D. C. Arne and G. M. Jeffress, Sampling and Analysis for Public Reporting of Portable X-ray Fluorescence Data Under the 2012 Edition of the JORC Code, pp.29-30, 2014.

D. C. Arne, R. A. Mackie, and S. A. Jones, The use of property-scale portable X-ray fluorescence data in gold exploration: advantages and limitations, Geochemistry: Exploration, Environment, Analysis, vol.14, issue.3, pp.233-244, 2014.
DOI : 10.1144/geochem2013-233

M. Berger, L. Zou, and R. Schleicher, Analysis of Sulfur in the Copper Basin and Muddy RIver Sites Using Portable XRF Instrumentation, Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, 2008.

M. B. Bernick, D. J. Kalnicky, G. Prince, and R. Singhvi, Results of field-portable X-ray fluorescence analysis of metal contaminants in soil and sediment, Journal of Hazardous Materials, vol.43, issue.1-2, pp.1-2, 1995.
DOI : 10.1016/0304-3894(95)00030-X

D. Bersani, J. Jehlicka, P. Vandenabeele, R. International-georaman-conference-bharti, R. Kalimuthu et al., Evaluating handheld and portable Raman instrumentation for analysing minerals in the field Spectral pathways for exploration of secondary uranium: An investigation in the desertic tracts of Rajasthan and Gujarat, Advances in Space Research, vol.11, issue.56, pp.1613-1626, 2014.

N. W. Brand and C. J. Brand, Detecting the undetectable Lithium by pXRF, 2016.

R. N. Brent, H. Wines, J. Luther, N. Irving, J. Collins et al., Validation of handheld X-ray fluorescence for in situ measurement of mercury in soils, Journal of Environmental Chemical Engineering, vol.5, issue.1, pp.768-776, 2017.
DOI : 10.1016/j.jece.2016.12.056

J. Buffle and M. Tercier-waeber, Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements, TrAC Trends in Analytical Chemistry, vol.24, issue.3, pp.172-191, 2005.
DOI : 10.1016/j.trac.2004.11.013

DOI : 10.3749/canmin.1400099

DOI : 10.2113/econgeo.107.7.1479

D. A. Cremers, M. J. Ferris, and M. Davies, <title>Transportable laser-induced breakdown spectroscopy (LIBS) instrument for field-based soil analysis</title>, Advanced Technologies for Environmental Monitoring and Remediation, pp.190-200, 1996.
DOI : 10.1117/12.259772

A. Culka, H. Kindlova, P. Drahota, and J. Jehli?ka, Raman spectroscopic identification of arsenate minerals in situ at outcrops with handheld (532 nm, 785 nm) instruments, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.154, pp.193-199, 2015.
DOI : 10.1016/j.saa.2015.10.025

D. Death, A. Cunningham, and L. Pollard, Multielement and mineralogical analysis of mineral ores using laser induced breakdown spectroscopy and chemometric analysis, Spectrochimica Acta Part B: Atomic Spectroscopy, pp.64-1048, 2009.

P. Durance, S. M. Jowitt, and K. Bush, An assessment of portable X-ray fluorescence spectroscopy in mineral exploration, Kurnalpi Terrane, Eastern Goldfields Superterrane, Western Australia, Applied Earth Science, vol.123, issue.3, pp.150-163, 2014.
DOI : 10.1144/geochem2012-177

K. H. Esbensen, M. Holding, and M. Mehors, Handheld XRF Analysis (hXRF) -Field sensor sampling representativeness and development of a prototype FRAT (Field Rotary Abrasion Tool), Proceedings of the 7th World Conference on Sampling and Blending, 2015.

P. N. Eze, V. S. Mosokomani, T. K. Udeigwe, O. F. Oyedele, and A. F. Fagbamigbe, Geostatistical analysis of trace elements PXRF dataset of near-surface semi-arid soils from Central Botswana. Data Brief, pp.764-770, 2016.

R. Fajber and G. J. Simandl, Evaluation of Rare Earth Element-enriched Sedimentary Phosphate Deposits Using Portable X-ray Fluorescence (XRF) Instruments. British Columbia Geological Survey, 0201.

F. J. Fortes and J. J. Laserna, The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.65, issue.12, pp.975-990, 2010.
DOI : 10.1016/j.sab.2010.11.009

A. Ga?uszka, Z. M. Migaszewski, and J. Namie?nik, Moving your laboratories to the field ??? Advantages and limitations of the use of field portable instruments in environmental sample analysis, Environmental Research, vol.140, pp.593-603, 2015.
DOI : 10.1016/j.envres.2015.05.017

M. F. Gazley and L. A. Fisher, A review of the reliability and validity of portable X-ray fluorescence spectrometry (pXRF) data. Mineral Resource and Ore Reserve Estimation? The AusIMM Guide to Good Practice, The Australasian Institute of Mining and Metallurgy Melbourne, pp.69-82, 2014.

