predictors (denoted C). In contrast to the classical regression model, which restricts the 130 

analysis to the expected value of P as a function of C, we aim at estimating the full probabilistic 131 

variation of P by taking advantages of recent developments for distributional regression (e.g., 132 

Koenker et al., 2013). In the subsequent sections, we first describe the principles of the proposed 133 

method together with the implementation details (Sect. 2). In Sect. 3, we apply the approach to 134 

a small discrete BBN (6 nodes) used to capture medical knowledge (adapted from Cooper 1984) 135 

to exemplify the potentialities of the proposed approach. Then, in Sect. 4, two real cases are 136 

used to investigate the applicability of the proposed approach. Finally, Sect. 5 discusses the 137 

strengths and weaknesses of the proposed approach from the methodological and operational 138 

viewpoints. 139 

 140 

2 Statistical methods 141 

In this section, we first describe the principles underlying the development of the proposed 142 

approach (Sect. 2.1). We then provide the justifications for using Beta regression (Sect. 2.2) for 143 

sensitivity analysis of BBNs. Sect. 2.3 gives further technical details on the key ingredient of 144 

the procedure, namely the Boosted Beta Regression (BBR) technique. Finally, we describe how 145 

to check the adequacy of the BBR model to fit the data (Sect. 2.3). 146 

2.1 Overall procedure 147 

The different steps of the procedure hold as follows:  148 

- Step1: generate perturbations of network’s entry values C (i.e. the predictors) using, for 149 

instance, some random sampling techniques. For binary nodes, the CPT entries can be 150 
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randomly perturbed using truncated Gaussian distributions (van der Gaag et al., 2013) ; 151 

for multi-level discrete nodes, it can be based on Dirichlet distributions (e.g., Young et 152 

al., 2009) ; for continuous Gaussian nodes, truncated Gaussian distributions can also be 153 

used if the purpose is to study the robustness to small-to-moderate variations; see also 154 

Gómez-Villegas et al. (2014) for alternative possible probability laws; 155 

- Step 2: estimate the query probability of interest P derived from the inferences using 156 

the BBN. This probability value is the predictand; 157 

- Step 3: establish the link between C and P using a regression model. We propose to rely 158 

on Beta regression models (see Sect. 2.1) using boosting-based fitting procedure (Sect. 159 

2.2) to deal with the potentially large number of predictors; 160 

- Step 4: check the adequacy of the Beta model by checking that the residuals are well 161 

approximated by the standard normal distribution (see Sect. 2.4).  162 

2.2 Use of Beta regression for BBN sensitivity analysis 163 

We choose to rely on the Beta regression model (e.g., Ferrari and Cribari-Neto, 2004) due to 164 

different difficulties inherent to our case. The first difficulty is related to the nature of the 165 

predictand, which lies within the interval [0 ; 1]. This prevents from a direct application of 166 

ordinary least squares (linear) regression techniques, because bounded data (such as rates and 167 

proportions- or here probability values) are typically heteroskedastic (e.g., Cribari-Neto and 168 

Zeileis, 2010), which means that their variance depends on the predictors’ values.  169 

Second, the distributions of such data are typically asymmetric, and the normal assumption 170 

underlying standard regression models might not be valid in our case. An alternative approach 171 

is to use regression models that are based on a probability distribution suitable for handling 172 

bounded data. A good candidate is the Beta law, whose density distribution d is defined as 173 

follows: 174 

 175 

𝑑(𝑃, 𝑎, 𝑏) =
(𝑎+𝑏)

(𝑎)(𝑏)
𝑃𝑎−1(1 − 𝑃)𝑏−1       (Eq. 2) 176 

 177 

where  is the gamma function, (a,b) are the shape parameters. In the following, we preferably 178 

use an alternative parametrisation (µ,), where µ =
𝑎

𝑎+𝑏
 is the mean of P and  =

1

(𝑎+𝑏+1)1/2
 is 179 



 7 

related to the variance of P, i.e. µ(1 − µ)2 (e.g., Schmid et al., 2013) The -parameter allows 180 

covering a large spectrum of density shapes as shown in Fig. 1 given different µ and  values.  181 

An additional difficulty is the inclusion of the boundary values at 0 and 1, because the density 182 

d in Eq. 2 is not defined at these values. This can be overcome by means of a simple 183 

transformation of P (Smithson and Verkuilen, 2006) as follows: 184 

 185 

(𝑃(𝑛 − 1) + 0.5)/𝑛          (Eq. 3) 186 

where n is the number of samples (i.e. the number perturbations performed to study the 187 

sensitivity of P). 188 

The joint analysis of both Beta parameters (µ,) enables the BBN practitioners to investigate 189 

the sensitivity of the BBN with respect to two levels. The first level is related to the evolution 190 

of µ as a function of the CPM parameters. These evolutions can be interpreted in a similar 191 

manner as the sensitivity functions used in the traditional SA for BBN, but it is worth noting 192 

that these functions are global; in the sense that they are constructed based on samples where 193 

all CPM parameters are allowed to vary all together.  194 

In the present study, we propose to introduce a second level of analysis by allowing the Beta  195 

parameter to vary as well. This is justified as follows:  196 

- when the Beta  parameter is incorrectly taken to be constant, some efficiency loss in 197 

the fitting process has been reported in the literature (e.g., Bayer and Cribari-Neto, 2017 198 

and references therein);  199 

- a potentially large number of predictors have to be handled in the regression model and 200 

we propose to select only one part of the CPM parameters that have influence on the 201 

BBN probabilistic query P (see Sect. 2.3). This means that for fixed values of these 202 

selected parameters, values of P can still vary due to perturbations of the CPM 203 

parameters that were left out. The  parameter is here used to describe this type of 204 

variability; 205 

- some algorithms for the estimation of BBN probabilistic queries are based on random 206 

sampling (like particle filter using logic sampling by Koller and Friedman (2009)), 207 

which may introduce some noise in the P estimates; 208 
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- studying the evolution of  enables the BBN practitioners to identify the sources of data 209 

variability (e.g., Smyth and Verbyla, 1999) i.e. to study the influence on the uncertainty 210 

of P. In this manner, the BBN practitioners can identify different probabilistic regimes; 211 

e.g. situations where the probability of interest might switch from low to high values, 212 

i.e. situations of low to high risk. Such situations can be highlighted by low and high 213 

values of µ. Values of  are then useful to indicate the confidence in the occurrence of 214 

such situations. For instance, high value of µ (high average value of P) together with 215 

low value of  (low variance) provide strong evidence that changes in the considered 216 

parameter(s) might surely lead to situations of high probability. High values for both 217 

Beta parameters show, however, that the situation of high probability might occur but 218 

only with low confidence (i.e. high uncertainty). 219 

 220 

 221 

Figure 1. Probability density functions for the beta law. (A) mean µ=0.5; (B) mean µ=0.25. 222 

 223 

Given the transformation of P (Eq. 3), BBN sensitivity analysis can be performed using Beta 224 

regression models (step 3 of the procedure) whose parameters are fitted using, for instance, 225 

maximum likelihood techniques (Cribari-Neto and Zeileis 2010). Yet, the functional form of 226 

the predictor-predictand relationship (e.g., quadratic or exponential) can hardly be specified in 227 

advance in our case (except for specific cases, like binary discrete BBN) and the relationships 228 

should preferably be learnt from the data. A possible option can rely on more advanced Beta 229 

distribution regression techniques, for instance using generalized additive models for location, 230 

scale and shape (GAMLSS, Rigby and Stasinopoulos, 2005), which allows deriving smooth 231 
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non-linear functional terms from the data, which correspond to the “partial effects” (more 232 

formally introduced in Sect. 2.3). These terms are the key ingredients for sensitivity analysis, 233 

because they hold the information of each parameter’s individual effect on the considered Beta 234 

parameter. 235 

The difficulty in our case is, however, the possible large number of predictors, which can 236 

typically exceed several tens in real cases. This situation imposes the use of techniques for 237 

variable selection during the fitting process. A possible option is the combination of GAMLSS 238 

with boosting-based approach (Mayr et al., 2012), which is detailed in the next section. 239 

2.3 Boosted Beta Regression 240 

In contrast to classical regression model, GAMLSS for Beta probability distribution aims at 241 

regressing the Beta parameters =(µ,) (or their transformation, e.g. via a log or a logit 242 

function) to the p predictor variables C=(c1, c2,…, cp), e.g., the CPT entries for discrete BBN 243 

or the regression coefficients of a Gaussian BBN. In the following, we restrict the analysis to a 244 

semi-parametric additive formulation as follows: 245 

 246 

𝜃 = 

(𝑪) = 

0
+ ∑ 𝑓𝑗(𝑐𝑗|𝑗)

𝐽
𝑗=1        (Eq. 4) 247 

 248 

where 

(. ) is the link function that related the considered parameter  =(µ,) with the 249 

predictor variables C; Jp, 
0
 is a constant and the functional term fj(.) corresponds to a 250 

univariate smooth non-linear model like regression penalized regression P-spline models 251 

(Eilers and Marx 1996) with parameters 
𝑗
. These functional terms (termed as partial effect) 252 

hold the information of each parameter’s individual effect on the considered Beta parameter.  253 

The fitting is performed using the gamboostLSS algorithm of Mayr et al. (2012), which uses the 254 

Beta log-likelihood function (termed as risk) as an optimization criterion based on the 255 

component-wise gradient boosting technique (Bühlmann and Hothorn 2007, see further details 256 

in Appendix B). The approach is termed as BBR model (Boosted Beta Regression).  257 

One advantage of using boosting techniques is to perform variable selection during the fitting 258 

process, which allows screening the parameters C which hold most information with respect to 259 

the conditional distribution of P. This is performed by assessing the individual fits of each 260 
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predictor variable, and by updating only the coefficient of the best-fitting predictor variable in 261 

each iteration. Variable selection is carried out successively for the mean µ and for the  262 

parameter.  263 

When the algorithm is stopped, the final model only contains the set of best-fitting predictors. 264 

The number of boosting iterations controls the smoothness of the non-linear effects. Low values 265 

lead to sparse models with smooth functional terms, whereas large values lead to more complex 266 

models with larger number of predictors and rougher functional terms. In practice, the selection 267 

of the stopping parameter can be carried out using cross-validation procedures in order to 268 

optimize the risk on observations left out (i.e. “out-of-bag”) from the fitting process i.e. the out-269 

of-bag risk, which corresponds here to the negative log-likelihood of the Beta distribution 270 

calculated for the “out-of-bag” samples. To avoid optimizing two different stopping iterations, 271 

i.e. one for each Beta parameter, the procedure can be enhanced using the noncyclic algorithm 272 

of Thomas et al. (2018), which allows reducing the optimisation problem from a multi-273 

dimensional to a one-dimensional problem.  274 

In some situations, the resulting BBR model can still remain too rich to be easily interpretable 275 

by BBN practitioners. This procedure can be completed by the stability selection analysis 276 

(described in Appendix C), which allows screening the most influential variables in the BBR 277 

model. 278 

In summary, the boosting-based approach allows to both select a limited number of influential 279 

predictors among all network’s entry values C, and to derive the corresponding partial effects 280 

for each Beta parameter. Note that the identified predictors are not necessarily the same for µ 281 

and for , and can be unique or multiple. The final results of the procedure are the partial effects 282 

(Eq. 4), which can directly be used to analyze the sensitivity of the considered Beta parameter 283 

to C as illustrated on the application cases (Sect. 3 and 4), by considering two levels of analysis 284 

(respectively related to the best estimate of P using µ, and to the uncertainty of P using ).  285 

2.4 Model adequacy 286 

Once the BBR model has been fitted, an important aspect is to check the model adequacy (step 287 

4 of the procedure), i.e. how well the BBR model is appropriate to describe the randomly 288 

generated BBN-derived probabilities. This can be done by analysing the statistics of the 289 

residuals and checking whether their distribution is well approximated by the standard normal 290 

distribution (see e.g. Rigby and Stasinopoulos, 2005). Yet, contrary to ordinary least square 291 
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regression, the raw response residuals 𝑟 = 𝑃 − µ cannot be used, because they do not account 292 

for the heteroscedasticity of the model (i.e. the variance of P is a function of the Beta mean µ, 293 

see Sect. 2.1).  294 

In the following, we propose to keep the analysis of r in order to give information regarding the 295 

capability of the Beta mean to explain P. However, to properly validate the use of the Beta 296 

model, we rely on alternative residuals’ formulations (see e.g., Pereira, 2019 and references 297 

therein). We focus here on three of the most widely-used ones described in Appendix D. The 298 

normality of these residuals is investigated by means of the normal Q-Q plot and by computing 299 

the coefficient of determination R² as follows: 300 

 301 

𝑅2 = 1 −
∑ (𝑞𝑖̂−𝑞𝑖)²
𝑖=𝑁
𝑖=1

∑ (𝑞𝑖−𝑞̅)²
𝑖=𝑁
𝑖=1

          (Eq. 5) 302 

 303 

where N is the number of quantile levels; qi is the quantile of standard normal distribution at 304 

the ith level; 𝑞̅ is the mean of the quantile of standard normal distribution over the levels i=1…N; 305 

𝑞𝑖̂ is the quantile of BBR residual at the ith level. The closer R² to one, the better the agreement 306 

between the BBR residuals’ quantiles and the ones of the standard normal distribution, hence 307 

the more satisfactory the adequacy of the BBR model. Furthermore, studying the evolution of 308 

R² as function of the number of random perturbations of C provides an option to estimate the 309 

minimum number of required permutations for the BBR model to be valid. 310 

It should however be underlined that the residuals are analysed with the objective of checking 311 

that the Beta distribution is an appropriate model to explain the BBN-derived probabilities. 312 

Using them for another objective, for instance to compare different probability model families 313 

(e.g. Gamma, Gaussian) or to perform predictions, is made difficult by the use of boosting 314 

algorithms (see Hofner et al., 2016: Sect. 5.4). For these purposes, the use of the out-of-bag risk 315 

is recommended. 316 

 317 

3 Synthetic case study 318 

In this section, we consider a BBN of small number of nodes (described in Sect 3.1) to 319 

exemplify the functionalities of the proposed approach (Sect. 3.2).  320 
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3.1 Description 321 

We focus on the BBN adapted by van der Gaag et al. (2013) from Cooper (1984) in the field of 322 

oncology. The network (as depicted in Fig. 2A) is composed of 6 nodes and 6 arcs.  323 

 324 

Figure 2. A) Brain tumor structure network; B) Sensitivity function derived by van der Gaag et al. (2013) 325 

showing the evolution of the probability of interest P(b|c0,isc1) as a function of the CPT entry 326 

P(c|b0,isc1). 327 

 328 

Node MC refers to metastatic cancer, which may potentially lead to the development of a brain 329 

tumour (node B) and may give rise to an increased level of serum calcium (node ISC). The 330 

presence of a brain tumour can be established from a CT scan (CT). Another indicator of the 331 

presence of a brain tumour can be related to severe headaches (SH). A brain tumour or an 332 

increased level of serum calcium are both likely to cause a patient to fall into a coma (C). The 333 

conditional probabilistic relationships between the nodes (CPT entries) are provided in Table 334 

1. We focus here on the probability P=P(b|c0,isc1), namely the probability to develop brain 335 

tumor given the absence of coma and an increased level of serum calcium. The robustness of P 336 

is studied with respect to the values of 13 CPT entries (Table 1). 337 

 338 

[Table 1 about here] 339 
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3.2 Application 340 

We now apply the proposed BBR approach. It starts with the random sampling of the 13 CPT 341 

entry values using Gaussian distributions (with a standard deviation of 0.1 for all the 13 CPT 342 

values) truncated at zero and one as proposed by van der Gaag et al. (2013). For each of the 343 

randomly generated values of the CPT entries, the probability of interest P, i.e. P(b|c0,isc1), is 344 

calculated through approximate Bayesian inference based on particle filter using logic sampling 345 

(Koller and Friedman 2009). These values are then transformed using Eq. 3.  346 

The minimum number of random perturbations of the BBN was chosen by studying the 347 

evolution of the R² indicator values for the different residuals’ formulations (see Sect. 2.3). Fig. 348 

3A shows that the convergence can be considered reached for a minimum number of ten times 349 

the number of CPT entries, i.e. 1,300 for which the R² values all reach very satisfactory values 350 

above 95%. The visual inspection of the normal Q-Q plots in Fig. 3B-D confirms the 351 

satisfactory adequacy of the BBR model. We can however note some deviations for very low 352 

quantile values but this is only indicated by one residuals’ formulation (Fig. 3C). Besides, 353 

taking into account the 95% confidence band (outlined by dashed lines in Fig. 3C), this 354 

discrepancy can be considered low. 355 
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 356 

Figure 3. (A) Evolution of the R² indicator as a function of the number of random perturbations for the 357 

brain tumor BBN. Three residuals’ formulations are considered (see Appendix D). The vertical dashed 358 

line indicates the selected number of random perturbations. For this number, normal Q-Q plots are 359 

provided considering different residuals: (B) deviance; (C) standardized weighted; (D) quantile. The 360 

dashed lines indicate the boundaries of the 95% confidence band based on the Kolmogorov-Smirnov 361 

statistic (Doksum and Sievers, 1976). The value of the R² indicator (Eq. 5) is also reported. 362 

 363 

The histogram of the probability of interest P values is provided in Fig. 4A with mean and 364 

standard deviation at respectively 0.18 and 0.14. Fig. 4B shows that the Beta mean is 365 

informative regarding P and satisfactorily explains P, which is in agreement with the analysis 366 

of the Q-Q plots (Fig. 3). Some deviations can however be noticed for very large values, but 367 

may be related to the low number of data to perform the fitting (see the light colour in Fig. 4B 368 

indicating a low density of dots). The optimal stopping iteration of BBR model is selected by a 369 

5-fold cross validation procedure (combined with the noncyclic algorithm of Thomas et al., 370 

2018) as illustrated in Fig. 4C.  371 
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 372 

Figure 4. (A) Histogram of randomly generated P values for the brain tumor network; (B) Comparison 373 

between the estimated Beta mean and P (the colours indicate the density of the dots); (C) Evolution of 374 

the (out-of-bag) risk estimated using a 5-fold cross-validation procedure as a function of the number of 375 

boosting iterations; the optimal stopping iteration is selected as the one minimizing the average risk 376 

over all 5 cross-validation iterations (indicated by a vertical dashed line at 464). 377 

 378 

Figure 5 and 6 respectively depicts the non-linear effects on µ (logit-transformed) and  (logit-379 

transformed) of the CPT entries selected by the boosting algorithm during the fitting of the BBR 380 

model. Different conclusions regarding the sensitivity of P to the CPT entries can be drawn:  381 

- Information on the importance ranking of the CPT entries can be derived. We show that 382 

only 7 out of the 13 CPT entries have been selected by the boosting algorithm, namely 383 

the CPT entries related to the nodes MC, ISC and C in direct relation with node B (see 384 

Fig. 2A); 385 

- The individual contributions of the selected CPT entries in Figure 5 and 6 are global in 386 

the sense that they are constructed by accounting for the co-variations of all inputs 387 

(contrary to the traditional SA using sensitivity functions, which imposes the 388 

construction of the function by varying one input one at a time); 389 

- Information on the type of effect the CPT entries can be derived. We show that the CPT 390 

entries’ effect on the Beta mean µ (logit-transformed) is monotonic but rarely linear. In 391 

particular, the effect of P(c|b0,isc1) almost follows an exponential-like trend (outlined 392 

by dashed red lines in Fig. 5, bottom right hard corner), which is in agreement with the 393 

traditional SA of P (Fig. 2B) using a sensitivity function of polynomial form (as derived 394 

by van der Gaag et al. 2013); 395 
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- The effect on the Beta parameter  (logit-transformed) is also nonlinear with respect to 396 

the selected CPT entries, hence indicating that the CPT entries not only affect the best 397 

estimate of P but also its precision, i.e. dispersion of the underlying Beta law.  398 

 399 

 400 

Figure 5. Partial effect of each CPT entry on µ (logit-transformed) applied to the brain tumor network. 401 

Note the different scales of the x- and y-axis. 402 
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 403 

Figure 6. Partial effect of each CPT entry on  (logit-transformed) applied to the brain tumor network. 404 

Note the different scales of the x- and y-axis. 405 

 406 

Since the partial effects in Fig. 5 and 6 are global, these can easily be used by varying each CPT 407 

entries one-at-a-time or jointly. Figure 7(top) depicts the results of such analysis considering 408 

the individual variation of P(c|b1,isc1) and of P(c|b0,isc1) on the Beta density function related 409 

to P (while keeping the other CPT entry values at their original values as provided in Table 1).  410 

- When P(c|b0,isc1) is varied from low to high values (Fig. 7A), the corresponding Beta 411 

density function is translated from low to high values, but with more and more 412 

dispersion around the mode, which is more specifically amplified when P(c|b0,isc1) 413 

exceeds value of ~0.9;  414 

- When P(c|b1,isc1) is varied from low to high values (Fig. 7B), the effect on the Beta 415 

mode is opposite to the one due to the effect of P(c|b0,isc1). This exemplifies the 416 

decreasing trend outlined in Fig. 5 (bottom right hand corner): the mode is translated 417 

from high to low values with an effect on the dispersion less pronounced than for 418 

P(c|b0,isc1). This is in agreement with the lower partial effect outlined in Fig. 6(bottom 419 

right hand corner) ;  420 
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- Finally, Figure 7C depicts the result of the analysis when both CPT entries are jointly 421 

varied. This shows that the impact of both CPT entries is compensated when they are 422 

jointly increased similarly: the Beta distributions remains “stuck” around 0.15 unless 423 

both CPT entries reach very high values above 0.95.  424 

 425 

Figure 7. (A) Evolution of the Beta law fitted to the P values given increasing values of P(c|b0,isc1) 426 

from low (0.6) to high values (1.0); (B) Evolution of the Beta law fitted to the P values given increasing 427 

values of P(c|b1,isc1) from low (0.6) to high values (1.0); (C) Evolution of the Beta law fitted to the P 428 

values given increasing values (with same increment) of both P(c|b1,isc1) and P(c|b0,isc1). 429 

 430 

4 Real-case applications 431 

In this section, we apply the BBR approach to real cases. First, a linear Gaussian BBN is 432 

considered for assessing the damage of reinforced concrete structures (Castillo and Kjærulff, 433 

2003). This enables us to illustrate a situation where the number of parameters is large enough 434 

to hamper the interpretation, i.e. here more than 40 variables have to be processed (Sect. 4.1). 435 

Second, a discrete BBN is considered for reliability analysis. For this case, analytical sensitivity 436 

functions can hardly be derived since the interest is not the sensitivity to the values of the CPT 437 

entries directly, but the physical parameters, which determine them. 438 
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4.1 Reinforced-Concrete BBN 439 

We investigate the robustness of the BBN presented in Castillo and Kjærulff (2003) for 440 

assessing the damage of reinforced concrete structures (Fig. 8).  441 

 442 

Figure 8. Structure of the reinforced concrete network. 443 

 444 

The BBN is composed of 24 continuous nodes, 27 arcs and more than 40 parameters. The 445 

random variables (see nodes’ meaning in Table 2) are assumed to be normally distributed.  446 

 447 
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[Table 2 about here] 448 

 449 

The original parametrization of Castillo and Kjærulff (2003) follows the regression model in 450 

