

Calcium silica speciation and carbonation in cement systems

P. Blanc^{1*}, A. Tasi², X. Gaona², L. André^{1,4}, S. Grangeon¹, A. Lach¹, M. Altmaier², B. Madé³

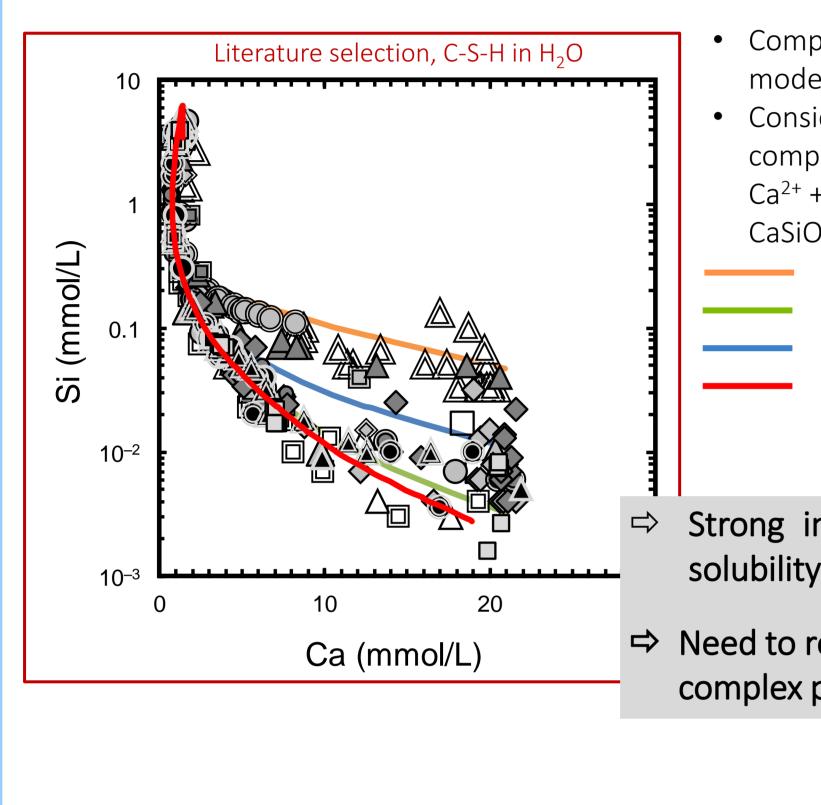
1 - BRGM, BP36009, 45060, Orléans, France (*correspondence: p.blanc@brgm.fr)

2 - Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany

3 - Andra, F-92298 Châtenay-Malabry Cedex, France

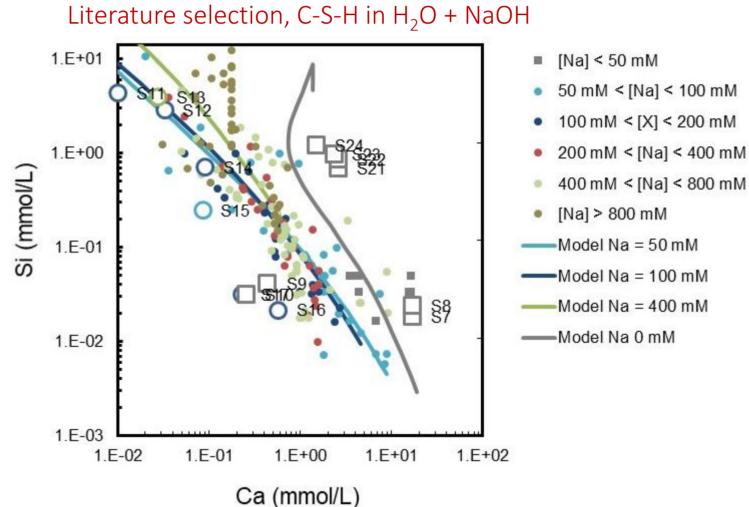
4 - Université d'Orléans, CNRS, BRGM, UMR 7327 Institut des Sciences de la Terre d'Orléans, 45071 Orléans, France

