C. Kervévan, M. H. Beddelem, and K. O. Neil, CO2-DISSOLVED: a Novel Concept Coupling Geological Storage of Dissolved CO2 and Geothermal Heat Recovery ??? Part 1: Assessment of the Integration of an Innovative Low-cost, Water- based CO2 Capture Technology, Energy Procedia, pp.63-4508, 2014.
DOI : 10.1016/j.egypro.2014.11.485

C. Castillo, S. Knopf, C. Kervévan, and F. , CO2-DISSOLVED: a Novel Concept Coupling Geological Storage of Dissolved CO2 and Geothermal Heat Recovery ??? Part 2: Assessment of the Potential Industrial Applicability in France, Germany, and the U.S.A, and the U.S.A, Energy Procedia, pp.63-4519, 2014.
DOI : 10.1016/j.egypro.2014.11.486

URL : https://hal.archives-ouvertes.fr/hal-01067006

D. Thiéry, N. Jacquemet, G. Picot-colbeaux, C. Kervévan, L. André et al., Validation of MARTHE-REACT coupled surface and groundwater reactive transport code for modeling hydro systems, in: TOUGH Symposium, United States, pp.576-583, 2009.

T. Xu, E. Sonnenthal, N. Spycher, and K. Pruess, TOUGHREACT???A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration, Computers & Geosciences, vol.32, issue.2, pp.32-145, 2006.
DOI : 10.1016/j.cageo.2005.06.014

D. Thiéry, Modélisation 3D du Transport Réactif avec le code de calcul MARTHE v7.5 couplé aux modules géochimiques de PHREEQC, p.164

D. L. Parkhurst and C. A. Appelo, Description of input and examples for PHREEQC version 3 -A computer program for speciation, batchreaction , one-dimensional transport, and inverse geochemical calculations, in, U.S. Geological Survey Techniques and Methods, A43, 497 p, 2013.

P. Blanc, A. Lassin, P. Piantone, M. Azaroual, N. Jacquemet et al., Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials, Applied Geochemistry, vol.27, issue.10, pp.27-2107, 2012.
DOI : 10.1016/j.apgeochem.2012.06.002

URL : https://hal.archives-ouvertes.fr/hal-00846739

A. C. Lasaga, 2. Transition State Theory, Reviews in Mineralogy and Geochemistry, pp.135-168, 1981.
DOI : 10.1515/9781400864874.152

A. C. Lasaga, J. M. Soler, J. Ganor, T. E. Burch, and K. L. Nagy, Chemical weathering rate laws and global geochemical cycles, Geochimica et Cosmochimica Acta, vol.58, issue.10, pp.58-2361, 1994.
DOI : 10.1016/0016-7037(94)90016-7

T. Xu, N. Spycher, E. Sonnenthal, G. Zhang, L. Zheng et al., TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions, Computers & Geosciences, vol.37, issue.6, pp.37-763, 2011.
DOI : 10.1016/j.cageo.2010.10.007

N. C. Marty, F. Claret, A. Lassin, J. Tremosa, P. Blanc et al., A database of dissolution and precipitation rates for clay-rocks minerals, Applied Geochemistry, vol.55, pp.55-108, 2015.
DOI : 10.1016/j.apgeochem.2014.10.012

URL : https://hal.archives-ouvertes.fr/hal-01355409

C. Castillo, C. Kervévan, and D. Thiéry, Geochemical and reactive transport modeling of the injection of cooled Triassic brines into the Dogger aquifer, Geothermics, pp.53-446, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01066976

H. C. Helgeson, D. H. Kirkham, and G. C. Flowers, Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb, American Journal of Science, vol.281, issue.10, pp.281-1249, 1981.
DOI : 10.2475/ajs.281.10.1249

P. K. Vinsome and J. Westerveld, A Simple Method For Predicting Cap And Base Rock Heat Losses In' Thermal Reservoir Simulators, Journal of Canadian Petroleum Technology, vol.19, issue.03
DOI : 10.2118/80-03-04

Q. Gautier, P. Bénézeth, V. Mavromatis, and J. Schott, Hydromagnesite solubility product and growth kinetics in aqueous solution from 25 to 75??C, Geochimica et Cosmochimica Acta, vol.138, pp.138-139, 2014.
DOI : 10.1016/j.gca.2014.03.044

URL : https://hal.archives-ouvertes.fr/hal-01157324

L. Jain and S. L. Bryant, Optimal design of injection/extraction wells for the surface dissolution CO2 storage strategy, Energy Procedia, pp.4299-4306, 2011.

L. Jain and S. L. Bryant, Time weighted storage capacity for geological sequestration, Energy Procedia, pp.4873-4880, 2011.
DOI : 10.1016/j.egypro.2011.02.455

URL : https://doi.org/10.1016/j.egypro.2011.02.455

L. Yang and C. I. Steefel, Kaolinite dissolution and precipitation kinetics at 22??C and pH 4, Geochimica et Cosmochimica Acta, vol.72, issue.1, pp.72-99, 2008.
DOI : 10.1016/j.gca.2007.10.011

L. De-lary, J. Manceau, A. Loschetter, J. Rohmer, O. Bouc et al., Quantitative risk assessment in the early stages of a CO2 geological storage project: implementation of a practical approach in an uncertain context, Greenhouse Gases: Science and Technology, pp.50-63, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01118607

A. Randi, J. Sterpenich, C. Morlot, J. Pironon, C. Kervévan et al., CO2-DISSOLVED: a Novel Concept Coupling Geological Storage of Dissolved CO2 and Geothermal Heat Recovery ??? Part 3: Design of the MIRAGES-2 Experimental Device Dedicated to the Study of the Geochemical Water-Rock Interactions Triggered by CO2 Laden Brine Injection., Energy Procedia, pp.63-4536, 2014.
DOI : 10.1016/j.egypro.2014.11.487

URL : https://hal.archives-ouvertes.fr/hal-01304930

V. Hamm, C. Kervévan, and D. Thiéry, CO2-DISSOLVED: a Novel Concept Coupling Geological Storage of Dissolved CO2 and Geothermal Heat Recovery ??? Part 4: Preliminary Thermo-Hydrodynamic Simulations to Assess the CO2 Storage Efficiency, Energy Procedia, pp.63-4548, 2014.
DOI : 10.1016/j.egypro.2014.11.488

URL : https://hal.archives-ouvertes.fr/hal-01093098