Eq. 1 and assumes zero mean for all variables (i.e. nil intercept m0), and conditional standard 451 

of 1.0 for observable nodes (i.e. X9-X24) and 1e-4 otherwise (term denoted s0 in Table 3). Values 452 

for the regression coefficients are provided in Table 3. In the following, we refer to these values 453 

as the CPM best estimate for the BBN parametrization. 454 

We investigate the robustness of the probability for the damage of the system X1≥1 given the 455 

evidence that the beam is weak X9≥1, i.e. P=P(X1≥1|X9≥1). The CPM best estimates provided 456 

in Table 3 are randomly perturbed using Gaussian laws truncated at zero (with mean correspond 457 

to the values given in Table 3, standard deviation of 0.2 for the regression coefficients and of 458 

0.5 for the intercept terms). In total 43 variables are considered.  459 

 460 

[Table 3 about here] 461 

 462 

Fig. 9A depicts the evolution of the R² indicators considering the different residuals’ 463 

formulations. This shows that a minimum of 2,000 random perturbations is required to consider 464 

the BBR model adequate with R² values above 98%. This is also confirmed by the visual 465 

inspection of the normal Q-Q plot in Fig. 9B-D.  466 
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 467 

Figure 9. (A) Evolution of the R² indicator as a function of the number of random perturbations for the 468 

reinforced-concrete BBN. Three residuals’ formulations are considered (see Appendix D). The vertical 469 

dashed line indicates the selected number of random perturbations. For this number, normal Q-Q plots 470 

are provided considering different residuals: (B) deviance; (C) standardized weighted; (D) quantile. 471 

The dashed lines indicate the boundaries of the 95% confidence band based on the Kolmogorov-Smirnov 472 

statistic (Doksum and Sievers, 1976). The value of the R² indicator (Eq. 5) is also reported. 473 

 474 

Fig. 10A depicts the corresponding histogram of the randomly generated P values (with mean 475 

of 0.8 and standard deviation of 0.08). Fig. 10B shows that the Beta mean is very informative 476 

with a good agreement with P. The optimal stopping iteration of the regression model is selected 477 

based on a 5-fold cross validation procedure combined with the noncyclic algorithm as 478 

illustrated in Fig. 10C. 479 
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 480 

Figure 10. (A) Histogram of randomly generated P values for the concrete network; (B) Comparison 481 

between the estimated Beta mean and P (the colours indicate the density of the dots); (C) Evolution of 482 

the (out-of-bag) risk estimated using a 5-fold cross-validation procedure as a function of the number of 483 

boosting iterations; the optimal stopping iteration is selected as the one minimizing the average risk 484 

over all 5 cross-validation iterations (indicated by a vertical dashed line at 251). 485 

 486 

The number of parameters of the conditional probability model is larger (almost four times) 487 

than the case described in Sect. 3. In this case, despite the regularisation associated to the 488 

boosting algorithm, the resulting BBR model can still remain too rich to be easily interpretable 489 

by BBN practitioners. The direct application of the boosting algorithm ends up here with more 490 

than 30 variables, i.e. analysing each of the partial effect may here not be practical. Therefore, 491 

the analysis is completed by the stability selection analysis (described in Appendix C) to further 492 

screen the most influential variables in the BBR model. Fig. 11A depicts the selection 493 

probabilities for each CPM parameter with a threshold at 0.8 (see parametrisation in Appendix 494 

C). This shows that only the intercept terms for node X2, X5 and X8 appear to be influential with 495 

respect to the Beta mean µ (logit-transformed), whereas only the intercept terms for node X2, 496 

X3, X5, X7 and X8 appear to be influential with respect to the Beta parameter  (logit-497 

transformed). Interestingly, the nodes which affect the probability of interest are not necessarily 498 

the ones in direct connections with X1 (see Fig. 8). 499 



 23 

 500 

Figure 11. (A) Selection probability for each CPM parameter of the concrete network derived from the 501 

stability selection analysis (Appendix C). (B) Partial effect of the intercept m0 of nodes X2, X5 and X8 on 502 

µ (logit-transformed). (C) Partial effect of the intercept m0 of nodes X2, X3, X5, X7 and X8 on the  503 

parameter (logit-transformed). 504 

 505 

The non-linear effects for each selected CPM parameters are depicted in Fig. 11B,C. This shows 506 

that the individual effect mainly corresponds to an increasing monotonic functions considering 507 

both parameters of the Beta distribution; with a higher nonlinear effect of m0 of node X8. This 508 

is confirmed by the Beta distribution’s evolution with respect to the intercept parameter of node 509 

X2 and X8 (Fig. 12A, B).  510 

- Fig. 12A shows that the increase of m0_2 mainly affects the increase of the best estimate 511 

of P (with only slight effect on the dispersion), whereas Fig. 12B both affects the best 512 

estimate and the dispersion, i.e. the larger m0_8, the larger the mean value of P (i.e. the 513 

riskier the situation), but also the larger the uncertainty on P (i.e. the occurrence of the 514 

risky situation remains uncertain);  515 

- Fig. 12C shows the evolution of the Beta’s distribution when both parameters are 516 

increased similarly: we see that the combined increase amplifies the translation of the 517 

Beta’s distribution to very high values, i.e. risky situations (driven by both increasing 518 

effects as shown in Fig. 12B). Despite the increase in  during this process, the 519 

occurrence of this risky situations remains of moderate-to-high confidence, which 520 
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suggests that changes in m0_8 and m0_2 might ultimately lead to the failure of the concrete 521 

system.  522 

 523 

Figure 12. (A) Evolution of the Beta law fitted to the P values given increasing values of the intercept 524 

m0 of node X2 from low (0.) to high values (1.75); (B) Evolution of the Beta law fitted to the P values 525 

given increasing values of the intercept m0 of node X8 from low (0.) to high values (1.75); (C) Evolution 526 

of the Beta law fitted to the P values given increasing values (with same increment) of both intercepts. 527 

 528 

4.2 BBN-based reliability assessment 529 

Figure 13 depicts the BBN constructed by Gehl and Rohmer (2018) for studying the problem 530 

of station blackout (node SYS) following an earthquake at a given nuclear power plant (NPP) 531 

sub-system. The earthquake event is characterised by two intensity measures (nodes IM1 and 532 

IM2 respectively corresponding to the peak ground acceleration and the spectral acceleration 533 

at the first vibration period of the structure). The NPP sub-system is composed of a 5-story 534 

reinforced-concrete structure hosting two emergency diesel generators (EDGs). Three damage 535 

events (STR for structural damage and EDG for failure of the anchorage of the generators) are 536 

considered. 537 
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 538 

Figure 13. Structure of the network for studying the NPP subsystem reliability; IM1 and IM2 are 539 

deterministic nodes representing intensity measure characterizing the earthquake event; Nodes U, V1, 540 

V2 and V3 are zero-centered Gaussian random variables used to incorporate correlation. Only the 541 

sensitivity to the parameters for the blue nodes is investigated. 542 

 543 

The conditional probabilities of the failure states of STR, EDG1 and EDG2 are estimated 544 

through fragility functions (i.e. probabilistic model that relates the failure probability to the 545 

intensity measure IM), which are derived from non-linear seismic time histories applied to the 546 

structure. Due to the observed statistical dependence between the failure events (i.e., due to the 547 

common seismic loading applied to the three components), auxiliary variables U, V1, V2 and 548 

V3 (described by a standard normal distribution) are added to the BBN following the approach 549 

by Gehl and D’Ayala (2016). These variables result from the Dunnett-Sobel decomposition of 550 

the correlation coefficients between the safety factors of the components as follows: 551 
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𝑍𝑖 = 𝑡𝑖 ∙ 𝑈 + √1 − 𝑡𝑖
2 ∙ 𝑉𝑖        (Eq. 6) 552 

where Zi is the standard score of the safety factor of component i (Z1 corresponds to STR, Z2 to 553 