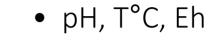
Deep disposal concepts for radioactive waste are usually based on a multiple barriers which may involve cementitious materials and thus alkaline media. In such regard, silica and calcium speciation is of major importance for geochemical calculations. The existence of mixed calcium-silica complexes (CaSiO(OH)₃⁺ and especially CaSiO₂(OH)₂) was inferred in previous works [1, 2]. The present study proposes an assessment for the influence of such complexes on cement hydrates (C-S-H) solubility, with a specific focus on experiment conditions and carbonation, based on a set of lab experiments and measurements, including a short assessment of previous works.


Context

Synthesis of solutions

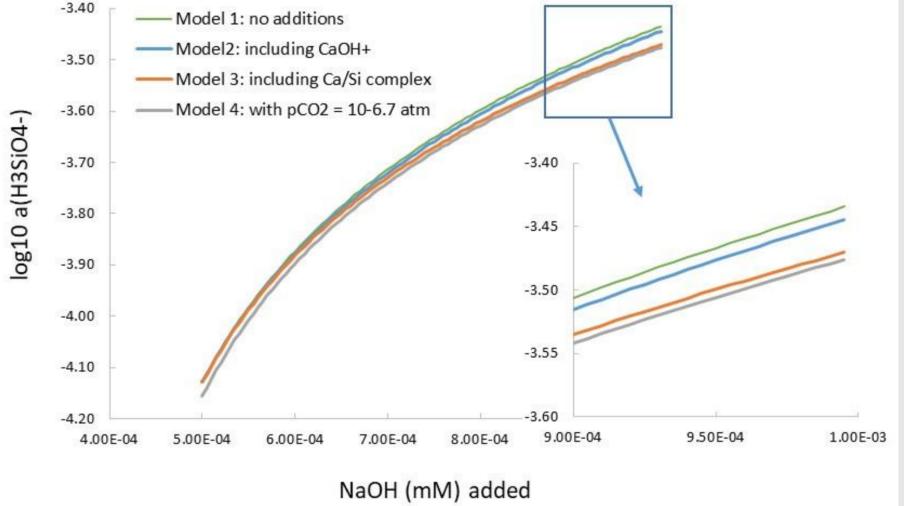
Solution analyses



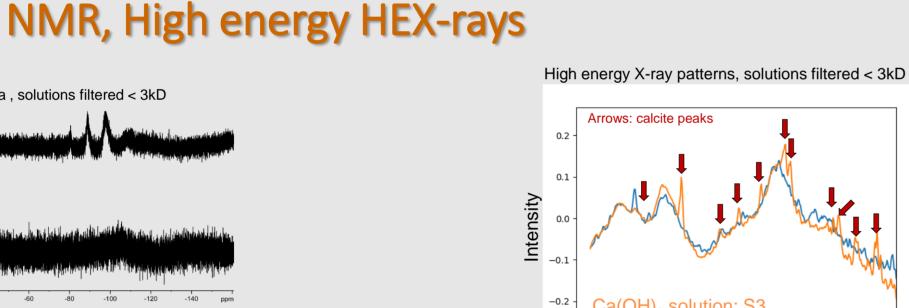


- Comparison with the C-S-H model from Roosz et al [4] Considering for the neutral complex $Ca^{2+} + SiO_2(OH)_2^{2-} =$ $CaSiO_2(OH)_2^0$ $\log_{10}\beta^0 = 4.5 [1];$ $\log_{10}\beta^0 = 2.9 [2];$ $\log_{10}\beta^0 = 4.0$ [3] or no Ca-Si complex
- Strong influence on C-S-H solubility
- \Rightarrow Need to refine complex properties ...

