Redox potential measurements in a claystone
Stéphanie Betelu, Ioannis Ignatiadis, Christophe Tournassat

To cite this version:

HAL Id: hal-01500329
https://hal-brgm.archives-ouvertes.fr/hal-01500329
Submitted on 3 Apr 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Redox potential measurements in a claystone
Stéphanie Betelu*1, Ioannis Ignatiadis1, Christophe Tournassat2

1BRGM, Water, Environment and Eco-technology Division, F-45060 Orléans Cedex 02, France (*correspondence: s.betelu@bgrm.fr)
2UMR 7327 Institut des Sciences de la Terre d’Orléans (ISTO), Université d’Orléans–CNRS/INSU–BRGM, 45071 Orléans, France

The knowledge of the redox potential in the far-field of underground radioactive waste storage is of paramount importance for the prediction of radionuclide solubility and mobility. However, the understanding and quantification of redox processes involving reactions with minerals has proven to be extremely challenging [1]. Innovative techniques are thus needed to estimate E_h values that are truly representative of in situ conditions.

In this study we determined the E_h value in claystone samples by coupling successively amperometric and potentiometric measurements, in which an electroactive redox mediator improved the rate of electron transfer from the redox active solid phases to the electrode. Callovian Oxfordian Claystone samples (COx) originated from the main gallery of Andra’s underground research laboratory in Bure. Measurements were carried out at 25°C in a thermo-regulated glove box under N₂/CO₂ (99/1%) atmosphere, in presence of a synthetic solution whose composition in major elements and pH were representative of COx pore water. CyanoMethyl Viologen ($E°=-0.14$ V/SHE) was selected as one of the most appropriate redox mediator candidate for the experiments. The good agreement between the redox experiments conducted onto the COx oxidizing and reduced electroactive sites clearly validates the attainment of a measurable steady state, and highlights the robustness of the developed methodology. The measured redox potential of the investigated samples reached ~200 mV/NHE at pH = 7.3, in agreement with the range of values previously reported and that were obtained by geochemical modeling [2].

This work was funded by a BRGM-ANDRA partnership (CTEC project 2014-2018).

This abstract is too long to be accepted for publication. Please revise it so that it fits into the column on one page.