Implementing INSPIRE WFS and SOS for geoscience data: the technological cocktail to quench the user’s thirst for data
Mickaël Beaufils, Sylvain Grellet, François Tertre

To cite this version:
Mickaël Beaufils, Sylvain Grellet, François Tertre. Implementing INSPIRE WFS and SOS for geoscience data: the technological cocktail to quench the user’s thirst for data. INSPIRE 2016 Conference, Sep 2016, Barcelone, Spain. hal-01371864

HAL Id: hal-01371864
https://hal-brgm.archives-ouvertes.fr/hal-01371864
Submitted on 6 Oct 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Implementing INSPIRE WFS and SOS for geoscience data: the technological cocktail to quench the user’s thirst for data

Mickaël Beaufils, Sylvain Grellet & François Tertre
1. WFS App Schema

2. SOS

3. Identifier & resolver

4. User interface
WFS Application Schema
WFS App Schema > Stairway to … interoperability

User side
- Advanced usage (e.g. filtering)
- Basic usage (e.g. GetFeatureById)

Administrator side
- Tool configuration for App Schema
- Tool installation
- Database modelling
- Performance and scalability
- Update and maintainability
WFS App Schema > Tools used in BRGM

constellation

GeoServer

degree
WFS App Schema > Current uses cases

<table>
<thead>
<tr>
<th>Data type</th>
<th>Model</th>
<th>BRGM associated project</th>
<th>Implementations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geologic units, faults and boreholes</td>
<td>INSPRE Geology + GeoSciML v4</td>
<td>EPOS / EGDI</td>
<td>x</td>
</tr>
<tr>
<td>Water level piezometers</td>
<td>INSPIRE Environmental Monitoring Facility & Network</td>
<td>Pôle INSIDE</td>
<td>x</td>
</tr>
<tr>
<td>Shoreline</td>
<td>INSPIRE Sea Region</td>
<td>EnergicOD</td>
<td>x</td>
</tr>
<tr>
<td>Aquifer units</td>
<td>GroundWaterML v2</td>
<td>Pôle INSIDE</td>
<td>POC</td>
</tr>
<tr>
<td>Mineral resources</td>
<td>EarthResourceML</td>
<td>Minerals4EU</td>
<td>x</td>
</tr>
</tbody>
</table>

Implementations:
- constellation
- deegree
- GeoServer
- POC
WFS App Schema > Subjective feedback

> No totally satisfying implementation

- Constellation
 - Difficult to configure and to update

- Deegree
 - Database structure must be close to diffusion schema
 - Filtering issues emphasized in 2015 (see Deegree Github)

- GeoServer
 - Still some bugs (e.g. ERML: IsMultipleIsTrue > data duplication)
 - Configuration of App Schema is tricky
 - Performances issues on complex features (all data are loaded by JAVA)

> Positive aspect

- GetFeatureById works
- Should we define stored queries and forbid other filter combinations?
WFS App Schema > Main conclusion & perspectives

Can we team up to finance necessary evolution?
SOS
Topics of discussion during the implementation

• Which SOS solution to deploy?
• How to map to preexisting (non O&M compliant) databases?
• How to design the raw observation database?
• How to link features to observations (at service level)?

Choices:

• 52 North solution
• Raw observation schema database very close to O&M schema
 — Use of materialized views to bridge to raw database
• One webapp is set up per use case
SOS > Current use cases

<table>
<thead>
<tr>
<th>Data type</th>
<th>Profile</th>
<th>BRGM associated project</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater levels (raw observations)</td>
<td>INSPIRE PointTimeSeriesObs°</td>
<td>Pôle INSIDE</td>
<td>X</td>
</tr>
<tr>
<td>Groundwater levels (validated data)</td>
<td>INSPIRE PointTimeSeriesObs°</td>
<td>Pôle INSIDE</td>
<td>WIP</td>
</tr>
<tr>
<td>Groundwater quality (validated data)</td>
<td>Under discussion</td>
<td>Pôle INSIDE</td>
<td>Specified</td>
</tr>
<tr>
<td>Borehole logs</td>
<td>GWML2 (GeologyLogCoverage)</td>
<td>EPOS</td>
<td>Specified</td>
</tr>
<tr>
<td>Geothermy properties</td>
<td>INSPIRE PointTimeSeriesObs°</td>
<td>BRGM ADEME platform</td>
<td>WIP</td>
</tr>
<tr>
<td>Coastline erosion observation (CitizenScience)</td>
<td>Under discussion</td>
<td>EnergicOD</td>
<td>Under discussion</td>
</tr>
</tbody>
</table>
SOS > Focus on Groundwater RawData Levels

> Some examples:

- Latest GroundWaterLevel observation from one piezometer:
SOS > Positive feedback

> It’s worth the effort!
 • Lot of reuse (websites, QGIS client plugin)

 • Our domain colleagues are happy!

Now I have a taste of INSPIRE!
Identifiers and resolvers
URIs to link data

> Objectives

- To provide stable and resolvable links to resources
- To allow reference / data citation
- Independant from underlying technologies used to provide data

I am #EntiteHydroGeol/107AK01
I am monitored by #Piezometre/00634X0147/PZ1.2
I have a lot of #GroundWater Levels observations regarding #EntiteHydroGeol/107AK01
URIs > Groundwater Levels use case: model view

Legend:
- Feature(s)
- Observation(s)
URIs > Groundwater Levels use case: service view

Legend:
- **Feature(s)**
- **Observation(s)**
> Topics of discussion

• Identifier nomenclature (language, pluralism, separators)
• When should we define specific identifiers?
 — Different representations of the same resource
 — Data versions
 — Data granularity

> Choice

 — ./data for data objects (e.g. geologic units, piezometers, …)
 — ./obs for observations (e.g. groundwater levels, …)
 — ./vocabs for controled vocabularies (e.g. groundwater sampling for quality analysis, …)
 — ./services for web services endpoint
• POC Apache rewriting rules
URIs > Some examples of identifiers and resolvers

http://ressource.brgm-rec.fr/data/EntiteHydroGeol/107AK01

Rewrite in proxy mode

> Other examples:

- One piezometer: http://ressource.brgm-rec.fr/data/Piezometre/00634X0147/PZ1.2
User interfaces
User interface

> Objectives
- Enhance INSPIRE services readability
- Emphasizes data connectivity
- Break the No client <-> No data loop

> QGIS GML Application Schema Toolbox

- Funded by BRGM and developed by Oslandia
- Available for download on QGIS plugin store
- Developed for QGIS v2.14 +
Teaser to Wednesday 28th presentation

 XML Mode (WFS)
Teaser to Wednesday 28th presentation

\textbf{XML Mode (SOS)}
Teaser to Wednesday 28th presentation

> Relational mode
Conclusion
In a (coco)nutshell

> **Very encouraging points:**
 * WFS & SOS enable to provide data for basic usage
 * Identifiers and resolvers enable to link data
 * QGIS plugin increase data consumption pleasure
 * Domain colleagues can now taste INSPIRE (SOS)!

> **Challenges to overcome:**
 * Configuration of WFS App Schema is not really accessible
 * SOS implementation need one instance per use case
 * Scalability and performances must be enhanced to reach production mode

> **Can we can team up to finance it?**