L. H. Keith and W. A. Telliard, ES&T Special Report: Priority pollutants: I-a perspective view, Environmental Science & Technology, vol.13, issue.4, pp.416-423, 1979.
DOI : 10.1021/es60152a601

S. Ahn, D. Werner, and R. G. Luthy, PHYSICOCHEMICAL CHARACTERIZATION OF COKE-PLANT SOIL FOR THE ASSESSMENT OF POLYCYCLIC AROMATIC HYDROCARBON AVAILABILITY AND THE FEASIBILITY OF PHYTOREMEDIATION, Environmental Toxicology and Chemistry, vol.24, issue.9, pp.24-2185, 2005.
DOI : 10.1897/04-564R.1

V. Leonardi, V. Sasek, M. Petruccioli, A. D. 'annibale, P. Erbanová et al., Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils, International Biodeterioration & Biodegradation, vol.60, issue.3, pp.60-165, 2007.
DOI : 10.1016/j.ibiod.2007.02.004

C. Löser, H. Seidel, P. Hoffmann, and A. Zehnsdorf, Bioavailability of hydrocarbons during microbial remediation of a sandy soil, Applied Microbiology and Biotechnology, vol.51, issue.1, pp.105-111, 1999.
DOI : 10.1007/s002530051370

U. Ghosh, J. R. Zimmerman, and R. G. Luthy, PCB and PAH Speciation among Particle Types in Contaminated Harbor Sediments and Effects on PAH Bioavailability, Environmental Science & Technology, vol.37, issue.10, pp.2209-2217, 2003.
DOI : 10.1021/es020833k

H. H. Liste and M. Alexander, Butanol extraction to predict bioavailability of PAHs in soil, Chemosphere, vol.46, issue.7, pp.1011-1017, 2002.
DOI : 10.1016/S0045-6535(01)00165-5

E. Puglisi, C. J. Patterson, and G. I. Paton, Non-exhaustive extraction techniques (NEETs) for bioavailability assessment of organic hydrophobic compounds in soils, Agronomie, vol.23, issue.8, pp.755-756, 2003.
DOI : 10.1051/agro:2003049

URL : https://hal.archives-ouvertes.fr/hal-00886227

B. J. Reid, J. D. Stokes, K. C. Jones, and K. T. Semple, Nonexhaustive Cyclodextrin-Based Extraction Technique for the Evaluation of PAH Bioavailability, Environmental Science & Technology, vol.34, issue.15, pp.34-3174, 2000.
DOI : 10.1021/es990946c

J. L. Gomez-eyles, M. T. Jonker, M. E. Hodson, and C. D. Collins, Passive Samplers Provide a Better Prediction of PAH Bioaccumulation in Earthworms and Plant Roots than Exhaustive, Mild Solvent, and Cyclodextrin Extractions., Environmental Science & Technology, vol.46, issue.2, pp.962-969, 2011.
DOI : 10.1021/es203499m

S. Li, T. A. Anderson, J. D. Maul, B. Shrestha, M. J. Green et al., Cañas-Carrell, Comparative studies of multi-walled carbon nanotubes (MWNTs) and octadecyl (C18) as sorbents in passive sampling devices for biomimetic uptake of polycyclic aromatic hydrocarbons (PAHs) from soils, Sci. Total Environ, p.461

S. Kohlmeier, M. Mancuso, U. Deepthike, R. Tecon, J. R. Van-der-meer et al., Comparison of naphthalene bioavailability determined by whole-cell biosensing and availability determined by extraction with Tenax, Environmental Pollution, vol.156, issue.3, pp.156-803, 2008.
DOI : 10.1016/j.envpol.2008.06.001

N. Amellal, J. M. Portal, and J. Berthelin, Effect of soil structure on the bioavailability of polycyclic aromatic hydrocarbons within aggregates of a contaminated soil, Applied Geochemistry, vol.16, issue.14, pp.1611-1619, 2001.
DOI : 10.1016/S0883-2927(01)00034-8

N. Chung and M. Alexander, Differences in Sequestration and Bioavailability of Organic Compounds Aged in Dissimilar Soils, Environmental Science & Technology, vol.32, issue.7, pp.855-860, 1998.
DOI : 10.1021/es970740g

C. Cuypers, T. Grotenhuis, J. Joziasse, and W. Rulkens, Rapid Persulfate Oxidation Predicts PAH Bioavailability in Soils and Sediments, Environmental Science & Technology, vol.34, issue.10, pp.2057-2063, 2000.
DOI : 10.1021/es991132z

E. Ferrarese, G. Andreottola, and I. A. Oprea, Remediation of PAH-contaminated sediments by chemical oxidation, Journal of Hazardous Materials, vol.152, issue.1, pp.128-139, 2008.
DOI : 10.1016/j.jhazmat.2007.06.080

A. Goi, M. Trapido, and N. Kulik, Contaminated soil remediation with hydrogen peroxide oxidation, World Academy of Science, Eng. Technol, vol.3, pp.154-159, 2009.