EDG1, and Z3 to EDG2) and ti is the Dunnett-Sobel coefficient that approximates the 554 

correlation between the failure events. 555 

By definition, the failure of component i occurs if Zi ≤ -βc, where βc is the reliability index 556 

expressed as follows: 557 

 558 

𝛽𝑐 =
𝛼𝑖−ln 𝑖𝑚

𝛽𝑖
          (Eq. 7) 559 

 560 

where αi and βi are the fragility parameters (median and standard dispersion) of component i, 561 

under the common assumption of a cumulative lognormal distribution for the fragility function; 562 

im is the value of the intensity measure of interest (IM1 for EDG1 and EDG2, IM2 for STR, 563 

see Fig. 13). 564 

Based on this framework, the CPT of the failure event of a component i is built by considering 565 

all combinations of discretized values {im; u; vi}, and by checking the following condition 566 

(Gehl and D’Ayala, 2016): 567 

 568 

(𝑧𝑖 = 𝑡𝑖 ∙ 𝑢 + √1 − 𝑡𝑖
2 ∙ 𝑣𝑖) ≤ −

𝛼𝑖−ln 𝑖𝑚

𝛽𝑖
      (Eq. 8) 569 

 570 

For the sensitivity analysis, we do not consider the value of the CPT entries directly but the 571 

physical parameters, which determine them, namely the parameters of the fragility curves, 572 

(mean  and standard deviation ). The numerical values of the physical parameters considered 573 

in this application are detailed in Table 4. The fragility curves’ parameters were randomly 574 

perturbed via a zero-centered Gaussian noise with standard deviation that is 10% of the original 575 

values (termed as CPM best estimates in the following). For the parameters of Dunnett-Sobel 576 

decomposition, the Gaussian noise is truncated at one. The probability of interest is here the 577 

probability of the sub-system failure, i.e. P=P(SYS=1) given an earthquake event characterised 578 
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by intensity measures IM1 and IM2 of respectively 10 and 12.5 m²/s. In total, 9 parameters are 579 

considered. 580 

 581 

[Table 4 about here] 582 

 583 

The selection of the minimum number of random perturbations is more difficult than for the 584 

brain tumour or for the reinforced concrete case. Fig. 14A shows that at least 1,000 random 585 

perturbations are necessary to reach R² values above 95%, but due to oscillations in the 586 

evolution of the R² values, we preferably choose the largest number, i.e. >4,000. The visual 587 

inspection of the normal Q-Q plots (Fig. 14C-D) also reveals some deviations for very high and 588 

low quantiles (outside the range [-2 - 2]) though it should be noted that they remain within the 589 

95% confidence band and with low-to-moderate magnitude. Contrary to the brain tumour case, 590 

the three residuals’ formulations all agree on the identification of the problem. A deeper 591 

analysis show that these deviations correspond here to Beta distributions with very high mean 592 

and very low variance values: the sensitivity should be analysed with care for these cases. 593 
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 594 

Figure 14. (A) Evolution of the R² indicator as a function of the number of random perturbations for the 595 

BBN-based reliability assessment. Three residuals’ formulations are considered (see Appendix D). The 596 

vertical dashed line indicates the selected number of random perturbations. For this number, normal 597 

Q-Q plots are provided considering different residuals: (B) deviance; (C) standardized weighted; (D) 598 

quantile. The dashed lines indicate the boundaries of the 95% confidence band based on the 599 

Kolmogorov-Smirnov statistic (Doksum and Sievers, 1976). The value of the R² indicator (Eq. 5) is also 600 

reported. 601 

 602 

The histogram of P values is provided in Fig. 15A with mean and standard deviation at 603 

respectively 0.65 and 0.26. Contrary to the reinforced-concrete BBN, the agreement with P is 604 

less satisfactory (Fig. 15B). A major part of the P values (see the warm colour indicating the 605 

density of dots in fig. 15B) appear to be reproduced by the Beta mean, but the scatter plot 606 

remains disperse. This type of analysis can be considered a complement to the analysis of the 607 

Q-Q plots (Fig. 14) and supports a cautious attitude with respect to the conclusions drawn from 608 

the sensitivity analysis. The optimal stopping iteration of the regression model is selected based 609 
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on a 5-fold cross validation procedure combined with the noncyclic algorithm as illustrated in 610 

Fig. 15C.  611 

 612 

Figure 15. (A) Histogram of randomly generated P values for the NPP reliability network; (B) 613 

Comparison between the P values and the estimated mean value provided by the Beta model; (C) 614 

Evolution of the (out-of-bag) risk estimated using a 5-fold cross-validation procedure as a function of 615 

the number of boosting iterations; the optimal stopping iteration is selected as the one minimizing the 616 

average risk over all 5 cross-validation iterations (indicated by a vertical dashed line at 369). 617 

 618 

The application of the boosting algorithm reveals that only the parameters of the fragility curves 619 

are selected. These are the only parameters identified as significant by the BBR approach, i.e. 620 

the correlation parameters t1-3 are discarded by the algorithm. Figure 16 provides the 621 

corresponding partial effects for both Beta law parameters.  622 

 623 
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Figure 16. Partial effect of the fragility curve’s parameters on µ (logit-transformed) (black straight line) 624 

and on  (logit-transformed) (red dashed line). The vertical grey-coloured dashed line indicates the 625 

CPM best estimates of Table 4. 626 

 627 

Several observations can be made: 628 

- The parameters (_str, _str) of the structural fragility curve (STR, Fig. 16, left) have 629 

almost similar effect, whatever the Beta law parameter (logit-transformed); it 630 

corresponds to a quasi- bilinear function, which remains quasi-constant below the CPM 631 

best estimate then increases above it; from a risk viewpoint, this means that the damage 632 

to the structure enhances the occurrence of risky situations, where the system failure’s 633 

probability P might reach high values. Yet, the effect on  parameter (logit-transformed) 634 

also indicates that the confidence in the occurrence of this probabilistic regime is low; 635 

- The effects of the parameters (_edg2, _edg2) of the second electrical generator’s 636 

fragility curve (EDG2, Fig. 16, right) are quasi-linear with respect to the Beta law mean 637 

µ, but is non-monotonic with respect to the  parameter (logit-transformed). This can 638 

be schematically understood as a decrease of uncertainty on P (i.e. the Beta law 639 

dispersion) when approaching the original value, then an increase above it; 640 

- The effect of the parameters (_edg1, _edg1) of the first electrical generator’s fragility 641 

curve (EDG1, Fig. 16, center) is more complex. The effect on the Beta mean µ (logit-642 

transformed) corresponds to a bilinear function, which increases at around the CPM best 643 

estimate, then remains quasi-constant above it (i.e. to a lesser extent, it corresponds to 644 

the opposite behaviour to the one for STR). The effect on the Beta parameter  645 

corresponds to an inverted sigmoid, which reaches its lower horizontal plateau above 646 

the CPM best estimate. This means that above their original values, parameters (_edg1, 647 

_edg1) little affect the system failure’s probability. 648 

Fig. 17 illustrates how _str, _edg1 and _edg2 act differently on the system failure. When 649 

increasing _str, the system failure starts increasing only for values well above the CPM best 650 

estimates. This is shown by the Beta distributions, which remains “stuck” at moderate values 651 

(around 0.6; see for cold colours in Fig. 17A). When increasing _edg1, the resulting Beta 652 

distribution remains stuck at high value around 0.70-0.75 (note the evolution of the mode for 653 

warm colours in Fig. 17B), hence leading to risky situations. The confidence in the occurrence 654 
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of such probabilistic regime is high as indicated by the low dispersion of the Beta distributions. 655 

When increasing _edg2, the Beta distribution continues to translate towards very high values 656 

above 0.90. Despite the very low dispersion of the Beta distribution, the confidence remains 657 

here moderate, because this situation corresponds to the one for which the normality of the 658 

residuals is not met (Fig. 14). 659 

 660 

Figure 17. Evolution of the Beta distributions fitted to the P values given: (A) increasing values of the 661 

mean value of the fragility curve _str; (B) increasing values of _edg1; (C) increasing values of 662 

_edg2. 663 

 664 

5 Discussion 665 

Ensuring the validity and credibility of increasingly complex BBN-based expert systems 666 

