O. Edenhofer, Climate Change 2014: Mitigation of Climate Change; Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014.

T. Semertzidis, Can Energy Systems Models Address the Resource Nexus? Energy Procedia, vol.83, pp.279-288, 2015.

S. Pauliuk, A. Arvesen, K. Stadler, and E. G. Hertwich, Industrial ecology in integrated assessment models, Nat. Clim. Change, vol.7, pp.13-20, 2017.

E. Van-der-voet, Environmental Risks and Challenges of Anthropogenic Metals Flows and Cycles

, Working Group on the Global Metal Flows, pp.978-92, 2013.

D. P. Van-vuuren, B. J. Strengers, and H. J. De-vries, Long-term perspectives on world metal use-A system-dynamics model, Resour. Policy, vol.25, pp.239-255, 1999.

. Rohstoffe-für-zukunftstechnologien, Einfluss des Branchenspezifischen Rohstoffbedarfs in Rohstoffintensiven Zukunftstechnologien auf die Zukünftige Rohstoffnachfrage. ISI-Schriftenreihe Innovationspotenziale; 2., überarb. Aufl

G. Angerer, L. Erdmann, F. Marscheider-weidemann, M. Scharp, and A. Lüllmann, Fraunhofer-Institut für System-und Innovationsforschung, pp.978-981, 2009.

R. Moss, E. Tzimas, H. Kara, P. Willis, and J. Kooroshy, Critical Metals in Strategic Energy Technologies-Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies, 2012.

L. A. Espinoza, The Role of Emerging Technologies in Rapidly Changing Demand for Mineral Raw Material

, European Commission: Brussels, vol.27, 2012.

A. Elshkaki and T. E. Graedel, Dynamic analysis of the global metals flows and stocks in electricity generation technologies, J. Clean. Prod, vol.59, pp.260-273, 2013.

S. Hoenderdaal, L. Tercero-espinoza, F. Marscheider-weidemann, and W. Graus, Can a dysprosium shortage threaten green energy technologies? Energy, vol.49, pp.344-355, 2013.

A. Stamp, P. A. Wäger, and S. Hellweg, Linking energy scenarios with metal demand modeling-The case of indium in CIGS solar cells, Resour. Conserv. Recycl, vol.93, pp.156-167, 2014.

K. Habib and H. Wenzel, Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling, J. Clean. Prod, vol.84, pp.348-359, 2014.

L. Grandell, A. Lehtilä, M. Kivinen, T. Koljonen, S. Kihlman et al., Role of critical metals in the future markets of clean energy technologies, Renew. Energy, vol.95, pp.53-62, 2016.

A. Elshkaki, T. E. Graedel, L. Ciacci, and B. K. Reck, Resource Demand Scenarios for the Major Metals, Environ. Sci. Technol, vol.52, pp.2491-2497, 2018.

S. Deetman, S. Pauliuk, D. P. Van-vuuren, . Van-der, E. Voet et al., Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances, Environ. Sci. Technol, vol.52, pp.4950-4959, 2018.

R. Kleijn, . Van-der, E. Voet, G. J. Kramer, L. Van-oers et al., Metal requirements of low-carbon power generation, vol.36, pp.5640-5648, 2011.
DOI : 10.1016/j.energy.2011.07.003

A. De-koning, R. Kleijn, G. Huppes, B. Sprecher, G. Van-engelen et al., Metal supply constraints for a low-carbon economy? Resour, Conserv. Recycl, vol.129, pp.202-208, 2018.

E. G. Hertwich, T. Gibon, E. A. Bouman, A. Arvesen, S. Suh et al., Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies, Proc. Natl. Acad. Sci, vol.112, pp.6277-6282, 2015.

A. Boubault, S. Kang, and N. Maïzi, Closing the TIMES Integrated Assessment Model (TIAM-FR) Raw Materials Gap with Life Cycle Inventories: Integrated Assessment Using Life Cycle Inventories, J. Ind. Ecol, 2018.

B. C. O'neill, E. Kriegler, K. Riahi, K. L. Ebi, S. Hallegatte et al., A new scenario framework for climate change research: The concept of shared socioeconomic pathways, Clim. Change, vol.122, pp.387-400, 2014.

R. Loulou, M. Labriet, and . Etsap-tiam, The TIMES integrated assessment model Part I: Model structure, vol.5, pp.7-40, 2008.

R. Loulou and . Etsap-tiam, The TIMES integrated assessment model. Part II: Mathematical formulation, vol.5, pp.41-66, 2008.

, Energy Technology Systems Analysis Program E-TechDS-Energy Technology Data Source, p.31, 2018.

