H. D. Stupp and L. Paus, Migrationsverhalten Organischer Grundwasser-Inhaltsstoffe Und Daraus Resultierende Ansa?ze Zur Beurteilung von Monitored Natural Attenuation (MNA), vol.5, pp.1-14, 1999.

T. H. Wiedemeier, Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface

G. Pecoraino, L. Scalici, G. Avellone, L. Ceraulo, R. Favara et al., Distribution of Volatile Organic Compounds in Sicilian Groundwaters Analysed by Head SpaceSolid Phase Micro Extraction Coupled with Gas Chromatography Mass Spectrometry (SPME/GC/MS), Water Res, vol.42, pp.3563-3577, 2008.

P. L. Mccarty, Groundwater Contamination by Chlorinated Solvents: History, Remediation Technologies and Strategies, In In Situ Remediation of Chlorinated Solvent Plumes

H. F. Stroo and C. H. Ward, , pp.1-28, 2010.

P. G. Tratnyek, R. L. Johnson, G. V. Lowry, and R. A. Brown, Situ Chemical Reduction for Source Remediation, In Chlorinated Solvent Source Zone Remediation

B. H. Kueper, H. F. Stroo, C. M. Vogel, and C. H. Ward, , pp.307-351, 2014.

K. D. Pennell, N. L. Ca?iro, and D. I. Walker, Surfactant and Cosolvent Flushing, In Chlorinated Solvent Source Zone Remediation

B. H. Kueper, H. F. Stroo, C. M. Vogel, and C. H. Ward, , pp.353-394, 2014.

J. L. Kingston, P. C. Johnson, B. H. Kueper, and K. G. Mumford, In Situ Thermal Treatment of Chlorinated Solvent Source Zones, In Chlorinated Solvent Source Zone Remediation

B. H. Kueper, H. F. Stroo, C. M. Vogel, and C. H. Ward, , pp.509-557, 2014.

K. H. Sweeny, Treatment of Reducible Halohydrocarbon Containing Aqueous Stream, vol.4, p.419, 1980.

R. W. Gillham and S. F. O'hannesin, Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron, vol.32, pp.958-967, 1994.

S. F. O'hannesin and R. W. Gillham, Long-Term Performance of an In Situ "Iron Wall" for Remediation of VOCs, vol.36, pp.164-170, 1998.

C. Noubactep, Investigating the Processes of Contaminant Removal in Fe0/H2O Systems, Korean J. Chem. Eng, vol.29, pp.1050-1056, 2012.

J. Filip, R. Zboril, O. Schneeweiss, J. Zeman, M. Cernik et al., Environmental Applications of Chemically Pure Natural Ferrihydrite, Environ. Sci. Technol, vol.41, pp.4367-4374, 2007.

W. Yan, H. Lien, B. E. Koel, and W. Zhang, Iron Nanoparticles for Environmental Clean-up: Recent Developments and Future Outlook, Environ. Sci. Process. Impacts, vol.15, pp.63-77, 2013.

Y. Mu, F. Jia, Z. Ai, and L. Zhang, Iron Oxide Shell Mediated Environmental Remediation Properties of Nano Zero-Valent Iron, Environ. Sci, vol.4, pp.27-45, 2017.

C. Wang, D. R. Baer, J. E. Amonette, M. H. Engelhard, J. Antony et al., Morphology and Electronic Structure of the Oxide Shell on the Surface of Iron Nanoparticles, J. Am. Chem. Soc, vol.131, pp.8824-8832, 2009.

N. Kumar, M. Auffan, J. Gattacceca, J. Rose, L. Olivi et al., Molecular Insights of Oxidation Process of Iron Nanoparticles: Spectroscopic, Magnetic, and Microscopic Evidence, Environ. Sci. Technol, vol.48, pp.13888-13894, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01426116

D. O-'carroll, B. Sleep, M. Krol, H. Boparai, and C. Kocur, Nanoscale Zero Valent Iron and Bimetallic Particles for Contaminated Site Remediation, Adv. Water Resour, vol.51, pp.104-122, 2013.