(Pitchforth & Mengersen, 2013; Kleemann et al., 2017; Marcot and Penman, 2019) requires a 667 

broad vision on the sensitivity to the CPM parameters. As outlined in the introduction, the most 668 

widely used approach is based on sensitivity functions for discrete BBNs, and on partial 669 

derivatives for continuous BBNs. Reasons are the intuitive interpretation of the results (thanks 670 

to the graphical presentation) and the simplicity of the implementation. Yet, these approaches 671 

only provide information on the local influence, in the sense that the parameters are varied “one-672 

at-a-time”. This means that it can only provide a restricted vision on sensitivity, because the 673 

exploration of the sensitivity remains limited to a few CPM parameters, while the domain of 674 

the other CPM parameters is left mostly unexplored (as thoroughly discussed by Saltelli et al. 675 
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(2019) with respect to sensitivity analysis practices). Multi-way SA methods have been 676 

proposed (Leonelli et al., 2017; Gómez-Villegas et al., 2013), but they can rapidly become 677 

intractable.  678 

In this context, the proposed BBR approach can be considered more complete by providing 679 

global insight on the sensitivity by means of the partial effects (Fig. 4,10,13,14), which directly 680 

show the individual, possibly non-linear, effects of all CPM parameters. In Sect. 4, we have 681 

shown how the BBR approach can provide richer information than existing methods at multiple 682 

levels:  683 

- Level (1): it selects the most influential parameters and it screens those that are of 684 

negligible influence (information that is generally unknown a priori); 685 

- Level (2): it provides the functional relation between the CPM parameters and the result 686 

of the probabilistic query. The proposed approach builds on a graphical presentation of 687 

the results, which eases the interpretation;  688 

- Level (3): the practitioner can study how the combined effect of the CPM parameters 689 

can lead to different probabilistic regimes (e.g., situations of high probability values) by 690 

studying the evolution of the Beta mean. Furthermore, the practitioner can measure the 691 

confidence in the occurrence of the identified probabilistic regimes, by studying the 692 

effect on the Beta  parameter. 693 

Table 5 provides a summary of the strengths and weaknesses of the BBR approach with 694 

comparison to the approach based on sensitivity functions. 695 

 696 

[Table 5 about here] 697 

 698 

From an operational viewpoint, we tested the applicability of the BBR approach using different 699 

application cases covering a large spectrum of situations, namely (1) a small discrete BBN, 700 

used to capture medical knowledge, to exemplify the functionalities; (2) a linear Gaussian BBN, 701 

used to assess the damage of reinforced concrete structures, exemplifies a case where the 702 

number of parameters is too large to be easily processed and interpreted (>40 parameters); (3) 703 

a discrete BBN, used for reliability analysis of nuclear power plant, exemplifies a case where 704 

analytical solutions for sensitivity can hardly be derived. To ease the implementation, we 705 

proposed a procedure based on random experiments, i.e. the BBN-based results are derived 706 
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from randomly generated values of the CPM parameters. This procedure is generic, because it 707 

can be applied to any CPM parameters whatever the type of the considered BBN: discrete (with 708 

CPT entries), continuous (with regression coefficients), or hybrid.  709 

However, it should be underlined that providing information on the global effect of the CPM 710 

parameters comes at the expense of a larger computational effort and complexity. The number 711 

of calls to the BBN inference engine is larger (typically >1,000) compared to the sensitivity 712 

functions, which may become problematic when the inference is difficult (hence time 713 

consuming) to perform.  714 

The pillar of the BBR approach is the adequacy of the BBR model to explain the BBN-derived 715 

probabilities. This adequacy should be carefully checked, and we propose here to investigate 716 

the statistics of the residuals. In some situations, this might reveal situations where the 717 

interpretation should be conducted with care as exemplified by the third application case. The 718 

difficulties encountered for this case is also related to the characteristics of the sensitivity 719 

analysis. Contrary to the brain tumour and to the reinforced concrete BBN, this case does not 720 

consider the value of the CPM parameters directly, but the physical parameters that influence 721 

them. This adds a level of complexity to the problem and make the BBR model more difficult 722 

to fit.  723 

Finally, it should be noted that the second application case shows that the BBR approach is 724 

robust even in the presence a large number of parameters (which can rapidly grow as a function 725 

of the number of BBN nodes). Yet, the applicability to complex cases with several hundreds of 726 

nodes (and thousands of parameters), like the pathfinder network (Heckerman et al., 1992), 727 

remains an open question especially regarding two aspects: (1) the capability of the combined 728 

“gradient boosting- stability selection analysis” to handle so many terms; (2) the complexity of 729 

the interpretation of the partial effects. 730 

 731 

6 Summary and future research directions 732 

The rapidly increasing advances of BBN for modelling of expert systems calls for the 733 

developments of robust methods for their validation and verification (e.g., Marcot and Penman, 734 

2019). One major pillar to fulfil this purpose is sensitivity analysis. The proposed BBR 735 

approach broadens the scope of existing BBN sensitivity analysis methods by providing a larger 736 

vision (global) on the CPM influence. The approach has the advantage of being generic (it can 737 
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be applied to any kind of BBN, i.e. discrete, Gaussian or hybrid), and robust to the number of 738 

parameters (that can rapidly increase, typically reaching several dozens, even for moderate 739 

number of BBN nodes). 740 

Bringing the BBR approach to a fully operational state, raises different questions that should 741 

be addressed in future work. The first line of future research should concentrate on the 742 

intensification of the applicability tests using very large-scale BBNs. An important aspect to be 743 

tested is the applicability to highly constraining situations where the number of variables largely 744 

exceeds the size of the training database. In such cases, the performance of the stability selection 745 

analysis should be more extensively investigated (see Meinshausen & Bühlmann, 2010; 746 

Thomas et al., 2018). The second research direction should concentrate on improving the 747 

interpretability of the results. The graphical representation of the partial effects is a strength of 748 

the BBR approach but might lose its conciseness as the number of functional terms selected as 749 

important largely increases (>100). We should take advantage of advances in distributional 750 

regression methods that rely on trees like the one proposed by Grün et al. (2012) for Beta 751 

regression. The presentation of the results using a network is expected to provide a more concise 752 

and understandable presentation of the results. Finally, it should be underlined that the current 753 

work has focused on only one part of the problem of uncertainties in BBNs. The CPM 754 

parameters constitute only one ingredient for BBN development; the second one being the DAG 755 

specification, which has its own challenges as well, in particular when the learning is based on 756 

data (see e.g., a comprehensive review by Heinze-Deml et al., 2018). To address the whole 757 

spectrum of uncertainties in BBN building, sensitivity methods both covering DAG and CPM 758 

learning would be beneficial. Again, a solution relying on trees is worth investigating, as 759 

recently proposed to deal with psychometric networks (Jones et al., 2019). 760 

761 
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Tables 907 

Table 1. CPT entries for the brain tumor BBN. For instance P(c|b0,isc1) corresponds to the 908 

probability of node C being in state 1 conditioned by the fact that node B is in state 0 and ISC 909 

is in state 1. The meaning of the other probabilities should be understood following this 910 

example. 911 

Node Conditional 

probability 

MC P(mc)=0.20 

B P(b|mc1)=0.20 

P(b|mc0)=0.05 

ISC P(isc|mc1)=0.80 

P(isc|mc0)=0.20 

C P(c|b1)=0.95 ;  

P(c|b1,isc1)=0.80 

P(c|b1,isc0)=0.80 

P(c| b0,isc0)=0.05 

CT P(ct|b1)=0.95 

P(ct|b0)=0.10 

SH P(sh|b1)=0.80 

P(sh|b0)=0.60 

 912 

 913 

  914 
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Table 2. Definition of the CPT entry in the concrete BBN. 915 

