K. S. Pitzer, Activity coefficients in electrolyte solutions, 1991.

P. Debye and E. Hückel, Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen, Phys. Zeitschrift, vol.24, pp.185-206, 1923.

A. Lach, Modélisation thermodynamique des propriétés d'exc?s des saumures naturelles et industrielles" thesis, 2015.

G. M. Marion, A molal-based model for strong acid chemistry at low temperatures (<200 to 298 K), Geochimica et Cosmochimica Acta, vol.66, issue.14, pp.2499-2516, 2002.
DOI : 10.1016/S0016-7037(02)00857-8

A. Lach, F. Boulahya, L. André, A. Lassin, M. Azaroual et al., Thermal and volumetric properties of complex aqueous electrolyte solutions using the Pitzer formalism ? The PhreeSCALE code, Computers & Geosciences, vol.92, pp.58-69, 2016.
DOI : 10.1016/j.cageo.2016.03.016

URL : https://hal.archives-ouvertes.fr/hal-01315439

N. Møller, The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration, Geochimica et Cosmochimica Acta, vol.52, issue.4, pp.821-837, 1988.
DOI : 10.1016/0016-7037(88)90354-7

+. Na and . So, NO 2 Systems in Water and in Sodium Hydroxide Solutions, J. Chem. Eng. Data, vol.4, issue.53, pp.798-804

A. Lach, L. André, and A. Lassin, Darapskite solubility in basic solutions at 25????C: A Pitzer model for the NaNO3SO4OHH2O system, Applied Geochemistry, vol.78, pp.311-320, 2017.
DOI : 10.1016/j.apgeochem.2016.12.008