H. Lien and W. Zhang, Transformation of Chlorinated Methanes by Nanoscale Iron Particles, J. Environ. Eng, vol.125, pp.1042-1047, 1999.

Y. Xu and W. Zhang, Subcolloidal Fe/Ag Particles for Reductive Dehalogenation of Chlorinated Benzenes, Ind. Eng. Chem. Res, 2000.

A. Colombo, C. Dragonetti, M. Magni, and D. Roberto, Degradation of Toxic Halogenated Organic Compounds by IronContaining Mono-, Bi-and Tri-Metallic Particles in Water, Inorg. Chim. Acta, vol.431, pp.48-60, 2015.

Y. H. Kim and E. R. Carraway, Reductive Dechlorination of TCE by Zero Valent Bimetals, Environ. Technol, vol.24, pp.69-75, 2003.

D. M. Cwiertny, S. J. Bransfield, K. J. Livi, D. H. Fairbrother, and A. L. Roberts, Exploring the Influence of Granular Iron Additives on 1,1,1-Trichloroethane Reduction, Environ. Sci. Technol, vol.40, pp.6837-6843, 2006.

C. G. Schreier and M. Reinhard, Catalytic Hydrodehalogenation of Chlorinated Ethylenes Using Palladium and Hydrogen for the Treatment of Contaminated Water, Chemosphere, vol.31, pp.3475-3487, 1995.

W. Zhang, C. Wang, and H. Lien, Treatment of Chlorinated Organic Contaminants with Nanoscale Bimetallic Particles, Catal. Today, vol.40, pp.387-395, 1998.

G. V. Lowry and M. Reinhard, Hydrodehalogenation of 1-to 3-Carbon Halogenated Organic Compounds in Water Using a Palladium Catalyst and Hydrogen Gas, Environ. Sci. Technol, vol.33, 1905.

K. T. Park, K. Klier, C. B. Wang, and W. X. Zhang, Interaction of Tetrachloroethylene with Pd(100) Studied by High-Resolution X-Ray Photoemission Spectroscopy, J. Phys. Chem. B, vol.101, pp.5420-5428, 1997.

W. Sriwatanapongse, M. Reinhard, and C. A. Klug, Reductive Hydrodechlorination of Trichloroethylene by Palladium-on-Alumina Catalyst: 13C Solid-State NMR Study of Surface Reaction Precursors, Langmuir, vol.22, pp.4158-4164, 2006.

F. He and D. Zhao, Hydrodechlorination of Trichloroethene Using Stabilized Fe-Pd Nanoparticles: Reaction Mechanism and Effects of Stabilizers, Catalysts and Reaction Conditions, Appl. Catal., B, vol.84, pp.533-540, 2008.

T. Phenrat, N. Saleh, K. Sirk, R. D. Tilton, and G. V. Lowry, Aggregation and Sedimentation of Aqueous Nanoscale Zerovalent Iron Dispersions, Environ. Sci. Technol, vol.41, pp.284-290, 2007.

C. M. Kocur, D. M. Carroll, and B. E. Sleep, Impact of nZVI Stability on Mobility in Porous Media, J. Contam. Hydrol, vol.145, pp.17-25, 2013.

F. He and D. Zhao, Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers, Environ. Sci. Technol, vol.41, pp.6216-6221, 2007.

N. Saleh, K. Sirk, Y. Liu, T. Phenrat, B. Dufour et al., Surface Modifications Enhance Nanoiron Transport and NAPL Targeting in Saturated Porous Media, Environ. Eng. Sci, vol.24, pp.45-57, 2007.

T. Phenrat, N. Saleh, K. Sirk, H. Kim, R. D. Tilton et al., Stabilization of Aqueous Nanoscale Zerovalent Iron Dispersions by Anionic Polyelectrolytes: Adsorbed Anionic Polyelectrolyte Layer Properties and Their Effect on Aggregation and Sedimentation, J. Nanopart. Res, vol.10, pp.795-814, 2008.

