A. Jürgensen, J. Widmeyer, R. Gordon, L. Bendell?young, M. Moore et al., : An XAFS study, American Mineralogist, vol.89, issue.7, pp.1110-1118, 2004.
DOI : 10.2138/am-2004-0724

M. Villalobos, B. Toner, J. Bargar, and G. Sposito, Characterization of the manganese oxide produced by pseudomonas putida strain MnB1, Geochimica et Cosmochimica Acta, vol.67, issue.14, pp.2649-2662, 2003.
DOI : 10.1016/S0016-7037(03)00217-5

S. Webb, B. Tebo, and J. Bargar, Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp. strain SG-1, American Mineralogist, vol.90, issue.8-9, pp.1342-1357, 2005.
DOI : 10.2138/am.2005.1669

S. Grangeon, B. Lanson, N. Miyata, Y. Tani, and A. Manceau, Structure of nanocrystalline phyllomanganates produced by freshwater fungi, American Mineralogist, vol.95, issue.11-12, pp.1608-1616, 2010.
DOI : 10.2138/am.2010.3516

URL : https://hal.archives-ouvertes.fr/insu-00549748

N. Miyata, K. Maruo, Y. Tani, H. Tsuno, H. Seyama et al., Production of Biogenic Manganese Oxides by Anamorphic Ascomycete Fungi Isolated from Streambed Pebbles, Geomicrobiology Journal, vol.267, issue.2, pp.63-73, 2006.
DOI : 10.1016/S0016-7037(03)00217-5

Y. Tani, N. Miyata, K. Iwahori, M. Soma, S. Tokuda et al., Biogeochemistry of manganese oxide coatings on pebble surfaces in the Kikukawa River System, Shizuoka, Japan, Applied Geochemistry, vol.18, issue.10, pp.1541-1554, 2003.
DOI : 10.1016/S0883-2927(03)00075-1

B. Lanson, M. Marcus, S. Fakra, F. Panfili, N. Geoffroy et al., Formation of Zn???Ca phyllomanganate nanoparticles in grass roots, Geochimica et Cosmochimica Acta, vol.72, issue.10, pp.2478-2490, 2008.
DOI : 10.1016/j.gca.2008.02.022

URL : https://hal.archives-ouvertes.fr/insu-00334521

D. Crerar and H. Barnes, Deposition of deep-sea manganese nodules, Geochimica et Cosmochimica Acta, vol.38, issue.2, pp.279-300, 1974.
DOI : 10.1016/0016-7037(74)90111-2

J. Morgan, Kinetics of reaction between O2 and Mn(II) species in aqueous solutions, Geochimica et Cosmochimica Acta, vol.69, issue.1, pp.35-48, 2005.
DOI : 10.1016/j.gca.2004.06.013

B. Tebo, J. Bargar, B. Clement, G. Dick, K. Murray et al., BIOGENIC MANGANESE OXIDES: Properties and Mechanisms of Formation, Annual Review of Earth and Planetary Sciences, vol.32, issue.1, pp.287-328, 2004.
DOI : 10.1146/annurev.earth.32.101802.120213

B. Tebo, H. Johnson, J. Mccarthy, and A. Templeton, Geomicrobiology of manganese(II) oxidation, Trends in Microbiology, vol.13, issue.9, pp.421-428, 2005.
DOI : 10.1016/j.tim.2005.07.009

B. Lanson, V. Drits, E. Silvester, and A. Manceau, Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH, American Mineralogist, vol.85, issue.5-6, pp.826-838, 2000.
DOI : 10.2138/am-2000-5-625

A. Manceau, V. Drits, E. Silvester, C. Bartoli, and B. Lanson, Structural mechanism of Co (super 2+) oxidation by the phyllomanganate buserite, American Mineralogist, vol.82, issue.11-12, pp.1150-1175, 1997.
DOI : 10.2138/am-1997-11-1213

A. Manceau, M. Lanson, and N. Geoffroy, Natural speciation of Ni, Zn, Ba, and As in ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction, Geochimica et Cosmochimica Acta, vol.71, issue.1, pp.95-128, 2007.
DOI : 10.1016/j.gca.2006.08.036

URL : https://hal.archives-ouvertes.fr/insu-00199642

J. Bargar, C. Fuller, M. Marcus, A. Brearley, P. De-la-rosa et al., Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ, Geochimica et Cosmochimica Acta, vol.73, issue.4, pp.889-910, 2009.
DOI : 10.1016/j.gca.2008.10.036