M. F. Gazley, C. M. Tutt, L. A. Fisher, A. R. Latham, G. Duclaux et al., Objective geological logging using portable XRF geochemical multi-element data at Plutonic Gold Mine, Marymia Inlier, Western Australia, Journal of Geochemical Exploration, vol.143, pp.74-83, 2014.
DOI : 10.1016/j.gexplo.2014.03.019

L. Ge, W. Lai, Y. Lin, and S. Zhou, In situ applications of FPXRF techniques in mineral exploration In Situ Applications of X Ray Fluorescence Techniques. IAEA- TECDOC-1456 (ISBN:92-0-107105-1), retrieved from http://www-pub.iaea.org/books/IAEABooks, pp.61-120, 2005.

R. K. Glanzman and L. G. Closs, Field Portable X-Ray Fluorescence Geochemical Analysis ? Its Contribution to Onsite Real-time Project Evaluation, Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, pp.291-301, 2007.

G. Hall, L. Page, G. R. Bonham-carter, H. , and R. S. , Quality Control Assessment of Portable XRF Analysers: Development of Standard Operating Procedures, Performance on Variable Media and Recommended Uses. Phase II. Canadian Mining Industry Research Organization (Camiro) Exploration Division, Project 10E01 Phase I Report. https://www.appliedgeochemists.org/index.php/publications/other -publications/2-uncategorised/106-portable-xrf-for-the- exploration-and-mining-industry Hark, Laser-Induced Breakdown Spectroscopy -Theory and Applications, pp.309-348, 2013.

R. S. Harmon, J. Remus, N. J. Mcmillan, C. Mcmanus, L. Collins et al., LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals: Applied Geochemistry, pp.24-1125, 2009.

R. S. Harmon, R. E. Russo, and R. R. Hark, Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.87, pp.11-26, 2013.
DOI : 10.1016/j.sab.2013.05.017

R. R. Hillis, D. Giles, S. E. Van-der-wielen, A. Baensch, J. S. Cleverley et al., Coiled tubing drilling and real-time sensing ? Enabling prospectivity drilling in the 21st Century, pp.243-259, 2014.

T. Houlahan, S. Ramsay, and D. Povey, Use of Field Portable X-Ray Fluorescence Spectrum Analyzers for Grade Control ? A Presentation of Case Studies, 5th International Mine Geology Conference. Australasian Institute of Metallurgy, pp.377-385, 2003.

J. Huang, H. Chen, J. Han, X. Deng, W. Lu et al., Alteration zonation and short wavelength infrared (SWIR) characteristics of the Honghai VMS Cu-Zn deposit, Ore Geology Reviews, 2017.

J. Jehli?ka, A. Culka, P. Vandenabeele, . Howell, and G. M. Edwards, Critical evaluation of a handheld Raman spectrometer with near infrared (785nm) excitation for field identification of minerals, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.80, issue.1, pp.36-40, 2011.
DOI : 10.1016/j.saa.2011.01.005

J. Ji, Y. Ge, W. Balsam, J. E. Damuth, and J. Chen, Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer (FTIR): A fast method for identifying Heinrich events in IODP Site U1308, Marine Geology, vol.258, issue.1-4, pp.60-68, 2009.
DOI : 10.1016/j.margeo.2008.11.007

D. J. Kalnicky and R. Singhvi, Field portable XRF analysis of environmental samples, Journal of Hazardous Materials, vol.83, issue.1-2, pp.93-122, 2001.
DOI : 10.1016/S0304-3894(00)00330-7

M. M. Konstantinov and S. F. Strujkov, Application of indicator halos (signs of ore remobilization) in exploration for blind gold and silver deposits, Journal of Geochemical Exploration, vol.54, issue.1, pp.1-17, 1995.
DOI : 10.1016/0375-6742(95)00003-8

B. Lemiere, Field Analytical Techniques for Geochemical Surveys Keynote conference, 27th International Applied Geochemistry Symposium, 2015.

A. W. Mann and M. J. Lintern, Field analysis of heavy metals by portable digital voltammeter, Journal of Geochemical Exploration, vol.22, issue.1-3, pp.1-3, 1984.
DOI : 10.1016/0375-6742(84)90018-9

B. Minasny, A. B. Mcbratney, V. Bellon-maurel, J. M. Roger, A. Gobrecht et al., Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon, Geoderma, vol.167, issue.168, pp.167-168, 2011.
DOI : 10.1016/j.geoderma.2011.09.008

URL : https://hal.archives-ouvertes.fr/hal-00648248

C. Pérez-ràfols, N. Serrano, J. M. Díaz-cruz, C. Ariño, and M. Esteban, A screen-printed voltammetric electronic tongue for the analysis of complex mixtures of metal ions, Sensors and Actuators B: Chemical, vol.250, pp.393-401, 2017.
DOI : 10.1016/j.snb.2017.04.165

P. J. Potts and M. West, Portable X-ray Fluorescence Spectrometry: Capabilities for In Situ Analysis, 2008.
DOI : 10.1039/9781847558640

M. H. Ramsey and K. A. Boon, Can in situ geochemical measurements be more fit-for-purpose than those made ex situ?, Applied Geochemistry, vol.27, issue.5, pp.969-976, 2012.
DOI : 10.1016/j.apgeochem.2011.05.022

