MINnD UC8-GT: Geotechnical data standardization and management for BIM and Smart Cities

108th OGC Technical Committee, Joint IDBE / Smart Cities / LandInfra session
Stuttgart, Germany
Mickaël Beaufils (BRGM), on behalf of the MINnD UC8-GT team
11 September 2018
- A French collaborative program to extend BIM methods and standards from building to infrastructure modeling
- In connection with buildingSmartFrance (MediaConstruct)
- 70 partners
Context: MINnD UC8

- MINnD UC8: Underground Infrastructures (mid 2017-2018)
 - Focus on tunnels, underground spaces
 - Focus on the design part (not construction and exploitation of the infrastructure)
 - 14 partners involved

- Two teams:
 - GC: describe construction and equipments
 - GT: describe environment and interaction with construction

Copyright © 2018 Open Geospatial Consortium
Context: MINnD UC8-GT

• Concrete applications / feedback
 – Lyon-Turin (rail)
 – Grand Paris Express (rail)
 – CIGEO project (rail)
 • Long term and deep storage of radioactive waste
 • Several connected tunnels

• Objective
 – Sustainable organization of data to ensure smooth transition between design, construction and maintenance
 – Being able to retrieve data in 100 years
Challenges

• A very cross-frontier topic
 – Geoscience / Civil Engineering
 – GIS / BIM (+ geomodelling tools!)
 – OGC / bSI

• « Which kind of interoperability do we want? »
 – Extending IFC with geo* concept (An, 2017), (China BIM alliance, 2015)?
 – Integrating BIM data into earth models? city models including subsurface, natural + anthropic?
 – Something else?

• Think outside the (project) box
 – Data maintenance, reuse > the last «Ds» of BIM
 – From smartbuilding and infrastructures to smart cities
Tasks of the MINnD UC8-GT group

- Explicit the geoengineering activity
- Determine which data are exchanged

- Conceptual model / Data Dictionary
 - Propose data organization
 - Define semantics

- How to fulfill the exchange requirements?
 - How to get / update data

Information Delivery Manual (IDM)

...in connection with the other group (GC)
...and in connection with the current dynamics
A definition of geoengineering activity

• A very mis-used term. A lot of confusion with geology, hydrogeology.

• Geoengineers aim at characterizing subsurface to help civil engineers to define how to build (if it is possible)

• Thus:
 – They propose infrastructure sizing
 – They propose construction methods
 – They assess risks of the project and impacts on:
 • Surrounding constructions and existing utility networks,
 • Environment (pollution, excavated materials to evacuate)
Comprehension of the geoengineering activity

- 9 main topics

<table>
<thead>
<tr>
<th>Designation</th>
<th>Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure sizing and definition of the geotechnical influence zone</td>
<td>CALC</td>
</tr>
<tr>
<td>Construction methods</td>
<td>MECO</td>
</tr>
<tr>
<td>Risk and uncertainty assessment</td>
<td>RISK</td>
</tr>
<tr>
<td>Anthropic environment impact</td>
<td>AVOI</td>
</tr>
<tr>
<td>Environmental impact</td>
<td>ENVI</td>
</tr>
<tr>
<td>Geological modeling</td>
<td>GEOL</td>
</tr>
<tr>
<td>Hydrogeological modeling</td>
<td>HYDR</td>
</tr>
<tr>
<td>Geotechnical modeling</td>
<td>GTCH</td>
</tr>
<tr>
<td>Observations and Measurements</td>
<td>RECO</td>
</tr>
</tbody>
</table>

GEOL, HYDRO, GTCH
AVOI, ENVI, RISK

Model(s)

Combine data to build an interpretation of a phenomenon

Use model(s) to define « How to build »

Observation(s)

Get data from the field or feedback

Preconisation(s)

Build following preconisations

Real world

CALC
MECO
Expliciting the geotechnical activity processes

- Information Delivery Manual (IDM)
 - Workflow description
 - ISO 29481-1:2016
 - 1 per subject

- Highlight basics
 - Who does what?
 - Which data?
 - Which results?

- Focus on knowledge construction
 - Not methods and tools
Some feedback from the geoengineering activity study

- Several kind of geoscientists involved in a project
 - Geologist, hydrogeologist, geoengineer, driller, geodata manager, …
 - Sometimes two roles can be addressed by only one person

- Tools heterogeneity
 - Each actor may have its own kind of tool
 - Several software / editors for the same kind of tool

- Semantic heterogeneity
 - Importance of common vocabs (eg. IUGS-CGI)

- 3D geomodelling is only 5% of the projects
<table>
<thead>
<tr>
<th>Concepts to address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations on the field</td>
</tr>
<tr>
<td>Measurements</td>
</tr>
<tr>
<td>Results of calculus / estimations</td>
</tr>
<tr>
<td>Lab analysis</td>
</tr>
<tr>
<td>Geology logs</td>
</tr>
<tr>
<td>Boreholes</td>
</tr>
<tr>
<td>GeologicUnit / GeologicStructure and specializations</td>
</tr>
<tr>
<td>Aquifer, fluid bodies, void, flows</td>
</tr>
<tr>
<td>Existing buildings</td>
</tr>
<tr>
<td>Existing networks</td>
</tr>
<tr>
<td>Risk zones</td>
</tr>
<tr>
<td>Survey / Campaign</td>
</tr>
<tr>
<td>Geomodel</td>
</tr>
</tbody>
</table>

Proposition of mapping with OGC + INSPIRE data models
Lyon-Turin tunnel hydrogeological modeling

• Cross-section view along the project axis

• Geological model as the base for the hydrogeological model

• Adding refinements (layer merge) to represent homogeneous area regarding hydrogeological parameters

• Additional data according to hydrogeological « issues » that can be faced along the axis of the project
 – Ex : aggressive water presence, hot water presence
Other propositions from the group

• Attaching geotechnical information to the alignment
 – Being able to know what « geo » issue can be faced at each step on the tunnel axis
 • Risk concerning hydrogeology: hot water, aggressive water,
 • Risk concerning geologic formation property change
 • Risk concerning geologic structure: fault presence
 • Risk concerning surrounding construction
 • Risk concerning pollution on environment
 – API to get those information from geomodels on demand?

• Define which IFC properties of an element can be impacted by each « geo » particularity
 – Eg. Expected speed of the train have an impact on the alignement geometry
 – Some geotechnical property may have direct impact on choice of some equipments
Summary

• Geoengineering is not (only) provision of « map » of the subsurface
 – It goes further with the proposition of structure sizing, construction methods and risk assessment
 – At least, a lot of O&M to deal with

• Several (if not all) needed concepts are already in a OGC / INSPIRE data model
 – Relying on them would facilitate compatibility between geoscience data for constructions and other geoscience data
 – It would also help aggregation of geodata
 – Activities of geoscience data harmonization are already on the run (BoreholeIE)

• A very cross-frontier topic
 – To be addressed by bSI and OGC together, targetting common conceptual models
 – Thursday 13th Expert panel on geotechnics for BIM organised by bSI
Thanks for your attention!

• Questions ?

• Contact:
 – m.beaufils@brgm.fr

• Useful links: