Getting better insights in the influence of uncertainties in seismic risk. Application to L’Aquila earthquake (2009).

Abstract : Over recent years, numbers of tools for seismic risk analysis have been developed to evaluate casualties and losses induced by earthquakes. A recent overview of available models can be found in (Molina et al. 2010). These predictions software require a large number of quantitative parameters (parametric uncertainty) but also model structures (model uncertainty). The choice of the appropriate model and the determination of exact values of these parameters remain very difficult. Therefore, sensitivity analysis and uncertainty quantification have to be performed for these kinds of studies. In this context, the aim of this article is to present a methodology for getting better insight in the role played by the different uncertainty sources (parametric and model) based on a variance-based global sensitivity analysis. Contrary to Rohmer et al. (2014), we used a less greedy estimation algorithm (Benaïchouche & Rohmer 2016), which both allows providing global sensitivity measures, but also information on local sensitivity. The application case is the risk analysis performed for Aquila (Italy, 2009) earthquake.
Type de document :
Communication dans un congrès
VIII International Conference on Sensitivity Analysis of Model Output, Nov 2016, Tampon, Réunion. 2016
Liste complète des métadonnées

https://hal-brgm.archives-ouvertes.fr/hal-01338345
Contributeur : Abed Benaichouche <>
Soumis le : mardi 28 juin 2016 - 14:26:16
Dernière modification le : vendredi 1 juillet 2016 - 11:24:05
Document(s) archivé(s) le : jeudi 29 septembre 2016 - 13:41:47

Fichier

Application_Abstract.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01338345, version 1

Collections

Citation

Abed Benaichouche, Jérémy Rohmer, Daniel Monfort, Christian Bellier. Getting better insights in the influence of uncertainties in seismic risk. Application to L’Aquila earthquake (2009).. VIII International Conference on Sensitivity Analysis of Model Output, Nov 2016, Tampon, Réunion. 2016. 〈hal-01338345〉

Partager

Métriques

Consultations de la notice

148

Téléchargements de fichiers

94