GML application schema made easy in GDAL/OGR and QGIS - GDAL/OGR GMLAS driver
Francois Prunayre, Even Rouault, Christian Ansorge, Sylvain Grellet, Hugo Mercier, Paul van Genuchten

To cite this version:
Francois Prunayre, Even Rouault, Christian Ansorge, Sylvain Grellet, Hugo Mercier, et al.. GML application schema made easy in GDAL/OGR and QGIS - GDAL/OGR GMLAS driver. INSPIRE conference 2017, Sep 2017, Strasbourg, France. hal-02003930

HAL Id: hal-02003930
https://hal-brgm.archives-ouvertes.fr/hal-02003930
Submitted on 1 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
GML application schema made easy in GDAL/OGR and QGIS

GDAL/OGR GMLAS driver

Francois Prunayre, Even Rouault, Christian Ansorge, Sylvain Grellet, Hugo Mercier, Paul van Genuchten
GDAL/OGR GMLAS driver: intro

- **GDAL?** Geospatial Data Abstraction Library. The swiss army knife for geospatial.
- Read/write access to more than 200 (mainly) geospatial formats and protocols.
- Command line utilities, C/C++/Python/… API
- Widely used (FOSS & proprietary): GRASS, MapServer, Mapnik, **QGIS**, gvSIG, PostGIS, OTB, SAGA, FME, ArcGIS, Google Earth…
- **GMLAS?** GML + AS = GML Application Schema
- New driver of GDAL 2.2 (released in May 2017)
- Funded through E.E.A (through Copernicus) and BRGM
● Read XML/GML documents following (almost) arbitrary XML schemas (Inspire, GroundWaterML2, GeoSCIML, etc.. compatible, but no hard-coded knowledge of them)
● Analyze the schema to create a relational model, that can be consumed by target databases (PostGIS, Spatialite, etc…)
● Arbitrary big documents can be read and converted (potentially GB)
● Tunable behaviour

● Write side: can regenerate a GML/XML from an imported database that has been modified
Before GDAL 2.2, there was already a GML driver
 - Only/mostly simple feature compliant
 - With various hacks added over time to better handle some particular complex feature schemas
 - Can work without an explicit schema
 - Still the default

New GMLAS driver uses the “GMLAS:filename” syntax

Documentation page: http://www.gdal.org/drv_gmlas
<wfs:FeatureCollection ...>
 <wfs:member>
 <ef:EnvironmentalMonitoringFacility gml:id="Piezometre.06512X0037.STREMY.2">
 <gml:description>Water well from national BSS (Banque du Sous-Sol) Data database. Piezometer monitoring ground water level</gml:description>
 <ef:inspireId>
 <base:Identifier>
 <base:localId>Piezometre/06512X0037/STREMY.2</base:localId>
 </base:Identifier>
 </ef:inspireId>
 <ef:name>Piézomètre de St-Rémy - 01</ef:name>
 <ef:geometry>
 <gml:Point gml:id="Piezometre.geom.2.06512X0037-STREMY" srsDimension="2" srsName="urn:ogc:def:crs:EPSG::4326">
 <gml:pos>46.1909541655103 5.18713262971692</gml:pos>
 </gml:Point>
 </ef:geometry>
 <ef:onlineResource>http://fichebsseau.brgm.fr/bss_eau/fiche.jsf?code=06512X0037/STREMY</ef:onlineResource>
 <ef:purpose xlink:href="http://www.sandre.eaufrance.fr/?urn=urn:sandre:donnees:148::CdElement:2:::referentiel:3.1::xml" xlink:title="Ground water level measurement"/>
 </ef:EnvironmentalMonitoringFacility>
 </wfs:member>
</wfs:FeatureCollection>
<ef:measurementRegime/>
<ef:mobile>false</ef:mobile>
<ef:operationalActivityPeriod>
 <ef:activityTime>
 <gml:TimePeriod gml:id="TimePeriod.2.225196">
 <gml:beginPosition>1977-10-08T23:00:00Z</gml:beginPosition>
 <gml:endPosition>2014-10-14T06:00:00Z</gml:endPosition>
 </gml:TimePeriod>
 </ef:activityTime>
</ef:operationalActivityPeriod>
<ef:relatedTo/>
<ef:belongsTo>
 <ef:NetworkFacility gml:id="ef_networkfacility_2.fid--28738dc3_15d17368ff8_-2e65">
 <ef:linkingTime>
 <gml:TimePeriod gml:id="TimePeriod.0000000029.06512X0037-STREMY">
 <gml:beginPosition>1977-09-30T23:00:00Z</gml:beginPosition>
 <gml:endPosition/></gml:endPosition>
 </gml:TimePeriod>
 </ef:linkingTime>
 <ef:belongsTo xlink:href="http://ressource.brgm-rec.fr/data/DispositifCollecte/0000000029" xlink:title="Réseau patrimonial national de suivi quantitatif des eaux souterraines (RNESP)"/>
 </ef:NetworkFacility>
</ef:belongsTo>
<ef:belongsTo>
 <ef:NetworkFacility gml:id="ef_networkfacility_2.fid--28738dc3_15d17368ff8_-2e64">
 <ef:linkingTime>
 <gml:TimePeriod gml:id="TimePeriod.0600000004.06512X0037-STREMY">
 <gml:beginPosition>1977-09-30T23:00:00Z</gml:beginPosition>
 <gml:endPosition/></gml:endPosition>
 </gml:TimePeriod>
 </ef:linkingTime>
 </ef:NetworkFacility>
</ef:belongsTo>
<ef:EnvironmentalMonitoringFacility>
 <wfs:member>
 <wfs:FeatureCollection>
 </wfs:FeatureCollection>
 </ef:EnvironmentalMonitoringFacility>
$ ogrinfo -ro \textbf{GMLAS}:Piezometre.06512X0037.STREMY.2.gml

INFO: Open of `GMLAS:Piezometre.06512X0037.STREMY.2.gml'
using driver `GMLAS' successful.
1: observingcapability1 (None)
2: observingcapability_metadataproperty (None)
3: observingcapability_name (None)
4: environmentalmonitoringactivity (None)
5: environmentalmonitoringactivity_metadataproperty (None)
6: environmentalmonitoringactivity_name (None)
7: environmentalmonitoringactivity_onlineresource (None)
[...]
611: ds_productionseries_seriesmetadata_seriesmetadata (None)
612: ds_initiative_composedof_composedof (None)
613: ds_initiative_seriesmetadata_seriesmetadata (None)
614: dynamifeaturcollec_dynamimember_dynamifeature_dynamicfeature (None)
615: dynamfeatucolle_dynammemembe_dynamfeatu_dynamifeaturcollection (None)
$ ogrinfo -ro GMLAS:Piezometre.06512X0037.STREMY.2.gml -oo REMOVE_UNUSED_LAYERS=YES
1: environmentalmonitoringfacility (Unknown (any), Point)
2: environmentalmonitoringfacility_ef_name (None)
3: environmentalmonitoringfacility_mediamonitored (None)
4: environmentalmonitoringfacility_onlineresource (None)
5: environmentalmonitoringfacility_purpose (None)
6: environmentalmonitoringfacility_supersedes (None)
7: environmentalmonitoringfacility_supersededby (None)
8: environmentalmonitoringfacility_resultacquisitionsource (None)
9: environmentalmonitoringfacility_operationalactivityperiod (None)
10: environmentalmonitoringfacility_relatedto (None)
11: environmentalmonitoringfacility_belongsto (None)
12: operationalactivityperiod (None)
13: timeperiod (None)
14: ef_inspireid (None)
15: legalbackground (None)
16: broader (None)
17: reportedto (None)
18: hasobservation (None)
19: involvedin (None)
20: networkfacility (None)
21: environmentalmonitoringfacility_legalbackground_legalbackground (None)
22: environmentalmonitoringfacility_reportedto_reportedto (None)
23: environmentalmonitoringfacility_hasobservation_hasobservation (None)
24: environmentalmonitoringfacility_involvedin_involvedin (None)
GDAL/OGR GMLAS driver: convert from GML to PostGIS

$ ogrinfo "PG:dbname=mydb" -sql "CREATE SCHEMA piezometre"
$ ogr2ogr -f PostgreSQL "PG:dbname=mydb active_schema=piezometre" GMLAS:Piezometre.06512X0037.STREMY.2.gml -oo EXPOSE_METADATA_LAYERS=YES -oo REMOVE_UNUSED_LAYERS=YES -nlt CONVERT_TO_LINEAR -forceNullable

All other ogr2ogr options are possible, among:

- -overwrite, -append
- -spat xmin ymin xmax ymax
- reprojection: -t_srs EPSG:XXXX
GDAL/OGR GMLAS driver: convert from GML to Spatialite

$ ogr2ogr -f SQLite -dsco SPATIALITE=YES \
 my.db \
 GMLAS:Piezometre.06512X0037.STREMY.2.gml \
 -oo EXPOSE_METADATA_LAYERS=YES \
 -nlt CONVERT_TO_LINEAR -forceNullable
$ python
from osgeo import gdal
gdal.VectorTranslate('my.db', 'GMLAS:Piezometre.06512X0037.STREMY.2.gml',
 options = '-f SQLite -dsco SPATIALITE=YES ' +
 ' -oo EXPOSE_METADATA_LAYERS=YES ' +
 ' -nlt CONVERT_TO_LINEAR -forceNullable')
GDAL/OGR GMLAS driver: convert to GML from PostgreSQL/Spatialite

$ ogr2ogr -f GMLAS out.xml my.db

$ ogr2ogr -f GMLAS out.xml “PG:dbname=mydb active_schema=piezometre”

Requires the OGR metadata layers to be stored in the database
Options limited to: -t_srs, -spat, -where, -dsco, subset of layers
GDAL/OGR GMLAS driver: configuration

Default configuration in GDAL configuration file:
https://svn.osgeo.org/gdal/trunk/gdal/data/gmlasconf.xml

What can be tuned (non exhaustive list):

- whether remote schemas should be downloaded. Enabled by default.
- whether the local cache of schemas is enabled. Enabled by default.
- the path of the local cache. By default, $HOME/.gdal/gmlas_xsd_cache
- whether validation of the document against the schemas should be enabled. Disabled by default.
- whether validation error should cause dataset opening to fail. Disabled by default.
- whether the metadata layers should be exposed by default. Disabled by default.
- whether layers and fields that are not used in the XML document should be removed. Disable by default.
- whether OGR array data types can be used. Enabled by default.
- whether the XML definition of the GML geometry should be reported as a OGR string field. Disabled by default.
- whether only XML elements that derive from gml:_Feature or gml:AbstractFeature should be considered in the initial pass of the schema building, when at least one element in the schemas derive from them. Enabled by default.
- several rules to configure if and how xlink:href should be resolved.
- a definition of XPaths of elements and attributes that must be ignored, so as to lighten the number of OGR layers and fields.
GDAL/OGR GMLAS driver: vocabulary resolution

Requires uncommenting `<URLSpecificResolution>` in GMLAS configuration file.

```bash
$ ogrinfo GMLAS:Piezometre.06512X0037.STREMY.2.gml -al -oo CONFIG_FILE=gmlasconf_with_inspire_codelist.xml \\
   environmentalmonitoringfacility_resultacquisitionsource
```

```
OGRFeature(environmentalmonitoringfacility_resultacquisitionsource):1
  ogr_pkid (String) = Piezometre.06512X0037.STREMY.2_resultAcquisitionSource_1
  parent_id (String) = Piezometre.06512X0037.STREMY.2
  owns (Integer(Boolean)) = 0
  href (String) = http://inspire.ec.europa.eu/codelist/ResultAcquisitionSourceValue/inSitu/
    href_name (String) = in-situ
    href_definition (String) = The FeatureOfInterest is a sampling feature which is co-located with the ultimate FeatureOfInterest (i.e. the sampledFeature).
  title (String) = in-situ
```
GDAL/OGR GMLAS driver: strengths

- The GMLAS reader is robust to various non-conformities in the input XML/GML document
 - Missing requirement elements/attributes
 - Extra/unexpected elements/attributes (→ ignored)

 But the input schemas must be valid, and the document at least well formed as XML

- Designed to process arbitrarily large datasets with few memory requirements
GDAL/OGR GMLAS driver: limitations

- Some models are loosely typed (xs:any elements) and require addition of manual constraints. No use of schematrons
- Foreign keys / relational model not yet in OGR abstraction. No automatic creation of databases relationships (created by the QGIS plugin for the PostgreSQL case)
- Some issues (non schema conformity) on the write side of the driver depending on models / documents regarding optional / null elements
- Potential performance issues on the write side on large input databases