M. Hochella, . Jr, T. Kasama, A. Putnis, C. Putnis et al., Environmentally important, poorly crystalline Fe/Mn hydrous oxides: Ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex, American Mineralogist, vol.90, issue.4, pp.718-724, 2005.
DOI : 10.2138/am.2005.1591

J. Peña, J. Bargar, and G. Sposito, Copper sorption by the edge surfaces of synthetic birnessite nanoparticles, Chemical Geology, vol.396, pp.196-207, 2015.
DOI : 10.1016/j.chemgeo.2014.12.021

A. Simanova, K. Kwon, S. Bone, J. Bargar, K. Refson et al., Probing the sorption reactivity of the edge surfaces in birnessite nanoparticles using nickel(II), Geochimica et Cosmochimica Acta, vol.164, pp.191-204, 2015.
DOI : 10.1016/j.gca.2015.04.050

A. Aplin and D. Cronan, Ferromanganese oxide deposits from the Central Pacific Ocean, I. Encrustations from the Line Islands Archipelago, Geochimica et Cosmochimica Acta, vol.49, issue.2, pp.427-436, 1985.
DOI : 10.1016/0016-7037(85)90034-1

F. Chukhrov, B. Sakharov, A. Gorshkov, V. Drits, and Y. Dikov, CRYSTAL STRUCTURE OF BIRNESSITE FROM THE PACIFIC OCEAN, International Geology Review, vol.62, issue.3, pp.1082-1088, 1985.
DOI : 10.1107/S0365110X55000613

M. Duff, D. Hunter, I. Triay, P. Bertsch, D. Reed et al., Mineral Associations and Average Oxidation States of Sorbed Pu on Tuff, Environmental Science & Technology, vol.33, issue.13, pp.2163-2169, 1999.
DOI : 10.1021/es9810686

N. Exon, M. Raven, D. Carlo, and E. , Ferromanganese Nodules and Crusts from the Christmas Island Region, Indian Ocean, Marine Georesources & Geotechnology, vol.8, issue.4, pp.275-297, 2002.
DOI : 10.1126/science.232.4750.600

G. Friedl, B. Wehrli, and A. Manceau, Solid phases in the cycling of manganese in eutrophic lakes: New insights from EXAFS spectroscopy, Geochimica et Cosmochimica Acta, vol.61, issue.2, pp.275-290, 1997.
DOI : 10.1016/S0016-7037(96)00316-X

M. Isaure, A. Manceau, N. Geoffroy, A. Laboudigue, N. Tamura et al., Zinc mobility and speciation in soil covered by contaminated dredged sediment using micrometer-scale and bulk-averaging X-ray fluorescence, absorption and diffraction techniques, Geochimica et Cosmochimica Acta, vol.69, issue.5, pp.1173-1198, 2005.
DOI : 10.1016/j.gca.2004.08.024

A. Koschinsky and P. Halbach, Sequential leaching of marine ferromanganese precipitates: Genetic implications, Geochimica et Cosmochimica Acta, vol.59, issue.24, pp.5113-5132, 1995.
DOI : 10.1016/0016-7037(95)00358-4

A. Koschinsky and J. Hein, Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation, Marine Geology, vol.198, issue.3-4, pp.331-351, 2003.
DOI : 10.1016/S0025-3227(03)00122-1

C. Lienemann, M. Taillefert, D. Perret, and J. Gaillard, Association of cobalt and manganese in aquatic systems: Chemical and microscopic evidence, Geochimica et Cosmochimica Acta, vol.61, issue.7, pp.1437-1446, 1997.
DOI : 10.1016/S0016-7037(97)00015-X

A. Manceau, B. Lanson, M. Schlegel, J. Harge, M. Musso et al., Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy, American Journal of Science, vol.300, issue.4, pp.289-343, 2000.
DOI : 10.2475/ajs.300.4.289

A. Manceau, N. Tamura, R. Celestre, A. Macdowell, N. Geoffroy et al., Molecular-Scale Speciation of Zn and Ni in Soil Ferromanganese Nodules from Loess Soils of the Mississippi Basin, Environmental Science & Technology, vol.37, issue.1, pp.75-80, 2003.
DOI : 10.1021/es025748r