- Glovebox + NaOH traps
- Na₂SiO₃ solution (Merck[®]), SiO₂ (Aerosil[©]), NaOH 1M (Merck[®]), Ca(OH)₂ (Merck[®], heated at 1000°C 12h)
- Filtrated at 0.1 µm, ultra filtrated at 10kD, 3kD
- Mother solutions S1-S6 ; C-S-H solutions S7-S10 and S21-S24; N-C-S-H solutions S11-S17

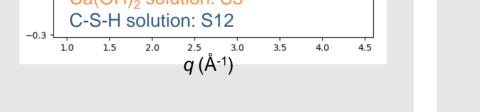


- Dissolved Si, Ca, Na by ICP-MS and ICP-AES
- After 0.1µm filtration, after 10 and 3 kD filtration
- Ca²⁺ ISE electrodes measurements

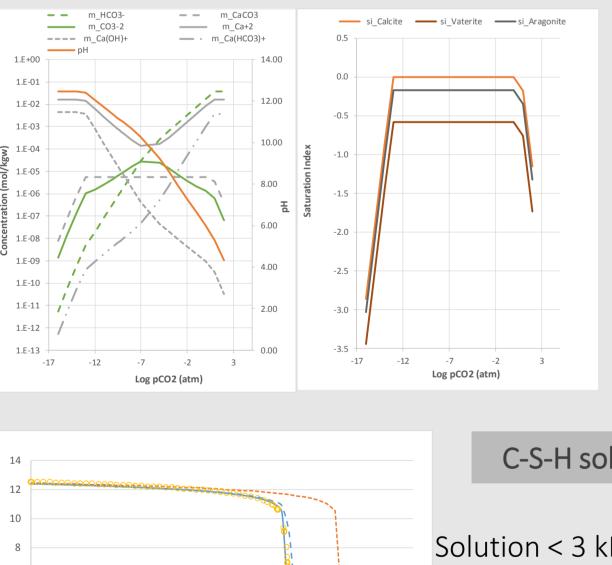

	Theory (mM)	Ca T (mM)	Ca (< 3 kD, mM)	Δ (mM)	Ca T (mM)	Ca (< 10 kD, mM)	Δ (mM)
S3	20.00	19.93			16.40	18.30	-1.90
S7	19.82	18.98	16.73	2.25	16.70	17.70	-1.00
S8	19.95	19.17	16.88	2.29	16.80	17.40	-0.60
S9	1.00	0.85	0.44	0.41	0.68	0.64	0.04
S10	0.40	0.36	0.25	0.11	0.29	0.25	0.04
S11	8.99	< 0.01	<0.01		0.15	<0.17	
S12	0.20	0.03	0.03	0.00	<0.048	<0.05	
S13	0.20	0.02	0.03	-0.01	0.06	0.05	0.01
S14	0.99	0.09	0.09	0.00	0.11	0.12	-0.01
S15	0.10	0.09	0.08	0.01	0.12	0.10	0.02
S16	3.00	2.86	0.57	2.29	1.53	1.55	-0.02
S17	1.00	0.96	0.23	0.73	0.23	0.24	-0.01
S21	3.20	2.63	2.59	0.03	2.32	2.33	-0.01
S22	3.20	2.64	2.63	0.02	1.96	2.01	-0.05
S23	2.85	2.36	2.32	0.03	1.87	1.89	-0.02
S24	1.75	1.48	1.48	0.00	1.56	1.61	-0.05
		Brgm			KIT - INE		