Node Description 

X1 Damage assessment 

X2 Cracking state 

X3 Cracking state in shear domain 

X4 Steel corrosion 

X5 Cracking state in flexure domain 

X6 Shrinkage cracking 

X7 Worst cracking in flexure domain 

X8 Corrosion state 

X9 Weakness of the beam 

X10 Deflection of the beam 

X11 Position of the worst shear crack 

X12  Breadth of the worst shear crack 

X13  Position of the worst flexure crack 

X14  Breadth of the worst flexure crack 

X15  Length of the worst flexure cracks 

X16  Cover 

X17  Structure age 

X18  Humidity 

X19  PH value in the air 

X20 Content of chlorine in the air 

X21 Number of shear cracks 

X22  Number of flexure cracks 

X23  Shrinkage 

X24 Corrosion 
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Table 3. Definition of the CPM parameters of the concrete BBN; for instance m0_1, is the 916 

intercept of the regression model (Eq. 1) linking node X1 to its parents; Z1_9 is the regression 917 

coefficient that models the relation between node X1 and X9; s0_1 is the corresponding standard 918 

deviation. 919 

Node Intercept Regression 

coefficient 

Standard 

Deviation 

X1 m0_1=0 Z1_9=0.3 

Z1_2=2 

Z1_10=0. 

s0_1=1e-4 

X2 m0_2=0 Z2_5=0.7 

Z2_4=0.5 

Z2_6=0.3 

Z2_3=0.7 

s0_2=1e-4 

X3 m0_3=0 Z3_8=0.3 

Z3_21=0.5 

Z3_12=0.9 

Z3_11=0.7 

s0_2=1e-4 

X4 m0_4=0 Z4_5=0.3 

Z4_24=0.7 

Z4_8=0.7 

s0_4=1e-4 

X5 m0_5=0  Z5_22=0.5 

Z5_7=0.9 

Z5_13=0.7 

s0_5=1e-4 

X6 m0_6=0 Z6_23=0.3 

Z6_8=0.7 

s0_6=1e-4 

X7 m0_7=0 Z7_17=0.4 

Z7_16=0.4 

Z7_15=0.6 

Z7_14=0.6 

Z7_8=0.6 

s0_7=1e-4 
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X8 m0_8=0 Z8_20=0.8 

Z8_19=0.9 

Z8_18=0.5 

s0_8=1e-4 

 920 

 921 

Table 4. Parameters for constructing the CPT of the BBN-based reliability assessment 922 

Parameter Symbol Original value 

Mean and Standard deviation value of the log-

normal fragility curve for STR 

STR, STR -6.48, 2.32 

 

Mean and Standard deviation of the log-normal 

fragility curve for EDG1 

EDG1, EDG1 -12.250, 6.22 

Mean and Standard deviation of the log-normal 

fragility curve for EDG2 

EDG2, EDG2 -4.66, 2.20 

Dunnett-Sobel decomposition’s parameters t1,2,3 0.914, 0.942, 0.999 

 923 

  924 
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Table 5. Summary of the strengths and weaknesses of the BBR method and of the approach 925 

based on sensitivity functions. 926 

Approach Strengths Weaknesses 

Sensitivity 

function  

It is simple to implement; 

It requires a low computational 

effort; 

The graphical representation is 

straightforward to interpret. 

It is local: it focuses on the influence 

of one (or multiple) CPT parameters 

while the other ones are kept 

constant; 

It is restricted to the analysis of 

discrete BBNs; 

Multi-way SA can rapidly become 

intractable. 

BBR It provides insight in the global 

influence; 

It is simple to implement using 

random sampling, which is a 

generic procedure applicable to 

any types of BBNs; 

The results are intuitive to interpret 

based on a graphical presentation; 

It provides multilevel information 

on sensitivity; 

The combination of gradient 

boosting and stability selection 

increases the robustness to the 

number of parameters. 

The number of calls to the BBN 

inference engine can be large 

(>1,000); 

The adequacy of the Beta model 

should be carefully checked; 

The demonstration of the 

applicability to very large-scale 

BBNs with hundreds of nodes and 

thousands of CPM parameters 

remains to be done. 

 927 

  928 
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Appendix A: Bayesian Belief Network Analysis 929 

The analysis of Bayesian Belief Network relies on conditional probabilities. Consider Xi=1,…,n 930 

the n nodes of the BBN. The joint probability distribution can be expressed using conditional 931 

probability as: 932 

 933 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑋1, … , 𝑋𝑖−1)
𝑛
𝑖=1       (Eq. A1) 934 

 935 

This equation simplifies under the conditional independence assumption as: 936 

 937 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|Pa(𝑋𝑖))
𝑛
𝑖=1        (Eq. A2) 938 

where Pa(𝑋𝑖) corresponds to the parent nodes of Xi. For discrete nodes, the value of 939 

𝑃(𝑋𝑖|Pa(𝑋𝑖)) is the entry of the Conditional Probability Table. For continuous nodes, 940 

𝑃(𝑋𝑖|Pa(𝑋𝑖)) can be modelled by a continuous probability distribution whose parameters 941 

depend on the values of the parent nodes. 942 

 943 

Conditional queries aim at evaluating the conditional probability of some event, e.g. node Xj 944 

takes up the value x when new information/observations become available, i.e. given new 945 

“evidence” (denoted e), namely P(Xj=x | e). This procedure, termed as query, relies on inference 946 

techniques. Exact inference in a BBN is possible, but is generally not possible in large networks. 947 

For networks, which contain a large number of nodes, arcs, or have nodes comprised of 948 

variables with large numbers of levels, exact inference becomes too computationally intensive. 949 

Among the possible approximate inference algorithms, the present study relies on the logic 950 

sampling method (Koller and Friedman 2009), which works from the root nodes down to the 951 

leaf nodes. First, a random draw from each of the leaf nodes is taken with probabilities equal to 952 

the respective levels. The distributions for the next level of nodes can then be marginalized 953 

based on the draws obtained from their parents. From these marginal distributions a random 954 

draw is again taken respective of the categorical probabilities. This process is repeated until a 955 

draw has been taken from every node in the network. This completed case represents a single 956 

sample. After many samples have been taken, the samples are subsetted to the cases which 957 

match the evidence of interest. Estimated probabilities can then be obtained for any node of 958 

interest from this subset of the samples. 959 

 960 

  961 
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Appendix B: Gradient boosting within GAMLSS framework 962 

We first describe the principles of model-based gradient boosting (Sect. B1), and describe how 963 

to apply it within the GAMLSS framework (Sect. B2). 964 

B1 Gradient boosting 965 

This supervised learning technique (e.g., Bühlmann and Hothorn, 2007) combines an ensemble 966 

of simple regression models (termed as base-learners), such as linear regression models or 967 

regression splines of low degree of freedom, to estimate complex functional relationships. 968 

Consider the training dataset D={C(j), P(j)}j=1,…,n where C is the vector of p predictor variables 969 

ci=1,…,p and P is the variable of interest, whose expected value (possibly its transformed value) 970 

is modelled by an additive model as follows: 971 

 972 

(𝑪) = 
0
+∑ 𝑓𝑗(𝑐𝑗|𝑗)

𝐽
𝑗=1         (Eq. B1) 973 

 974 

where Jp, 
0
 is a constant intercept and the additive effects 𝑓𝑗(𝑐𝑗|𝑗) are pre-defined 975 

univariate base-learners, which typically correspond to (semi-)parametric effects with 976 

parameter vector 
𝑗
. 977 

To estimate the parameters 
𝑗
, the boosting algorithm minimizes the empirical risk R, which 978 

corresponds to the sum of loss function  over all training data: 979 

 980 

𝑅 = ∑ (𝑃(𝑗),(𝑪(𝒋)))𝑛
𝑗=1         (Eq. B2) 981 

 982 

where the loss function  can take different forms, such as the quadratic loss (𝑃(𝑗) − (𝑪(𝒋)))², 983 

which corresponds to the ordinary least square regression or more generally, it can correspond 984 

to the negative log-likelihood of the distribution of the variable of interest P (in the case 985 

considered here, this corresponds to the Beta distribution). 986 

Among the different boosting algorithms, we focus on the component-wise gradient boosting 987 

approach of Bühlmann and Hothorn (2007). Instead of focusing on the true outcomes P=(P(1), 988 

