D. 'aprile and A. , Advances and slowdowns in Carbon Capture and Storage technology development, ICCG Reflection No, vol.48, 2016.

L. Basava-reddi and . Ieaghg, Geothermal Energy and CO2 Storage, 2010.

C. Kervévan, F. Bugarel, X. Galiègue, L. Gallo, Y. May et al., CO2-Dissolved - A Novel Approach to Combining CCS and Geothermal Heat Recovery, Sustainable earth sciences 2013 proceedings, 2013.
DOI : 10.3997/2214-4609.20131596

C. Kervévan, M. H. Beddelem, O. Neil, and K. , -CO 2-DISSOLVED-A novel concept coupling geological storage of dissolved CO2 and geothermal heat recovery. Part 1: Assessment of the integration of an innovative low-cost, water-based CO2 capture technology. Energy Procedia 63, pp.4508-4518, 2014.

C. Fredd and H. Fogler, Influence of transport and reaction on wormhole formation in porous media, AIChE Journal, vol.78, issue.9, pp.1933-1949, 1998.
DOI : 10.2118/31074-PA

L. Luquot and P. Gouze, Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks, Chemical Geology, vol.265, issue.1-2, pp.148-59, 2009.
DOI : 10.1016/j.chemgeo.2009.03.028

URL : https://hal.archives-ouvertes.fr/hal-00445277

C. Noiriel, L. Luquot, B. Madé, L. Raimbault, G. Ph et al., Changes in reactive surface area during limestone dissolution: An experimental and modelling study, Chemical Geology, vol.265, issue.1-2, pp.1-2, 2009.
DOI : 10.1016/j.chemgeo.2009.01.032

URL : https://hal.archives-ouvertes.fr/hal-00445274

M. Smith, Y. Sholokhova, Y. Hao, and S. Carroll, CO2-induced dissolution of low permeability carbonates. Part I: Characterization and experiments, Advances in Water Resources, vol.62, pp.370-387
DOI : 10.1016/j.advwatres.2013.09.008

O. Gharbi, B. Bijeljic, E. Boek, and M. Blunt, Changes in Pore Structure and Connectivity Induced by CO2 Injection in Carbonates: A Combined Pore-Scale Approach, Energy Procedia, vol.37, pp.5367-5378, 2013.
DOI : 10.1016/j.egypro.2013.06.455

H. Ott and S. Oedai, -brine injections, Geophysical Research Letters, vol.119, issue.1, pp.2270-2276, 2015.
DOI : 10.1002/2013JB010656

R. Rosenbauer, T. Koksalan, and J. Palandri, Experimental investigation of CO2???brine???rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers, Fuel Processing Technology, vol.86, issue.14-15, pp.1581-1597, 2005.
DOI : 10.1016/j.fuproc.2005.01.011

C. Noiriel, D. Bernard, G. Ph, and X. Thibaut, Hydraulic Properties and Microgeometry Evolution Accompanying Limestone Dissolution by Acidic Water, Oil & Gas Science and Technology, vol.60, issue.1, pp.177-192, 2005.
DOI : 10.2516/ogst:2005011

URL : https://hal.archives-ouvertes.fr/hal-00085763

L. Guen, Y. , R. F. Hellmann, R. Brosse, E. Collombet et al., Enhanced deformation of limestone and sandstone in the presence of high Pco2 fluids, Journal of geophysical research, vol.112, p.21, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00202346

D. Grgic, Influence of CO2 on the long-term chemomechanical behavior of an oolitic limestone, Journal of geophysical research, vol.116, p.22, 2011.

B. Kutchko, B. Strazisar, G. Lowry, and N. Thaulow, under Geologic Sequestration Conditions, Environmental Science & Technology, vol.41, issue.13, pp.4787-4792, 2007.
DOI : 10.1021/es062828c

J. Carey, R. Svec, G. Reid, Z. Jinsuo, and W. Crow, Experimental investigation of wellbore integrity and CO2???brine flow along the casing???cement microannulus, International Journal of Greenhouse Gas Control, vol.4, issue.2, pp.272-282, 2009.
DOI : 10.1016/j.ijggc.2009.09.018

J. Carey, Geochemistry of Wellbore Integrity in CO2 Sequestration: Portland Cement-Steel-Brine-CO2 Interactions. Mineralogy and Geochemistry 77, pp.505-539, 2013.

