F. Martin, Verification of a Spectral-Element Method Code for the Southern California Earthquake Center LOH.3 Viscoelastic Case, Bulletin of the Seismological Society of America, vol.101, issue.6, pp.2855-2865, 2011.
DOI : 10.1785/0120100305

URL : https://hal.archives-ouvertes.fr/hal-00660332

E. D. Cecka and A. J. Lew, Assembly of finite element methods on graphics processors, 2010.

M. Rietmann, P. Messmer, T. Nissen-meyer, D. Peter, P. Basini et al., Forward and adjoint simulations of seismic wave propagation on emerging large-scale GPU architectures, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis, p.38, 2012.
DOI : 10.1109/SC.2012.59

URL : https://hal.archives-ouvertes.fr/hal-00765015

K. Bana´sbana´s, F. , and J. Biela´nskibiela´nski, Finite element numerical integration for first order approximations on multi- and many-core architectures, Computer Methods in Applied Mechanics and Engineering, vol.305, pp.827-848, 2016.
DOI : 10.1016/j.cma.2016.03.038

D. Komatitsch, J. Labarta, and D. Michéa, A Simulation of Seismic Wave Propagation at High Resolution in the Inner Core of the Earth on 2166 Processors of MareNostrum, pp.364-377
DOI : 10.1016/S0965-9978(98)00019-2

A. Abdelfattah, M. Baboulin, V. Dobrev, J. J. Dongarra, C. Earl et al., High-performance Tensor Contractions for GPUs, International Conference on Computational Science 2016, pp.108-118, 2016.
DOI : 10.1016/j.procs.2016.05.302

URL : https://hal.archives-ouvertes.fr/hal-01409251

L. Thébault, E. Petit, M. Tchiboukdjian, Q. Dinh, and W. Jalby, Divide and conquer parallelization of finite element method assembly, Parallel Computing: Accelerating Computational Science and Engineering (CSE), Proceedings of the International Conference on Parallel Computing, pp.10-13, 2013.

T. Ichimura, K. Fujita, P. E. Quinay, L. Maddegedara, M. Hori et al., Implicit nonlinear wave simulation with 1.08T DOF and 0.270T unstructured finite elements to enhance comprehensive earthquake simulation, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on, SC '15, pp.1-412, 2015.
DOI : 10.1137/1.9780898718003

A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, Journal of Computational Physics, vol.54, issue.3, pp.468-488, 1984.
DOI : 10.1016/0021-9991(84)90128-1

Y. Maday and A. T. Patera, Spectral element methods for the incompressible navier-stokes equations State of the art survey in computational mechanics, pp.71-143, 1989.

P. F. Fischer and E. M. Rønquist, Spectral element methods for large scale parallel Navier???Stokes calculations, Computer Methods in Applied Mechanics and Engineering, vol.116, issue.1-4, pp.69-76, 1994.
DOI : 10.1016/S0045-7825(94)80009-X

G. Sornet, F. Dupros, and S. Jubertie, A Multi-level Optimization Strategy to Improve the Performance of Stencil Computation, International Conference on Computational Science, pp.1083-1092, 2017.
DOI : 10.1016/j.procs.2017.05.217

URL : https://hal.archives-ouvertes.fr/hal-01500637

M. Christen, O. Schenk, and Y. Cui, Patus for convenient highperformance stencils: evaluation in earthquake simulations, Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC '12, pp.1-11, 2012.