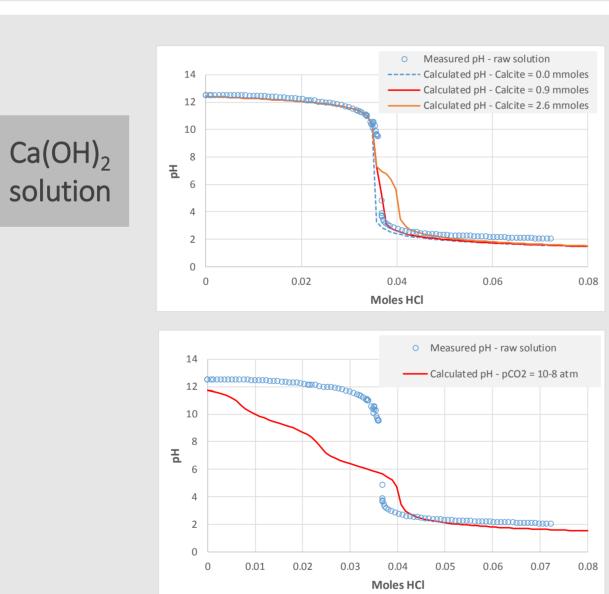
Comparison with previous literature

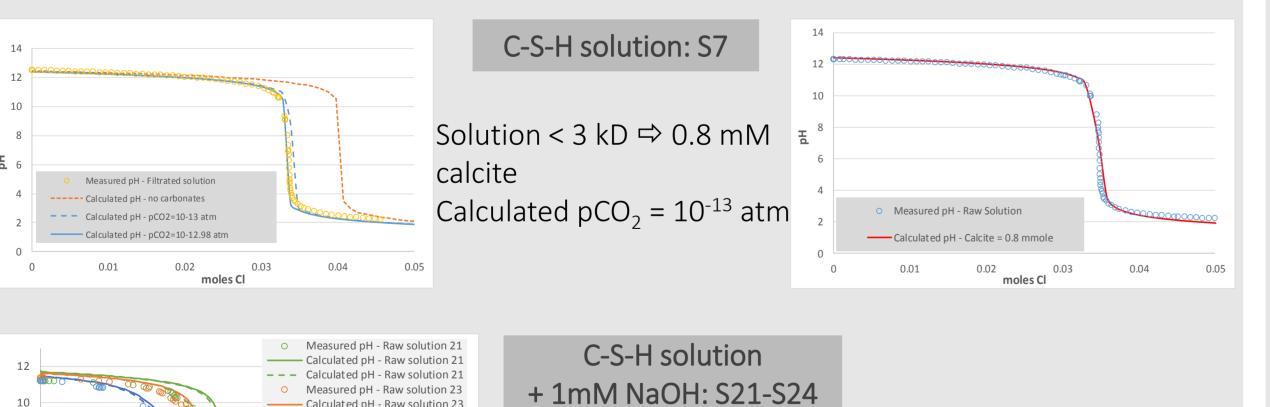
• Titration in 1M NaClO₄



²⁹Si NMR spectra , solutions filtered < 3kD

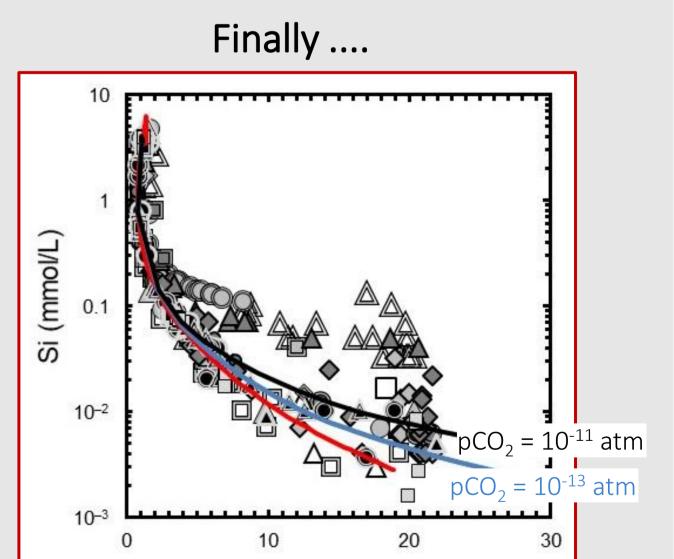

Santschi and Schindler [1]