S. Laumann, V. Micic, G. V. Lowry, and T. Hofmann, Carbonate Minerals in Porous Media Decrease Mobility of Polyacrylic Acid Modified Zero-Valent Iron Nanoparticles Used for Groundwater Remediation, Environ. Pollut, vol.179, pp.53-60, 2013.

F. He and D. Zhao, Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water, Environ. Sci. Technol, vol.39, 2005.

M. Zhang, F. He, D. Zhao, and X. Hao, Degradation of Soil-Sorbed Trichloroethylene by Stabilized Zero Valent Iron Nanoparticles: Effects of Sorption, Surfactants, and Natural Organic Matter, Water Res, 2011.

T. Phenrat, D. Schoenfelder, T. L. Kirschling, R. D. Tilton, and G. V. Lowry, Adsorbed Poly(aspartate) Coating Limits the Adverse Effects of Dissolved Groundwater Solutes on Fe0 Nanoparticle Reactivity with Trichloroethylene, Environ. Sci. Pollut. Res, pp.1-13, 2015.

A. Tiraferri, K. L. Chen, R. Sethi, and M. Elimelech, Reduced Aggregation and Sedimentation of Zero-Valent Iron Nanoparticles in the Presence of Guar Gum, J. Colloid Interface Sci, vol.324, pp.71-79, 2008.

S. Comba, D. Dalmazzo, E. Santagata, and R. Sethi, Rheological Characterization of Xanthan Suspensions of Nanoscale Iron for Injection in Porous Media, J. Hazard. Mater, vol.185, p.605, 2011.

D. Xue and R. Sethi, Viscoelastic Gels of Guar and Xanthan Gum Mixtures Provide Long-Term Stabilization of Iron Micro-and Nanoparticles, J. Nanopart. Res, vol.14, p.1239, 2012.

I. San-roma?, A. Galdames, M. L. Alonso, L. Bartolome, J. L. Vilas et al., Effect of Coating on the Environmental Applications of Zero Valent Iron Nanoparticles: The Lindane Case, Sci. Total Environ, vol.565, pp.795-803, 2016.

N. Kumar, J. Labille, N. Bossa, M. Auffan, P. Doumenq et al., Enhanced Transportability of Zero Valent Iron Nanoparticles in Aquifer Sediments: Surface Modifications, Reactivity, and Particle Traveling Distances, Environ. Sci. Pollut. Res, vol.24, pp.9269-9277, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01670098

E. D. Vecchia, M. Luna, and R. Sethi, Transport in Porous Media of Highly Concentrated Iron Micro-and Nanoparticles in the Presence of Xanthan Gum, Environ. Sci. Technol, vol.43, pp.8942-8947, 2009.

T. Dong, H. Luo, Y. Wang, B. Hu, and H. Chen, Stabilization of Fe?Pd Bimetallic Nanoparticles with Sodium Carboxymethyl Cellulose for Catalytic Reduction of Para-Nitrochlorobenzene in Water, Desalination, vol.271, 2011.

X. Wang, L. Le, P. J. Alvarez, F. Li, and K. Liu, Synthesis and Characterization of Green Agents Coated Pd/Fe Bimetallic Nanoparticles, J. Taiwan Inst. Chem. Eng, vol.50, pp.297-305, 2015.

Z. Shi, D. Fan, R. L. Johnson, P. G. Tratnyek, J. T. Nurmi et al., Methods for Characterizing the Fate and Effects of Nano Zerovalent Iron During Groundwater Remediation, J. Contam. Hydrol, vol.181, pp.17-35, 2015.

D. E. Fennell, J. M. Gossett, and S. H. Zinder, Comparison of Butyric Acid, Ethanol, Lactic Acid, and Propionic Acid as Hydrogen Donors for the Reductive Dechlorination of Tetrachloroethene, Environ. Sci. Technol, vol.31, pp.918-926, 1997.

F. Lakaye, W. De-windt, and P. Mariage, Catalytic Composition for Treatment of Soil and Sediment, 2010.

Y. Shih, C. Hsu, and Y. Su, Reduction of Hexachlorobenzene by Nanoscale Zero-Valent Iron: Kinetics, pH Effect, and Degradation Mechanism, Sep. Purif. Technol, pp.76-268, 2011.

