F. Martin, Verification of a Spectral-Element Method Code for the Southern California Earthquake Center LOH.3 Viscoelastic Case, Bulletin of the Seismological Society of America, vol.101, issue.6, pp.2855-2865, 2011.
DOI : 10.1785/0120100305

URL : https://hal.archives-ouvertes.fr/hal-00660332

S. Jubertie, F. Dupros, and F. D. Martin, Vectorization of a spectral finite-element numerical kernel, Proceedings of the 2018 4th Workshop on Programming Models for SIMD/Vector Processing , WPMVP'18, pp.1-8, 2018.
DOI : 10.1177/1094342016632596

URL : https://hal.archives-ouvertes.fr/hal-01835745

G. Sornet, S. Jubertie, F. Dupros, F. De-martin, P. Thierry et al., Data-Layout Reorganization for an Efficient Intra-Node Assembly of a Spectral Finite-Element Method, 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), 2018.
DOI : 10.1109/PDP2018.2018.00043

URL : https://hal.archives-ouvertes.fr/hal-01680058

S. Williams, A. Waterman, and D. Patterson, Roofline, Communications of the ACM, vol.52, issue.4, pp.65-76, 2009.
DOI : 10.1145/1498765.1498785

D. Roten, Y. Cui, K. B. Olsen, S. M. Day, K. Withers et al., High-Frequency Nonlinear Earthquake Simulations on Petascale Heterogeneous Supercomputers, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis, pp.957-968, 2016.
DOI : 10.1109/SC.2016.81

S. Tsuboi, K. Ando, T. Miyoshi, D. Peter, D. Komatitsch et al., A 1.8 trillion degrees-of-freedom, 1.24 petaflops global seismic wave simulation on the K computer, The International Journal of High Performance Computing Applications, vol.3, issue.1, pp.411-422, 2016.
DOI : 10.1016/j.pepi.2013.04.004

URL : https://hal.archives-ouvertes.fr/hal-01265154

J. Tobin, A. Breuer, A. Heinecke, C. Yount, and Y. Cui, Accelerating Seismic Simulations Using the Intel Xeon Phi Knights Landing Processor, High Performance Computing -32nd International Conference, ISC High Performance 2017 Proceedings, pp.139-157, 2017.
DOI : 10.1109/WOLFHPC.2016.08

D. Göddeke, D. Komatitsch, M. Geveler, D. Ribbrock, N. Rajovic et al., Energy efficiency vs. performance of the numerical solution of PDEs: An application study on a low-power ARM-based cluster, Journal of Computational Physics, vol.237, pp.132-150, 2013.
DOI : 10.1016/j.jcp.2012.11.031

M. Castro, E. Francesquini, F. Dupros, H. Aochi, P. O. Navaux et al., Seismic wave propagation simulations on low-power and performance-centric manycores, Parallel Computing, vol.54, pp.108-120, 2016.
DOI : 10.1016/j.parco.2016.01.011

URL : https://hal.archives-ouvertes.fr/hal-01273153

P. Souza, L. Borges, C. Andreolli, and P. Thierry, Chapter 24 portable explicit vectorization intrinsics, High Performance Parallelism Pearls (J. Reinders, pp.463-485, 2015.
DOI : 10.1016/b978-0-12-803819-2.00008-2

F. Martínez-martínez, M. J. Rupérez-moreno, M. Martínez-sober, J. A. Llorens, D. Lorente et al., A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time, Computers in Biology and Medicine, vol.90, pp.116-124, 2017.
DOI : 10.1016/j.compbiomed.2017.09.019

J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, Sparse matrix solvers on the GPU, ACM Transactions on Graphics, vol.22, issue.3, pp.917-924, 2003.
DOI : 10.1145/882262.882364

C. Farhat and L. Crivelli, A general approach to nonlinear FE computations on shared-memory multiprocessors, Computer Methods in Applied Mechanics and Engineering, vol.72, issue.2, pp.153-171, 1989.
DOI : 10.1016/0045-7825(89)90157-6

L. Thébault, E. Petit, M. Tchiboukdjian, Q. Dinh, and W. Jalby, Divide and conquer parallelization of finite element method assembly, Parallel Computing: Accelerating Computational Science and Engineering (CSE), Proceedings of the International Conference on Parallel Computing, pp.10-13, 2013.

, Garching (near Munich), pp.753-762, 2013.

C. Cecka, A. J. Lew, and E. Darve, Assembly of finite element methods on graphics processors, International Journal for Numerical Methods in Engineering, vol.17, issue.2, pp.640-669, 2011.
DOI : 10.1007/978-3-540-75444-2_37

G. R. Markall, A. Slemmer, D. A. Ham, P. H. Kelly, C. D. Cantwell et al., Finite element assembly strategies on multi-core and many-core architectures, International Journal for Numerical Methods in Fluids, vol.1, issue.1, pp.80-97
DOI : 10.1002/fld.3648

T. Ichimura, K. Fujita, P. E. Quinay, L. Maddegedara, M. Hori et al., Implicit nonlinear wave simulation with 1.08T DOF and 0.270T unstructured finite elements to enhance comprehensive earthquake simulation, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on, SC '15, pp.1-412, 2015.
DOI : 10.1137/1.9780898718003

A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, Journal of Computational Physics, vol.54, issue.3, pp.468-488, 1984.
DOI : 10.1016/0021-9991(84)90128-1

Y. Maday and A. T. Patera, Spectral element methods for the incompressible navier-stokes equations State of the art survey in computational mechanics, pp.71-143, 1989.

P. F. Fischer and E. M. Rønquist, Spectral element methods for large scale parallel Navier???Stokes calculations, Computer Methods in Applied Mechanics and Engineering, vol.116, issue.1-4, pp.69-76, 1994.
DOI : 10.1016/S0045-7825(94)80009-X

D. Komatitsch and J. Tromp, Spectral-element simulations of global seismic wave propagation-I. Validation, Geophysical Journal International, vol.274, issue.2, pp.390-412, 2002.
DOI : 10.1016/0045-7825(95)00955-8

URL : https://hal.archives-ouvertes.fr/hal-00669061

J. Mccalpin, Sustainable memory bandwidth in highperformance computers, 1995.