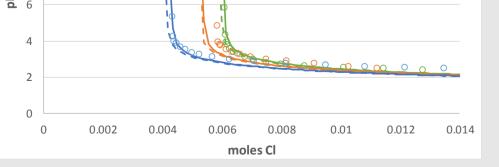

²⁹Si NMR and Raman are not sensitive enough, solids are detected by HEX-rays, calcite 10 nm and 0.2 mM


Calcite present after < 3 kD filtration, pCO_2 calculated = 10^{-13} atm

- [Si] = 2.25 mM, pH ranging from 8.3 to 8.9, [Ca] = 150, 200 and 250 mM
- preparation involves dissolved Na₂CO₃
- solids precipitate at the end of the experiment (pH = 8.9)
- no means reported to prevent carbonation
- speciation model do not consider carbonates nor calcium hydroxides complexes

A limited carbonation allow reproducing Santschi and Schindler [1] results without considering Ca-Si complexation




Nicoleau and Schindler [2]

•

 \bullet

Ca²⁺ activity without Ca-Si complexes Ca^{2+} ISE + pH measurements $R^2 = 0.996724$ 3.0E-03 Titration by Na₂SiO₃ 2.0E-0 [Ca]: 1 to 7 mM [Cl]: 2 to 14 mM Experimental Ca²⁺ activity (M) [Na]: 1 to 100 mM - Including CaSiO₂(OH)₂ improves r^2 [Si]: 0.2 to 1.3 mM

ured pH - Raw solution 2

 Calculated pH - Raw solution 24 – – Calculated pH - Raw solution 2

Raw solution 2

Conditions similar to Nicoleau and Schindler [2] Probable C-S-H precipitation Weak influence of the CaSiO₂(OH)₂ complex

In $N_{2(g)}$ atmosphere

- Considering $pCO_2 = 10^{-11}$ atm improves r² similarly by 1.22 10⁻⁴

by 1.36 10⁻⁴

3.0E-03

4.0E-03

5.0E-03

Ca (mmol/L)

Using Roosz et al. [4] model with $pCO_2 = 10^{-13}$ atm gives results similar to Nicoleau and Schindler [2]

Several analytical technics are used to characterize the filtered solutions (Raman, ²⁹Si NMR, High energy X-ray, acidic titrations, Ca-ISE, ICP). Measurements do not provide unambiguous proof of the presence of mixed calcium-silica complexes in the solutions. Rather, they indicate different sources of uncertainty in analytical methods (ICP) and Ca2+ ICE measurements, especially. Hex-rays results results clearly indicate a partial carbonation of the system. Modelling the titration experiments confirms the carbonation of the system, especially for high pH solutions. Finally, previous works dedicated to calcium-silica complexes are re-investigated and re-assessed regarding for the influence of carbonation. The latter can explain modifications of the overall speciation without involving the presence of mixed silica complexes.

Financial support from the Thermochimie project (Andra – RWM – SCK/CEN) TempArSiAmK and Brgm is gratefully acknowledged.

REFERENCES:

[1] Santschi, P.H., Schindler, P.W., 1974. Complex formation in the ternary systems Ca-H4SiO4-H2O and Mg-H4SiO4-H2O. Journal of the Chemical Society, Dalton Transactions, 181-184. [2] Nicoleau, L., Schreiner, E., 2017. Determination of Ca2+ complexation constants by monomeric silicate species at 25°C with a Ca2+ ion selective electrode. Cement and Concrete Research 98, 36-43. [3] Walker, C.S., Sutou, S., Oda, C., Mihara, M., Honda, A., 2016. Calcium silicate hydrate (C-S-H) gel solubility data and a discrete solid phase model at 25 °C based on two binary non-ideal solid solutions. Cement and Concrete Research 79, 1-30. [4] Roosz, C., Vieillard, P., Blanc, P., Gaboreau, S., Gailhanou, H., Braithwaite, D., Montouillout, V., Denoyel, R., Henocq, P., Madé, B., 2018. Thermodynamic properties of C-S-H, C-A-S-H and M-S-H phases: Results from direct measurements and predictive modelling. Applied Geochemistry 92, 140-156.