Imaging a pore network in a clay-rock at the sub-nanometer scale
Stéphane Gaboreau, D Pret², Christophe Tournassat

To cite this version:
Stéphane Gaboreau, D Pret², Christophe Tournassat. Imaging a pore network in a clay-rock at the sub-nanometer scale. 9th International Conference on Porous Media Annual Meeting, May 2017, Rotterdam, Netherlands. <hal-01501201>
Imaging a pore network in a clay-rock at the sub-nanometer scale

Stéphane Gaboreau1, Dimitri Pret2, Christophe Tournassat1,3

1Water, Ecotechnology and Environment Division, French Geological Survey (BRGM), Orléans, France
3Poitiers university, IC2MP institute, Poitiers, France
3Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA

Keywords: clay, pore network, electron tomography

Mini-Symposium Description (2.22)

Clayey rocks properties are the focus of an ever-increasing interest from the geoscience community. These fine-grained sedimentary rocks (mudstone, argillite, shales etc.) are recognized as key-components for energy-related technologies, for which they could serve as isolation material (in radioactive waste disposal), caprocks (in CO2 capture and storage systems), or as reservoir rocks for hydrocarbons (gas and oil shales) (Bourg, 2015; Tournassat et al., 2015b). For all of these applications, accurate predictions of mechanical, flow, and reactive properties at the field scale are necessary. However, macroscale properties of clayey rocks arise for a large part from the surface properties of their nano-sized clay minerals constituents and from the characteristics of associated microstructure and pore network. Pore networks in clayey rocks are highly heterogeneous with pore widths/diameters ranging in the categories of micropores (< 2 nm), mesopores (> 2 nm and < 50 nm) and macropores (> 50 nm). The fact that the pore size distribution in clayey rocks encompasses all of these pore size categories evinces the multiplicity of coupled physical processes that must be taken into account to explain observations at the core and field scales. Even if, FIB-SEM has enabled to improve the nanoscale characterization up to 5 nm (Gaboreau et al., 2016) most of the smallest pores, ensuring the connectivity, are not probed at this scale. One of the biggest challenges in the present downscaling approaches is a lack of understanding of the pore structure down to the (sub)nanometer pore sizes, which can contain up to 30% of the total porosity, and which is also hypothesized to ensure most of the connectivity between bigger pores (Ma et al., 2016). In this study, we imaged in three dimensions the structure of a clayey rock down to the sub-nanometer scale using electron tomography. Pore network connectivity was extracted at the nanometer scale, providing key information for the building of future pore scale models.

References

Submission

Thank you for your submission. Your submission ID number is 233. Please write this number down and include it in any communications with us.

Below is the information submitted. We have also emailed a copy to the submission contact. If you notice any problems or do not receive the email within 24 hours, please contact us.

Submission ID: 233

Title: Imaging a pore network in a clay rock at the sub nanometer scale

Author 1:
First Name: Stephane
Last Name: Gaboreau
Organization: BRGM
Position: Dr
Address: 3 avenue Claude Guillemin
Postcode/Zip: 45000
City: ORLEANS
Country: France
Email: s.gaboreau@brgm.fr

Author 2:
First Name: Dimitri
Last Name: Pret
Organization: University of Poitiers
Position: Dr
Address: Rue Albert Turpain
Postcode/Zip: 86022
City: Poitiers
Country: France
Email: dimitri.pret@univ-poitiers.fr

Author 3:
First Name: Christophe
Last Name: Tournassat
Organization: BRGM
Position: Dr
Address: 3 avenue Claude Guillemin
Postcode/Zip: 45000
City: ORLEANS
Country: France
Email: c.tournassat@brgm.fr

Presenter: Author 1
Abstract: Clayey rocks properties are the focus of an ever-increasing interest from the geoscience community. These fine-grained sedimentary rocks (mudstone, argillite, shales etc.) are recognized as key-components for energy-related technologies, for which they could serve as isolation material (in radioactive waste disposal), caprocks (in CO2 capture and storage systems), or as reservoir rocks for hydrocarbons (gas and oil shales) (Bourg, 2015; Tournassat et al., 2015b). For all of these applications, accurate predictions of mechanical, flow, and reactive properties at the field scale are necessary. However, macroscale properties of clayey rocks arise for a large part from the surface properties of their nano-sized clay minerals constituents and from the characteristics of associated microstructure and pore network. Pore networks in clayey rocks are highly heterogeneous with pore widths/diameters ranging in the categories of micropores (< 2 nm), mesopores (> 2 nm and < 50 nm) and macropores (> 50 nm). The fact that the pore size distribution in clayey rocks encompasses all of these pore size categories evinces the multiplicity of coupled physical processes that must be taken into account to explain observations at the core and field scales. Even if, FIB-SEM has enabled to improve the nanoscale characterization up to 5 nm (Gaboreau et al.,2016) most of the smallest pores, ensuring the connectivity, are not probed at this scale. One of the biggest challenges in the present downscaling approaches is a lack of understanding of the pore structure down to the (sub)nanometer pore sizes, which can contain up to 30 % of the total porosity, and which is also hypothesized to ensure most of the connectivity between bigger pores (Ma et al., 2016). In this study, we imaged in three dimensions the structure of a clayey rock down to the sub-nanometer scale using electron tomography. Pore network connectivity was extracted at the nanometer scale, providing key information for the building of future pore scale models.

References: