M. B. Bernick, D. J. Kalnicky, G. Prince, and R. Singhvi, Results of field-portable X-ray fluorescence analysis of metal contaminants in soil and sediment, Journal of Hazardous Materials, vol.43, issue.1-2, pp.1-2, 1995.
DOI : 10.1016/0304-3894(95)00030-X

D. Bersani, J. Jehlicka, and P. Vandenabeele, Evaluating handheld and portable Raman instrumentation for analysing minerals in the field, 2014.

R. Bharti, R. Kalimuthu, and D. Ramakrishnan, Spectral pathways for exploration of secondary uranium: An investigation in the desertic tracts of Rajasthan and Gujarat, India, Advances in Space Research, vol.56, issue.8, pp.1613-1626, 2015.
DOI : 10.1016/j.asr.2015.07.015

R. N. Brent, H. Wines, J. Luther, N. Irving, J. Collins et al., Validation of handheld X-ray fluorescence for in situ measurement of mercury in soils, Journal of Environmental Chemical Engineering, vol.5, issue.1, pp.768-776, 2017.
DOI : 10.1016/j.jece.2016.12.056

J. Buffle and M. Tercier-waeber, Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements, TrAC Trends in Analytical Chemistry, vol.24, issue.3, pp.172-191, 2005.
DOI : 10.1016/j.trac.2004.11.013

D. A. Burkett, I. T. Graham, and C. R. Ward, THE APPLICATION OF PORTABLE X-RAY DIFFRACTION TO QUANTITATIVE MINERALOGICAL ANALYSIS OF HYDROTHERMAL SYSTEMS, The Canadian Mineralogist, vol.53, pp.429-454, 2015.
DOI : 10.3749/canmin.1400099

Z. S. Chang and Z. M. Yang, EVALUATION OF INTER-INSTRUMENT VARIATIONS AMONG SHORT WAVELENGTH INFRARED (SWIR) DEVICES, Economic Geology, vol.107, issue.7, 2012.
DOI : 10.2113/econgeo.107.7.1479

A. Culka, H. Kindlova, P. Drahota, and J. Jehli?ka, Raman spectroscopic identification of arsenate minerals in situ at outcrops with handheld (532 nm, 785 nm) instruments, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.154, pp.193-199, 2015.
DOI : 10.1016/j.saa.2015.10.025

K. H. Esbensen, M. Holding, and M. Mehors, Handheld XRF Analysis (hXRF) -Field sensor sampling representativeness and development of a prototype FRAT (Field Rotary Abrasion Tool), Proceedings of the 7th World Conference on Sampling and Blending, 2015.

F. J. Fortes and J. J. Laserna, The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.65, issue.12, pp.975-990, 2010.
DOI : 10.1016/j.sab.2010.11.009

A. Ga?uszka, Z. M. Migaszewski, and J. Namie?nik, Moving your laboratories to the field ??? Advantages and limitations of the use of field portable instruments in environmental sample analysis, Environmental Research, vol.140, pp.593-603, 2015.
DOI : 10.1016/j.envres.2015.05.017

M. F. Gazley, C. M. Tutt, L. A. Fisher, A. R. Latham, G. Duclaux et al., Objective geological logging using portable XRF geochemical multi-element data at Plutonic Gold Mine, Marymia Inlier, Western Australia, Journal of Geochemical Exploration, vol.143, pp.74-83, 2014.
DOI : 10.1016/j.gexplo.2014.03.019

L. Ge, W. Lai, Y. Lin, and S. Zhou, In situ applications of FPXRF techniques in mineral exploration, Situ Applications of X Ray Fluorescence Techniques. IAEA-TECDOC-1456, 2005.

R. K. Glanzman and L. G. Closs, Field Portable X-Ray Fluorescence Geochemical Analysis ? Its Contribution to Onsite Real-time Project Evaluation, Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, pp.291-301, 2007.

G. Hall, L. Page, G. G. Bonham-carter, G. F. Bonham-carter, and A. Buchar, Evaluation of portable X-ray fluorescence (pXRF) in exploration and mining: Phase 1, control reference materials, Geochemistry: Exploration, Environment, Analysis, vol.14, issue.2, pp.99-123, 2013.
DOI : 10.1144/geochem2013-241

R. R. Hark, H. , and R. S. , Geochemical Fingerprinting Using LIBS, Laser-Induced Breakdown Spectroscopy -Theory and Applications, pp.309-348, 2014.
DOI : 10.1007/978-3-642-45085-3_12

R. S. Harmon, J. Remus, N. J. Mcmillan, C. Mcmanus, L. Collins et al., LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals: Applied Geochemistry, pp.24-1125, 2009.

R. S. Harmon, R. E. Russo, and R. R. Hark, Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.87, 2013.
DOI : 10.1016/j.sab.2013.05.017

R. R. Hillis, D. Giles, S. E. Van-der-wielen, A. Baensch, J. S. Cleverley et al., Coiled tubing drilling and real-time sensing ? Enabling prospectivity drilling in the 21st century, pp.243-259, 2014.

J. Huang, H. Chen, J. Han, X. Deng, W. Lu et al., Alteration zonation and short wavelength infrared (SWIR) characteristics of the Honghai VMS Cu-Zn deposit, Ore Geology Reviews, 2017.

