Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

A Residual Distribution method for the Shallow Water equations in ALE framework on the sphere

Abstract : We consider the numerical approximation of the Shallow Water Equations (SWEs) in covariant curvilinear coordinates, in view of application to large scale hydrostatic wave phenomena, such as the propagation of tsunami waves. To provide enhanced resolution of the propagating fronts we consider adaptive discrete approximations on moving trian-gulations of the sphere. To this end, we restate all Arbitrary Lagrangian Eulerian (ALE) transport formulas, as well as the volume transformation laws, in generalized curvilin-ear coordinates. Using these results, the SWEs can be written in a framework in which points move arbitrarily in a curvilinear reference frame. We then discuss the implementation of a multidimensional upwind scheme known as Residual Distribution (RD) in order to discretize the resulting ALE Shallow Water equations on the sphere. At the discrete level one must consider the preservation of time accuracy, non-linear stability but also the preservation of important physical steady states on moving meshes. A naif extension of fixed grid methods may lead to spoil the above properties and to the rise of numerical instabilities. For this reason classical properties as the Discrete Geometric Conservation Law and the C-property are reformulated in the more general context of moving curvi-linear coordinates. The proposed RD method is tested on standard benchmarks for the SWEs on the sphere and it is compared to a classical Finite Volume method, both in the fixed grid case and in the ALE moving mesh case. Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal-brgm.archives-ouvertes.fr/hal-01736137
Contributeur : Luca Arpaia <>
Soumis le : vendredi 16 mars 2018 - 16:09:22
Dernière modification le : jeudi 6 août 2020 - 12:29:07
Archivage à long terme le : : mardi 11 septembre 2018 - 02:48:45

Fichier

eccm-ecfd_Abract.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01736137, version 1

Collections

Citation

Luca Arpaia, Mario Ricchiuto. A Residual Distribution method for the Shallow Water equations in ALE framework on the sphere. ECCM-ECFD 2018 - 6th European Conference on Computational Mechanics; 7th European Conference on Computational Fluid Dynamics, Jun 2018, Glasgow, United Kingdom. pp.165-174. ⟨hal-01736137⟩

Partager

Métriques

Consultations de la notice

243

Téléchargements de fichiers

61