A. Manceau, C. Tommaseo, S. Rihs, N. Geoffroy, D. Chateigner et al., Natural speciation of Mn, Ni, and Zn at the micrometer scale in a clayey paddy soil using X-ray fluorescence, absorption, and diffraction, Geochimica et Cosmochimica Acta, vol.69, issue.16, pp.4007-4034, 2005.
DOI : 10.1016/j.gca.2005.03.018

URL : https://hal.archives-ouvertes.fr/hal-00107092

M. Marcus, A. Manceau, and M. Kersten, Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule, Geochimica et Cosmochimica Acta, vol.68, issue.14, pp.3125-3136, 2004.
DOI : 10.1016/j.gca.2004.01.015

URL : https://hal.archives-ouvertes.fr/hal-00107097

R. Mckenzie, The adsorption of lead and other heavy metals on oxides of manganese and iron, Australian Journal of Soil Research, vol.18, issue.1, pp.61-73, 1980.
DOI : 10.1071/SR9800061

J. Ostwald and F. Frazer, Chemical and mineralogical investigations on deep sea manganese nodules from the Southern Ocean, Mineralium Deposita, vol.8, issue.4, pp.303-311, 1973.
DOI : 10.1007/BF00207513

C. Peacock and E. Moon, Oxidative scavenging of thallium by birnessite: Explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates, Geochimica et Cosmochimica Acta, vol.84, pp.297-313, 2012.
DOI : 10.1016/j.gca.2012.01.036

C. Peacock and D. Sherman, Crystal-chemistry of Ni in marine ferromanganese crusts and nodules, American Mineralogist, vol.92, issue.7, pp.1087-1092, 2007.
DOI : 10.2138/am.2007.2378

Y. Takahashi, A. Manceau, N. Geoffroy, M. Marcus, and A. Usui, Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides, Geochimica et Cosmochimica Acta, vol.71, issue.4, pp.984-1008, 2007.
DOI : 10.1016/j.gca.2006.11.016

URL : https://hal.archives-ouvertes.fr/insu-00199775

J. Peña, J. Bargar, and G. Sposito, Role of Bacterial Biomass in the Sorption of Ni by Biomass-Birnessite Assemblages, Environmental Science & Technology, vol.45, issue.17, pp.7338-7344, 2011.
DOI : 10.1021/es201446r

J. Peña, K. Kwon, K. Refson, J. Bargar, and G. Sposito, Mechanisms of nickel sorption by a bacteriogenic birnessite, Geochimica et Cosmochimica Acta, vol.74, issue.11, pp.3076-3089, 2010.
DOI : 10.1016/j.gca.2010.02.035

B. Lafferty, M. Ginder?vogel, and D. Sparks, Arsenite Oxidation by a Poorly-Crystalline Manganese Oxide. 3. Arsenic and Manganese Desorption, Environmental Science & Technology, vol.45, issue.21, pp.9218-9223, 2011.
DOI : 10.1021/es201281u

B. Lafferty, M. Ginder?vogel, M. Zhu, K. Livi, and D. Sparks, Arsenite Oxidation by a Poorly Crystalline Manganese-Oxide. 2. Results from X-ray Absorption Spectroscopy and X-ray Diffraction, Environmental Science & Technology, vol.44, issue.22, pp.8467-8472, 2010.
DOI : 10.1021/es102016c

B. Manning, S. Fendorf, B. Bostick, and D. Suarez, Arsenic(III) Oxidation and Arsenic(V) Adsorption Reactions on Synthetic Birnessite, Environmental Science & Technology, vol.36, issue.5, pp.976-981, 2002.
DOI : 10.1021/es0110170

C. Tournassat, L. Charlet, D. Bosbach, and A. Manceau, Arsenic(III) Oxidation by Birnessite and Precipitation of Manganese(II) Arsenate, Environmental Science & Technology, vol.36, issue.3, pp.493-500, 2002.
DOI : 10.1021/es0109500

S. Ying, B. Kocar, and S. Fendorf, Oxidation and competitive retention of arsenic between iron- and manganese oxides, Geochimica et Cosmochimica Acta, vol.96, pp.294-303, 2012.
DOI : 10.1016/j.gca.2012.07.013

G. Bidoglio, P. Gibson, O. Gorman, M. Roberts, and K. , X-ray absorption spectroscopy investigation of surface redox transformations of thallium and chromium on colloidal mineral oxides, Geochimica et Cosmochimica Acta, vol.57, issue.10, pp.2389-2394, 1993.
DOI : 10.1016/0016-7037(93)90576-I