J. Robbat and A. , Dynamic Workplans and Field Analytics: The Keys to Cost-effective Site Investigations, 1997.

M. Rossi, M. Dell-'aglio, A. De-giacomo, R. Gaudiuso, G. S. Senesi et al., Multi-methodological investigation of kunzite, hiddenite, alexandrite, elbaite and topaz, based on laser-induced breakdown spectroscopy and conventional analytical techniques for supporting mineralogical characterization, Physics and Chemistry of Minerals, vol.170, issue.2, pp.41-127, 2014.
DOI : 10.1007/s11214-012-9902-4

J. G. Ryan, J. W. Shervais, Y. Li, M. K. Reagand, H. Y. Li et al., Application of a handheld X-ray fluorescence spectrometer for real-time, high-density quantitative analysis of drilled igneous rocks and sediments during IODP Expedition 352, Chemical Geology, vol.451, pp.55-66, 2017.
DOI : 10.1016/j.chemgeo.2017.01.007

URL : https://hal.archives-ouvertes.fr/hal-01553188

P. Sarrazin, S. Chipera, D. Bish, D. Blake, and D. Vaniman, Vibrating sample holder for XRD analysis with minimal sample preparation: Joint Committee on Powder Diffraction Standards Advances in X-ray Analysis, pp.156-164, 2005.

V. Shankar, Field Characterization by Near Infrared (NIR) Mineral Identifiers- A New Prospecting Approach, Procedia Earth and Planetary Science, vol.11, pp.198-203, 2015.
DOI : 10.1016/j.proeps.2015.06.025

A. E. Steiner, R. M. Conrey, and J. A. Wolff, PXRF calibrations for volcanic rocks and the application of in-field analysis to the geosciences, Chemical Geology, vol.453, 2017.
DOI : 10.1016/j.chemgeo.2017.01.023

P. Stoker, M. Berry, A. J. Thompson, P. L. Hauff, and A. J. Robitaille, Australian Institute of Geoscientists Friday Seminar Series, Brisbane. https://www.aig.org Alteration mapping in exploration: application of short-wave infrared (SWIR) spectroscopy. SEG Newsl, pp.16-27, 1999.

H. Tuovinen, D. Vesterbacka, E. Pohjolainen, D. Read, D. Solatie et al., A comparison of analytical methods for determining uranium and thorium in ores and mill tailings, Journal of Geochemical Exploration, vol.148, pp.174-180, 2015.
DOI : 10.1016/j.gexplo.2014.09.004

Y. Uvarova, J. S. Cleverley, M. Verrall, and A. Baensch, Coupled XRF and XRD analyses for rapid and low-cost characterization of geological materials in mineral exploration and mining industry: Explore, pp.4-14, 2014.

Y. A. Uvarova, M. F. Gazley, J. S. Cleverley, A. Baensch, D. Lawie et al., Representative, high-spatial resolution geochemistry from diamond drill fines (powders): An example from Brukunga, Adelaide, South Australia, Journal of Geochemical Exploration, vol.170, pp.1-9, 2016.
DOI : 10.1016/j.gexplo.2016.08.010

F. Velasco, A. Alvaro, S. Suarez, J. M. Herrero, and I. Yusta, Mapping Fe-bearing hydrated sulphate minerals with short wave infrared (SWIR) spectral analysis at San Miguel mine environment, Iberian Pyrite Belt (SW Spain), Journal of Geochemical Exploration, vol.87, issue.2, pp.45-72, 2005.
DOI : 10.1016/j.gexplo.2005.07.002

M. West, A. T. Ellis, P. J. Potts, C. Streli, C. Vanhoof et al., 2015 Atomic Spectrometry Update ??? a review of advances in X-ray fluorescence spectrometry and their applications, Journal of Analytical Atomic Spectrometry, vol.47, issue.5, pp.1839-1889, 2015.
DOI : 10.1080/00032719.2013.853180

K. E. Young, C. A. Evans, K. V. Hodges, J. E. Bleacher, and T. G. Graff, A review of the handheld X-ray fluorescence spectrometer as a tool for field geologic investigations on Earth and in planetary surface exploration, Applied Geochemistry, vol.72, pp.77-87, 2016.
DOI : 10.1016/j.apgeochem.2016.07.003

M. H. Zadeh, M. H. Tangestani, F. V. Roldan, and I. Yusta, Spectral characteristics of minerals in alteration zones associated with porphyry copper deposits in the middle part of Kerman copper belt, SE Iran, Ore Geology Reviews, vol.62, pp.191-198, 2014.
DOI : 10.1016/j.oregeorev.2014.03.013

W. Zhang, D. R. Lentz, and B. E. Charnley, Petrogeochemical assessment of rock units and identification of alteration/mineralization indicators using portable X-ray fluorescence measurements: Applications to the Fire Tower Zone (W-Mo-Bi) and the North Zone (Sn-Zn-In), Mount Pleasant deposit, New Brunswick, Canada, Journal of Geochemical Exploration, vol.177, pp.61-72, 2017.
DOI : 10.1016/j.gexplo.2017.02.005