S. Wilhelm, Galvanic Corrosion Caused by Corrosion Products
DOI : 10.1520/stp26189s

H. P. Hack and . Ed, Galvanic Corrosion, pp.23-34, 1988.

X. G. Zhang and R. W. Revie, Galvanic Corrosion, Uhlig's Corrosion Handbook, pp.123-143, 2011.

N. He, P. Li, Y. Zhou, W. Ren, S. Fan et al., Catalytic Dechlorination of Polychlorinated Biphenyls in Soil by Palladium-Iron Bimetallic Catalyst, J. Hazard. Mater, vol.164, pp.126-132, 2009.

N. T. Dien, W. De-windt, A. Buekens, and M. B. Chang, Application of Bimetallic Iron (BioCAT Slurry) for Pentachlorophenol Removal from Sandy Soil, J. Hazard. Mater, vol.252, pp.83-90, 2013.

D. Panias, M. Taxiarchou, I. Paspaliaris, and A. Kontopoulos, Mechanisms of Dissolution of Iron Oxides in Aqueous Oxalic Acid Solutions, Hydrometallurgy, vol.42, pp.257-265, 1996.

U. Schwertmann, Solubility and Dissolution of Iron Oxides, Plant Soil, vol.130, pp.1-25, 1991.

N. Kumar, E. O. Omoregie, J. Rose, A. Masion, J. R. Lloyd et al., Inhibition of Sulfate Reducing Bacteria in Aquifer Sediment by Iron Nanoparticles, Water Res, vol.51, pp.64-72, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01426255

R. A. Crane and T. B. Scott, Nanoscale Zero-Valent Iron: Future Prospects for an Emerging Water Treatment Technology, J. Hazard. Mater, vol.211, pp.112-125, 2012.

S. Nes?c, Key Issues Related to Modelling of Internal Corrosion of Oil and Gas Pipelines ? A Review, Corros. Sci, vol.49, pp.4308-4338, 2007.

W. Zhang, Z. Zhang, and X. Zhang, Effects of Temperature on Hydrogen Absorption into Palladium Hydride Electrodes in the Hydrogen Evolution Reaction, J. Electroanal. Chem, vol.481, pp.13-23, 2000.

A. M. Riley, J. D. Seader, D. W. Pershing, and C. Walling, An In-Situ Volumetric Method for Dynamically Measuring the Absorption of Deuterium in Palladium during Electrolysis, J. Electrochem. Soc, vol.139, pp.1342-1347, 1992.

M. J. Pilling and P. W. Seakins, Reaction Kinetics, 1995.

R. K. Bansal, Organic Reaction Mechanisms, 2004.

B. Huang, W. Qian, C. Yu, T. Wang, G. Zeng et al., Effective Catalytic Hydrodechlorination of O-, P-and M-Chloronitrobenzene over Ni/Fe Nanoparticles: Effects of Experimental Parameter and Molecule Structure on the Reduction Kinetics and Mechanisms, Chem. Eng. J, vol.306, pp.607-618, 2016.

B. Zhu and T. Lim, Catalytic Reduction of Chlorobenzenes with Pd/Fe Nanoparticles: Reactive Sites, Catalyst Stability, Particle Aging, and Regeneration, Environ. Sci. Technol, vol.41, pp.7523-7529, 2007.

W. Yan, A. A. Herzing, X. Li, C. J. Kiely, and W. Zhang, Structural Evolution of Pd-Doped Nanoscale Zero-Valent Iron (nZVI) in Aqueous Media and Implications for Particle Aging and Reactivity, Environ. Sci. Technol, vol.44, pp.4288-4294, 2010.

X. Wang, M. Zhu, H. Liu, J. Ma, and F. Li, Modification of Pd?Fe Nanoparticles for Catalytic Dechlorination of 2,4-Dichlorophenol, Sci. Total Environ, vol.449, pp.157-167, 2013.