S. Grangeon, A. Manceau, J. Guilhermet, A. Gaillot, M. Lanson et al., Zn sorption modifies dynamically the layer and interlayer structure of vernadite, Geochimica et Cosmochimica Acta, vol.85, pp.302-313, 2012.
DOI : 10.1016/j.gca.2012.02.019

URL : https://hal.archives-ouvertes.fr/hal-00866457

S. Bodeï, A. Manceau, N. Geoffroy, A. Baronnet, and M. Buatier, Formation of todorokite from vernadite in Ni-rich hemipelagic sediments, Geochimica et Cosmochimica Acta, vol.71, issue.23, pp.5698-5716, 2007.
DOI : 10.1016/j.gca.2007.07.020

F. Chukhrov, Structural varieties of todorokite, International Geology Review, vol.97, issue.3, pp.75-83, 1980.
DOI : 10.1016/0025-3227(72)90071-0

J. Ostwald, Two varieties of lithiophorite in some Australian depos? its, pp.383-388, 1984.

S. Grangeon, B. Lanson, and M. Lanson, Solid-state transformation of nanocrystalline phyllomanganate into tectomanganate: influence of initial layer and interlayer structure, Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, vol.44, issue.5, pp.828-838, 2014.
DOI : 10.1107/S2052520614013687

D. Portehault, S. Cassaignon, E. Baudrin, and J. Jolivet, Structural and morphological control of manganese oxide nanoparticles upon soft aqueous precipitation through MnO 4, 2009.

H. Cui, X. Feng, W. Tan, J. He, R. Hu et al., Synthesis of todorokite-type manganese oxide from Cu-buserite by controlling the pH at atmospheric pressure, Microporous and Mesoporous Materials, vol.117, issue.1-2, pp.41-47, 2009.
DOI : 10.1016/j.micromeso.2008.06.006

H. Cui, X. Liu, W. Tan, X. Feng, F. Liu et al., Influence of Mn(III) Availability on the Phase Transformation From Layered Buserite to Tunnel-structured Todorokite, Clays and Clay Minerals, vol.56, issue.4, pp.397-403, 2008.
DOI : 10.1346/CCMN.2008.0560401

X. Feng, M. Zhu, M. Ginder?vogel, C. Ni, S. Parikh et al., Formation of nano-crystalline todorokite from biogenic Mn oxides, Geochimica et Cosmochimica Acta, vol.74, issue.11, pp.3232-3245, 2010.
DOI : 10.1016/j.gca.2010.03.005

Q. Zhang, Z. Xiao, X. Feng, W. Tan, G. Qiu et al., ??-MnO2 nanowires transformed from precursor ??-MnO2 by refluxing under ambient pressure: The key role of pH and growth mechanism, Materials Chemistry and Physics, vol.125, issue.3, pp.678-685, 2011.
DOI : 10.1016/j.matchemphys.2010.09.073

A. Manceau, M. Lanson, and Y. Takahashi, Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule, American Mineralogist, vol.99, issue.10, pp.2068-2083, 2014.
DOI : 10.2138/am-2014-4742

A. Aplin and D. Cronan, Ferromanganese oxide deposits from the Central Pacific Ocean, II. Nodules and associated sediments, Geochimica et Cosmochimica Acta, vol.49, issue.2, pp.437-451, 1985.
DOI : 10.1016/0016-7037(85)90035-3

R. Dutta, E. Sideras?haddad, and S. Connell, Distribution of various components in a hydrogeneous ferromanganese nodule and an Afanasiy Nikitin Seamount crust from Indian Ocean ??? A geochemical study using micro-PIXE, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.181, issue.1-4, pp.545-550, 2001.
DOI : 10.1016/S0168-583X(01)00378-0

A. Wegorzewski and T. Kuhn, The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean, Marine Geology, vol.357, pp.123-138, 2014.
DOI : 10.1016/j.margeo.2014.07.004

D. Golden, C. Chen, and J. Dixon, Synthesis of Todorokite, Science, vol.231, issue.4739, pp.717-719, 1986.
DOI : 10.1126/science.231.4739.717

A. Atkins, S. Shaw, and C. Peacock, Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments, Geochimica et Cosmochimica Acta, vol.144, pp.109-125, 2014.
DOI : 10.1016/j.gca.2014.08.014