P(2),…, P(n)), this procedure aims at fitting simple regression-type base learners h(.) one by one 989 

to the negative gradient vector of loss u=(u(1), u(2),…, u(n)). The objective is to approximate the 990 

jth effect 𝑓𝑗(𝑐𝑗|𝑗) = ∑ ℎ𝑗(. )𝑚  at iteration m of the algorithm. Formally, u is evaluated 991 
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considering the current estimated (i.e. iteration m-1) additive predictor model ̂
[𝑚−1](𝑪(𝑗)) as 992 

follows: 993 

 994 

𝒖 = (−
𝜕

𝜕
(𝑃,)|

=̂
[𝑚−1](𝑪(𝑗)),𝑃=𝑃(𝑗)

)
𝑗=1,…,𝑛

     (Eq. B3) 995 

 996 

In every boosting iteration, each base-learner is fitted separately to the negative gradient vector. 997 

The best-fitting base-leaner is then selected based on the residual sum of squares with respect 998 

to u as follows: 999 

 1000 

𝑗∗ = argmin
𝑗1,…,𝐽

∑ (𝑢(𝑖) − ℎ𝑗(𝑪
(𝑖)))²𝑛

𝑖=1        (Eq. B4) 1001 

 1002 

The selected base-leaner is used to update the current predictor model as follows: 1003 

 1004 

̂
[𝑚] = ̂

[𝑚−1] + 𝑠. ℎ𝑗∗(𝑪)        (Eq. B5) 1005 

where s is a step length (with typical value of 0.1). 1006 

 1007 

The main tuning parameter is the number of iterations m, which directly determines the 1008 

prediction performance. If m is too large, rich models with large number of predictors and rough 1009 

functional terms will be constructed (hence leading to overfitting), which might hamper the 1010 

interpretability of the resulting model. If m is too low, sparse models with smooth functional 1011 

terms will be constructed but with the danger of missing some important predictor variables. In 1012 

practice, the selection of m can be carried out using cross-validation procedures in order to 1013 

optimize the predictive risk on observations left out from the fitting process i.e. the “out-of-1014 

bag” risk which corresponds to the negative log-likelihood for the considered probabilistic 1015 

distribution calculated for the “out-of-bag” samples. 1016 

 1017 

B2 Boosted GAMLSS 1018 

The afore-described algorithm can be applied to the GAMLSS framework by cycling through 1019 

the distribution parameters  in the fitting process (Thomas et al., 2018: Algorithm 1). In each 1020 

iteration, the best fitting base-learner is evaluated for each distribution parameter, while the 1021 
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other ones remain fixed. For a probability distribution with two parameters (like the Beta 1022 

distribution), the update in the boosting algorithm at iteration m holds as follows: 1023 

 1024 

𝜕

𝜕1

 (𝑃, 1
[𝑚], 2

[𝑚])
update
→    

1

[𝑚+1]
       (Eq. B6) 1025 

𝜕

𝜕2

(𝑃, 1
[𝑚+1]

,2
[𝑚]
)
update
→    

2

[𝑚+1]
       (Eq. B7) 1026 

 1027 

In the original cyclic algorithm, (see algorithm 1 described by Thomas et al. (2018)), separate 1028 

stopping values have to be specified for each parameter, which motivated the development of 1029 

a noncyclic algorithm (algorithm 2 by Thomas et al. (2018)), which avoids optimizing two 1030 

different stopping iterations and reducing the optimisation problem from a multi-dimensional 1031 

to a one-dimensional problem. 1032 

 1033 

  1034 
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Appendix C: Stability Selection Analysis 1035 

This appendix describes the procedure for stability selection (Meinhausen and Bühlmann, 1036 

2010). Consider p predictor variables cj=1,…,p and the predictand P. Based on n observations, the 1037 

stability selection with boosting proceeds as follows: 1038 

Step 1. Select a random subset of size [n/2] of the data (where [n/2] corresponds to the largest 1039 

integer  n/2); 1040 

Step 2. Fit a boosting model and continue to increase the number of boosting iteration until q 1041 

base-learners are selected. 𝑆̂
[
𝑛

2
]
 corresponds to the set of selected variables; 1042 

Step 3. Repeat steps 1 and 2 for b=1,…,B; 1043 

Step 4. Compute the selection probabilities per base learner as follows: 1044 

𝑃𝑗 =
1

𝐵
∑ 𝐈{𝑗𝑆̂

[
𝑛
2],𝑏

}
𝐵
𝑏=1          (Eq. C1) 1045 

 1046 

where I(A) is the indicator function, which reaches 1 if A is true, 0 otherwise. 1047 

Step 5. Select all base-learners associated to a selection probability of at least t. The set of stable 1048 

selected variables is thus 𝑆̂ = {𝑗: 𝑃𝑗 ≥ 𝑡}. 1049 

Meinhausen and Bühlmann (2010) studied the error of selecting false positive variables (i.e. 1050 

noise variables) and showed that the selection procedure controls the per-family error rate 1051 

(PFER) and an upper bound is provided as follows: 1052 

 1053 

𝑃𝐹𝐸𝑅
𝑞²

(2𝑡−1)𝑝
         (Eq. C2) 1054 

 1055 

where q is the number of selected variables per boosting iteration, p is the number of (possible) 1056 

predictors and t is the selection threshold. In practice, at least two of these parameters have to 1057 

be specified to run the procedure. In the application case of Sect. 4.1, we specified the upper 1058 

bound of PFER (set up at 1) and q at 10. An extensive investigation of the applicability of this 1059 

procedure for distributional regression within the boosted GAMLSS setting has been carried 1060 

out by Thomas et al. (2018). 1061 
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Appendix D: Residuals for Beta regression 1062 

The following appendix describes the main formulations of the residuals for Beta regression 1063 

based on Pereira (2019) and references therein.  1064 

Let us consider the raw response residuals for the ith observation Pi defined as 𝑟𝑖 = 𝑃𝑖 − 𝑃𝑖̂ 1065 

where 𝑃̂ is the mean µ predicted by BBR model. For sake of presentation, let us consider the 1066 

Beta parameter 𝜑 =
1

𝜎2
− 1  where  is defined in Sect. 2.1. 1067 

The deviance residual is defined as: 1068 

𝑟𝑖
𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 𝑟𝑖. √2|𝐿(𝑃, 𝜑) − 𝐿(µ, 𝜑)|       (Eq. D1) 1069 

where the bivariate function L(.,.) holds as follows: 1070 

𝐿(µ, 𝜑) =  𝑙(𝜑) − 𝑙(𝜑. µ) − 𝑙((1 − µ). 𝜑) + (µ. 𝜑 − 1). log(𝑃) + ((1 − µ). 𝜑 − 1). log (1 − 𝑃) (Eq. D2) 1071 

where 𝑙(. ) is natural logarithm of the absolute value of the gamma function. 1072 

 1073 

The standardized weighted residual 1 originally introduced by Espinheira et al. (2008) is 1074 

defined as follows: 1075 

𝑟𝑖
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

= 
𝑃∗−µ∗

√𝑣
          (Eq. D3) 1076 

where 𝑃∗ is the quantile for the logistic distribution with location set up at zero and scale at one, 1077 

and 1078 

µ∗ = ′′(µ. 𝜑) − ′′((1 − µ). 𝜑)        (Eq. D4) 1079 

𝑣 = ′′′(µ. 𝜑) − ′′′((1 − µ). 𝜑)        (Eq. D5) 1080 

where ′′ and ′′′ are respectively the second and third derivative of the  function. 1081 

 1082 

The quantile residual is defined as: 1083 

𝑟𝑖
𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒 = −1(𝐹(𝑃, µ, 𝜑))         (Eq. D6) 1084 

where −1 is the inverse of the cumulative probability function of the standard normal 1085 

distribution and F is the cumulative probability function of the Beta law. 1086 

 1087 