S. Carroll, J. Carey, D. Dzombak, N. Huerta, L. Li et al., Review, Psychometrika, vol.3, issue.1, pp.149-160, 2016.
DOI : 10.4135/9781412985130

URL : https://hal.archives-ouvertes.fr/in2p3-00009893

A. Randi, J. Sterpenich, C. Morlot, J. Pironon, C. Kervévan et al., CO2-DISSOLVED: a Novel Concept Coupling Geological Storage of Dissolved CO2 and Geothermal Heat Recovery ??? Part 3: Design of the MIRAGES-2 Experimental Device Dedicated to the Study of the Geochemical Water-Rock Interactions Triggered by CO2 Laden Brine Injection., Energy Procedia, vol.63, pp.4536-4547, 2014.
DOI : 10.1016/j.egypro.2014.11.487

URL : https://hal.archives-ouvertes.fr/hal-01304930

D. Thiéry, ? Modélisation 3D du Transport Réactif avec le code de calcul MARTHE v7.5 couplé aux modules géochimiques de PHREEQC

D. Thiéry, Code de calcul MARTHE -Modélisation 3D des écoulements dans les hydrosystèmes -Notice d'utilisation de la version 7.5

D. L. Parkhurst and C. A. Appelo, -Description of Input and Examples for PHREEQC Version 3 -A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Department of the Interior, U.S. Geological Survey Techniques and Methods 6?A43, 2013.

D. L. Parkhurst and L. Wissmeier, PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC, Advances in Water Resources, vol.83, issue.176, p.189, 2015.
DOI : 10.1016/j.advwatres.2015.06.001

S. Vidal-gilbert, J. Nauroy, and E. Brosse, 3D geomechanical modelling for CO2 geologic storage in the Dogger carbonates of the Paris Basin, International Journal of Greenhouse Gas Control, vol.3, issue.3, pp.288-299, 2009.
DOI : 10.1016/j.ijggc.2008.10.004

M. L. Hoefner and H. Fogler, Pore evolution and channel formation during flow and reaction in porous media, AIChE Journal, vol.34, issue.1, pp.45-54, 1988.
DOI : 10.1002/aic.690340107

R. Detwiler, R. Glass, and W. Bourcier, Experimental observations of fracture dissolution: The role of Peclet number on evolving aperture variability, Geophysical Research Letters, vol.65, issue.056311, pp.50-51, 2003.
DOI : 10.1029/97WR01228

. Elkhouryje, P. Ameli, and R. Detwiler, Dissolution and deformation in fractured carbonates caused by flow of CO2-rich brine under reservoir conditions, International Journal of Greenhouse Gas Control, vol.16, pp.203-215, 2013.
DOI : 10.1016/j.ijggc.2013.02.023

O. Izgec, D. Zhu, and A. Hill, Numerical and experimental investigation of acid wormholing during acidization of vuggy carbonate rocks, Journal of Petroleum Science and Engineering, vol.74, issue.1-2, pp.51-66, 2010.
DOI : 10.1016/j.petrol.2010.08.006

O. Pokrovsky, S. Golubev, J. Schott, and A. Castillo, Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150????C and 1 to 55??atm pCO2: New constraints on CO2 sequestration in sedimentary basins, Chemical Geology, vol.265, issue.1-2, pp.20-32, 2009.
DOI : 10.1016/j.chemgeo.2009.01.013

I. Holford and G. Mattingly, Surface areas of calcium carbonate in soils, Geoderma, vol.13, issue.3, pp.247-255, 1975.
DOI : 10.1016/0016-7061(75)90021-X

F. Golfier, C. Zracone, B. Bazin, R. Lenormand, D. Lasseux et al., On the ability of a Dracy scale model to capture wormhole formation during dissolution of a porous medium, J. Fluid Mech, vol.457, pp.213-254, 2002.