B. Baeyens and M. Bradbury, A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part I: Titration and sorption measurements, Journal of Contaminant Hydrology, vol.27, issue.3-4, pp.199-222, 1997.
DOI : 10.1016/S0169-7722(97)00008-9

M. Bradbury and B. Baeyens, A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part II: modelling, Journal of Contaminant Hydrology, vol.27, issue.3-4, pp.223-248, 1997.
DOI : 10.1016/S0169-7722(97)00007-7

C. Tournassat, S. Grangeon, P. Leroy, and E. Giffaut, Modeling specific pH dependent sorption of divalent metals on montmorillonite surfaces. A review of pitfalls, recent achievements and current challenges, American Journal of Science, vol.313, issue.5, pp.395-451, 2013.
DOI : 10.2475/05.2013.01

URL : https://hal.archives-ouvertes.fr/hal-01027680

E. Silvester, A. Manceau, and V. Drits, Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite; II, Results from chemical studies and EXAFS spectroscopy, American Mineralogist, vol.82, issue.9-10, pp.962-978, 1997.
DOI : 10.2138/am-1997-9-1013

M. Buatier, D. Guillaume, C. Wheat, L. Herve, and T. Adatte, Mineralogical characterization and genesis of hydrothermal Mn oxides from the flank of the Juan the Fuca Ridge, American Mineralogist, vol.89, issue.11-12, pp.1807-1815, 2004.
DOI : 10.2138/am-2004-11-1227

H. Xu, T. Chen, and H. Konishi, HRTEM investigation of trilling todorokite and nano-phase Mn-oxides in manganese dendrites, American Mineralogist, vol.95, issue.4, pp.556-562, 2010.
DOI : 10.2138/am.2010.3211

V. Drits, B. Lanson, and A. Gaillot, Birnessite polytype systematics and identification by powder X-ray diffraction, American Mineralogist, vol.92, issue.5-6, pp.771-788, 2007.
DOI : 10.2138/am.2007.2207

URL : https://hal.archives-ouvertes.fr/hal-00193663

R. Giovanoli, Vernadite is random-stacked birnessite, Mineralium Deposita, vol.15, issue.2, pp.251-253, 1980.
DOI : 10.1007/BF00206520

S. Grangeon, B. Lanson, M. Lanson, and A. Manceau, Crystal structure of Ni-sorbed synthetic vernadite: a powder X-ray diffraction study, Mineralogical Magazine, vol.72, issue.6, pp.1197-1209, 2008.
DOI : 10.1180/minmag.2008.072.6.1279

URL : https://hal.archives-ouvertes.fr/insu-00404407

A. Manceau, M. Marcus, S. Grangeon, M. Lanson, B. Lanson et al., Short-range and long-range order of phyllomanganate nanoparticles determined using high-energy X-ray scattering, Journal of Applied Crystallography, vol.81, issue.1, pp.193-209, 2013.
DOI : 10.1107/S0021889812047917/rg5022sup7.pdf

URL : https://hal.archives-ouvertes.fr/hal-00981389

M. Zhu, M. Ginder?vogel, S. Parikh, X. Feng, and D. Sparks, Cation Effects on the Layer Structure of Biogenic Mn-Oxides, Environmental Science & Technology, vol.44, issue.12, pp.4465-4471, 2010.
DOI : 10.1021/es1009955

D. Portehault, S. Cassaignon, E. Baudrin, and J. Jolivet, Nanowires by Soft Chemistry. Growth Mechanisms in Aqueous Medium, Chemistry of Materials, vol.19, issue.22, pp.5410-5417, 2007.
DOI : 10.1021/cm071654a

URL : https://hal.archives-ouvertes.fr/hal-00181057

H. Galindo, Y. Carvajal, E. Njagi, R. Ristau, and S. Suib, Facile One-Step Template-Free Synthesis of Uniform Hollow Microstructures of Cryptomelane-Type Manganese Oxide K-OMS-2, Langmuir, vol.26, issue.16, pp.13677-13683, 2010.
DOI : 10.1021/la102404j

A. Usui and N. Mita, Geochemistry and Mineralogy of a Modern Buserite Deposit from a Hot Spring in Hokkaido, Japan, Clays and Clay Minerals, vol.43, issue.1, pp.116-127, 1995.
DOI : 10.1346/CCMN.1995.0430114

J. Post and D. Veblen, Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Riet? veld method, Am Miner, vol.75, pp.477-489, 1990.