J. Jehli?ka, A. Culka, P. Vandenabeele, . Howell, and G. M. Edwards, Critical evaluation of a handheld Raman spectrometer with near infrared (785nm) excitation for field identification of minerals, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.80, issue.1, pp.36-40, 2011.
DOI : 10.1016/j.saa.2011.01.005

J. Ji, Y. Ge, W. Balsam, J. E. Damuth, and J. Chen, Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer (FTIR): A fast method for identifying Heinrich events in IODP Site U1308, Marine Geology, vol.258, issue.1-4, pp.60-68, 2009.
DOI : 10.1016/j.margeo.2008.11.007

D. J. Kalnicky and R. Singhvi, Field portable XRF analysis of environmental samples, Journal of Hazardous Materials, vol.83, issue.1-2, pp.93-122, 2001.
DOI : 10.1016/S0304-3894(00)00330-7

B. Lemiere, Field Analytical Techniques for Geochemical Surveys Keynote conference, 27th International Applied Geochemistry Symposium, 2015.

B. Minasny, A. B. Mcbratney, V. Bellon-maurel, J. M. Roger, A. Gobrecht et al., Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon, Geoderma, vol.167, issue.168, pp.167-168, 2011.
DOI : 10.1016/j.geoderma.2011.09.008

URL : https://hal.archives-ouvertes.fr/hal-00648248

C. Pérez-ràfols, N. Serrano, J. M. Díaz-cruz, C. Ariño, and M. Esteban, A screen-printed voltammetric electronic tongue for the analysis of complex mixtures of metal ions, Sensors and Actuators B: Chemical, vol.250, pp.393-401, 2017.
DOI : 10.1016/j.snb.2017.04.165

J. G. Ryan, J. W. Shervais, Y. Li, M. K. Reagand, H. Y. Li et al., Application of a handheld X-ray fluorescence spectrometer for real-time, high-density quantitative analysis of drilled igneous rocks and sediments during IODP Expedition 352, Chemical Geology, vol.451, pp.55-66, 2017.
DOI : 10.1016/j.chemgeo.2017.01.007

URL : https://hal.archives-ouvertes.fr/hal-01553188

P. Sarrazin, S. Chipera, D. Bish, D. Blake, and D. Vaniman, Vibrating sample holder for XRD analysis with minimal sample preparation: Joint Committee on Powder Diffraction Standards Advances in X-ray Analysis, pp.156-164, 2005.

V. Shankar, Field Characterization by Near Infrared (NIR) Mineral Identifiers- A New Prospecting Approach, Procedia Earth and Planetary Science, vol.11, pp.198-203, 2015.
DOI : 10.1016/j.proeps.2015.06.025

A. E. Steiner, R. M. Conrey, and J. A. Wolff, PXRF calibrations for volcanic rocks and the application of in-field analysis to the geosciences, Chemical Geology, vol.453, 2017.
DOI : 10.1016/j.chemgeo.2017.01.023

A. J. Thompson, P. L. Hauff, and A. J. Robitaille, Alteration mapping in exploration: application of short-wave infrared (SWIR) spectroscopy. SEG Newsletter, pp.16-27, 1999.

H. Tuyovinen, D. Vesterbacka, E. Pohjolainen, D. Read, D. Solatie et al., A comparison of analytical methods for determining uranium and thorium in ores and mill tailings, Journal of Geochemical Exploration, vol.148, pp.174-180, 2015.
DOI : 10.1016/j.gexplo.2014.09.004

Y. Uvarova, J. S. Cleverley, M. Verrall, and A. Baensch, Coupled XRF and XRD analyses for rapid and low-cost characterization of geological materials in mineral exploration and mining industry: Explore, pp.4-14, 2014.

Y. A. Uvarova, M. F. Gazley, J. S. Cleverley, A. Baensch, D. Lawie et al., Representative, high-spatial resolution geochemistry from diamond drill fines (powders): An example from Brukunga, Adelaide, South Australia, Journal of Geochemical Exploration, vol.170, pp.1-9, 2016.
DOI : 10.1016/j.gexplo.2016.08.010

F. Velasco, A. Alvaro, S. Suarez, J. M. Herrero, and I. Yusta, Mapping Fe-bearing hydrated sulphate minerals with short wave infrared (SWIR) spectral analysis at San Miguel mine environment, Iberian Pyrite Belt (SW Spain), Journal of Geochemical Exploration, vol.87, issue.2, pp.45-72, 2005.
DOI : 10.1016/j.gexplo.2005.07.002

M. West, A. T. Ellis, P. J. Potts, C. Streli, C. Vanhoof et al., 2015 Atomic Spectrometry Update ??? a review of advances in X-ray fluorescence spectrometry and their applications, Journal of Analytical Atomic Spectrometry, vol.47, issue.5, pp.1839-1889, 2015.
DOI : 10.1080/00032719.2013.853180

K. E. Young, C. A. Evans, K. V. Hodges, J. E. Bleacher, and T. G. Graff, A review of the handheld X-ray fluorescence spectrometer as a tool for field geologic investigations on Earth and in planetary surface exploration, Applied Geochemistry, vol.72, pp.77-87, 2016.
DOI : 10.1016/j.apgeochem.2016.07.003

M. H. Zadeh, M. H. Tangestani, F. V. Roldan, and I. Yusta, Spectral characteristics of minerals in alteration zones associated with porphyry copper deposits in the middle part of Kerman copper belt, SE Iran, Ore Geology Reviews, vol.62, pp.191-198, 2014.
DOI : 10.1016/j.oregeorev.2014.03.013

W. Zhang, D. R. Lentz, and B. E. Charnley, Petrogeochemical assessment of rock units and identification of alteration/mineralization indicators using portable X-ray fluorescence measurements: Applications to the Fire Tower Zone (W-Mo-Bi) and the North Zone (Sn-Zn-In), Mount Pleasant deposit, New Brunswick, Canada, Journal of Geochemical Exploration, vol.177, pp.61-72, 2017.
DOI : 10.1016/j.gexplo.2017.02.005