S. Selosse and O. Ricci, Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector, New insights from the TIAM-FR, vol.76, pp.967-975, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01069978

A. Dubreuil, E. Assoumou, S. Bouckaert, S. Selosse, and N. Ma?ïzi, Water modeling in an energy optimization framework-The water-scarce middle east context, Appl. Energy, vol.101, pp.268-279, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00757040

S. Kang, S. Selosse, and N. Maïzi, Strategy of bioenergy development in the largest energy consumers of Asia, Japan and South Korea). Energy Strategy Rev, vol.8, pp.56-65, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01234013

S. Kang, S. Selosse, and N. Maïzi, Is GHG mitigation policy enough to develop bioenergy in Asia: A long-term analysis with TIAM-FR, Int. J. Oil Gas Coal Technol, vol.14, pp.5-31, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01419991

O. Fricko, P. Havlik, J. Rogelj, Z. Klimont, M. Gusti et al., The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century, Glob. Environ. Change, vol.42, pp.251-267, 2017.

K. Riahi, D. P. Van-vuuren, E. Kriegler, J. Edmonds, B. C. O'neill et al., The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Glob. Environ. Change, vol.42, pp.153-168, 2017.

T. Bruckner, I. A. Bashmakov, Y. Mulugetta, H. Chum, A. De-la-vega-navarro et al., Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Climate Change, 2014.

M. D. Gerst, Linking Material Flow Analysis and Resource Policy via Future Scenarios of In-Use Stock: An Example for Copper, Environ. Sci. Technol, vol.43, pp.6320-6325, 2009.

N. T. Nassar, R. Barr, M. Browning, Z. Diao, E. Friedlander et al., Criticality of the Geological Copper Family. Environ. Sci. Technol, vol.46, pp.1071-1078, 2012.

J. H. Harmsen, A. L. Roes, and M. K. Patel, The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios, vol.50, pp.62-73, 2013.

K. Tokimatsu, H. Wachtmeister, B. Mclellan, S. Davidsson, S. Murakami et al., Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2 ? C target, Appl. Energy, vol.207, pp.494-509, 2017.

R. Herrington, Road map to mineral supply, Nat. Geosci, vol.6, pp.892-894, 2013.

, European Commission. Raw Materials Supply Group Study on the Review of the List of Critical Raw Materials

, European Commission: Brussels, p.93, 2017.

W. Rabe, G. Kostka, and K. Smith-stegen, China's supply of critical raw materials: Risks for Europe's solar and wind industries? Energy Policy, vol.101, pp.692-699, 2017.

B. Sprecher, L. Reemeyer, E. Alonso, K. Kuipers, and T. E. Graedel, How "black swan" disruptions impact minor metals. Resour, vol.54, pp.88-96, 2017.

, United Nations Environment Programme Decoupling Natural Resource Use and Environmental Impacts from Economic Growth; OCLC: 838605225; United Nations Environment Programme, 2011.

T. Prior, D. Giurco, G. Mudd, L. Mason, and J. Behrisch, Resource depletion, peak minerals and the implications for sustainable resource management, Glob. Environ. Change, vol.22, pp.577-587, 2012.

G. M. Mudd, The Sustainability of Mining in Australia: Key Production Trends and Environmental Implications, 2009.

M. Pehl, A. Arvesen, F. Humpenöder, A. Popp, E. G. Hertwich et al., Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling, Nat. Energy, vol.2, pp.939-945, 2017.

P. Christmann, Towards a More Equitable Use of Mineral Resources, Nat. Resour. Res, vol.27, pp.159-177, 2017.

F. Vivanco, D. Kemp, R. Van-der, and E. Voet, How to deal with the rebound effect? A policy-oriented approach, Energy Policy, vol.94, pp.114-125, 2016.

J. Guinée, Life Cycle Sustainability Assessment: What Is It and What Are Its Challenges? In Taking Stock of Industrial Ecology, pp.45-68, 2016.

K. Habib and H. Wenzel, Reviewing resource criticality assessment from a dynamic and technology specific perspective-Using the case of direct-drive wind turbines, J. Clean. Prod, vol.112, pp.3852-3863, 2016.

S. Pauliuk, G. Majeau-bettez, and D. B. Müller, A General System Structure and Accounting Framework for Socioeconomic Metabolism: General System Structure for Society's Metabolism, J. Ind. Ecol, vol.19, pp.728-741, 2015.

M. Fischer-kowalski and H. Haberl, Sustainable development: Socio-economic metabolism and colonization of nature, Int. Soc. Sci. J, vol.50, pp.573-587, 1998.

J. L. England, Dissipative adaptation in driven self-assembly, Nat. Nanotechnol, vol.10, pp.919-923, 2015.