C. Fabian, C. Reimann, K. Fabian, M. Birke, R. Baritz et al., GEMAS: Spatial distribution of the pH of European agricultural and grazing land soil, Applied Geochemistry, vol.48, pp.207-216, 2014.
DOI : 10.1016/j.apgeochem.2014.07.017

R. Burns and V. Burns, Mineralogy of manganese nodules, 1977.

R. Burns and V. Burns, Manganese oxides, In: Burns RG, 1979.

X. Feng, W. Tan, F. Liu, J. Wang, and H. Ruan, Synthesis of Todorokite at Atmospheric Pressure, Chemistry of Materials, vol.16, issue.22, pp.4330-4336, 2004.
DOI : 10.1021/cm0499545

J. Lee, J. Ju, W. Cho, B. Cho, and S. Oh, Todorokite-type MnO2 as a zinc-ion intercalating material, Electrochimica Acta, vol.112, pp.138-143, 2013.
DOI : 10.1016/j.electacta.2013.08.136

F. Marafatto, M. Strader, J. Gonzalez?holguera, A. Schwartzberg, B. Gilbert et al., ) nanosheets, Proceedings of the National Academy of Sciences, vol.112, issue.15, pp.4600-4605, 2015.
DOI : 10.1073/pnas.1421018112

A. Plancon, : a program for calculating the diffraction by disordered lamellar structures, Journal of Applied Crystallography, vol.35, issue.3, p.377, 2002.
DOI : 10.1107/S0021889802001449

V. Drits and C. Tchoubar, X?ray diffraction by disordered lamellar structures: theory and applications to microdivided silicates and carbons, 1990.
DOI : 10.1007/978-3-642-74802-8

J. Hadi, S. Grangeon, F. Warmont, A. Seron, and J. Greneche, A novel and easy chemical-clock synthesis of nanocrystalline iron???cobalt bearing layered double hydroxides, Journal of Colloid and Interface Science, vol.434, pp.130-140, 2014.
DOI : 10.1016/j.jcis.2014.07.029

URL : https://hal.archives-ouvertes.fr/hal-01071777

M. Villalobos, B. Lanson, A. Manceau, B. Toner, and G. Sposito, Structural model for the biogenic Mn oxide produced by Pseudomonas putida, American Mineralogist, vol.91, issue.4, pp.489-502, 2006.
DOI : 10.2138/am.2006.1925

URL : https://hal.archives-ouvertes.fr/hal-00193592

S. Grangeon, F. Claret, C. Lerouge, F. Warmont, T. Sato et al., On the nature of structural disorder in calcium silicate hydrates with a calcium/silicon ratio similar to tobermorite, Cement and Concrete Research, vol.52, pp.31-37, 2013.
DOI : 10.1016/j.cemconres.2013.05.007

URL : https://hal.archives-ouvertes.fr/hal-01024533

S. Grangeon, F. Claret, Y. Linard, and C. Chiaberge, X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates, Acta Crystallographica Section B Structural Science Crystal Engineering and Materials, vol.82, issue.5, pp.465-473, 2013.
DOI : 10.1107/S2052519213021155

URL : https://hal.archives-ouvertes.fr/hal-01024545

N. Marty, S. Grangeon, F. Warmont, and C. Lerouge, Alteration of nanocrystalline calcium silicate hydrate (C?S?H) at pH 9.2 and room temper? ature: a combined mineralogical and chemical study, pp.437-458, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01020487

W. Gates, P. Slade, A. Manceau, and B. Lanson, Site Occupancies by Iron in Nontronites, Clays and Clay Minerals, vol.50, issue.2, pp.223-239, 2002.
DOI : 10.1346/000986002760832829

C. Roosz, S. Grangeon, P. Blanc, V. Montouillout, B. Lothenbach et al., Crystal structure of magnesium silicate hydrates (M-S-H): The relation with 2:1 Mg???Si phyllosilicates, Cement and Concrete Research, vol.73, pp.228-237, 2015.
DOI : 10.1016/j.cemconres.2015.03.014

URL : https://hal.archives-ouvertes.fr/hal-01361080

J. Vicat, E. Fanchon, P. Strobel, T. Qui, and D. , and cation ordering in hollandite-type structures, Acta Crystallographica Section B Structural Science, vol.42, issue.2, pp.162-167, 1986.
DOI : 10.1107/S0108768186098415