F. Laurent, A. Cébron, C. Schwartz, and C. , Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties, Chemosphere, vol.86, issue.6, pp.659-664, 2012.
DOI : 10.1016/j.chemosphere.2011.11.018

URL : https://hal.archives-ouvertes.fr/hal-01486347

F. J. Rivas, Polycyclic aromatic hydrocarbons sorbed on soils: A short review of chemical oxidation based treatments, Journal of Hazardous Materials, vol.138, issue.2, pp.234-251, 2006.
DOI : 10.1016/j.jhazmat.2006.07.048

M. Usman, P. Faure, K. Hanna, M. Abdelmoula, and C. Ruby, Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination, Fuel, vol.96, pp.270-276, 2012.
DOI : 10.1016/j.fuel.2012.01.017

URL : https://hal.archives-ouvertes.fr/hal-00878590

M. Usman, P. Faure, C. Lorgeoux, C. Ruby, and K. Hanna, Treatment of hydrocarbon contamination under flow through conditions by using magnetite catalyzed chemical oxidation, Environmental Science and Pollution Research, vol.186, issue.118
DOI : 10.1016/j.jhazmat.2010.12.129

URL : https://hal.archives-ouvertes.fr/hal-00916609

M. Usman, P. Faure, C. Ruby, and K. Hanna, Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils, Chemosphere, vol.87, issue.3, pp.234-240, 2012.
DOI : 10.1016/j.chemosphere.2012.01.001

URL : https://hal.archives-ouvertes.fr/hal-00878576

M. Usman, P. Faure, C. Ruby, and K. Hanna, Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation, Applied Catalysis B: Environmental, vol.117, issue.118, pp.117-118, 2012.
DOI : 10.1016/j.apcatb.2012.01.007

URL : https://hal.archives-ouvertes.fr/hal-00878582

C. Valderrama, R. Alessandri, T. Aunola, J. L. Cortina, X. Gamisans et al., Oxidation by Fenton's reagent combined with biological treatment applied to a creosote-contaminated soil, J

B. E. Huling, In-situ chemical oxidation, Engineering Issue, p.58, 2006.

R. Baciocchi, Principles, Developments and Design Criteria of In Situ Chemical Oxidation, Water, Air, & Soil Pollution, vol.66, issue.5, pp.1-11, 2013.
DOI : 10.1016/j.chemosphere.2006.06.053

S. Lundstedt, Y. Persson, and L. Öberg, Transformation of PAHs during ethanol-Fenton treatment of an aged gasworks??? soil, Chemosphere, vol.65, issue.8, pp.1288-1294, 2006.
DOI : 10.1016/j.chemosphere.2006.04.031

G. S. Brown, L. L. Barton, and B. M. Thomson, Permanganate oxidation of sorbed polycyclic aromatic hydrocarbons, Waste Manage, pp.737-740, 2003.
DOI : 10.1016/s0956-053x(02)00119-8

L. T. Bonten, T. C. Grotenhuis, and W. H. Rulkens, Enhancement of PAH biodegradation in soil by physicochemical pretreatment, Chemosphere, vol.38, issue.15, pp.3627-3636, 1999.
DOI : 10.1016/S0045-6535(98)00574-8

M. Usman, Formation of mixed Fe II ?Fe III oxides and their reactivity to catalyze chemical oxidation, in: Remediation of Hydrocarbon Contaminated Soils, p.225, 2011.

M. Usman, A. Chaudhary, C. Biache, P. Faure, and K. Hanna, Thermal pretreatment as a novel way to increase availability of PAHs for their successive chemical oxidation in contaminated soils, Chemosphere

L. Jeanneau and P. Faure, Quantification of fossil organic matter in contaminated sediments from an industrial watershed: Validation of the quantitative multimolecular approach by radiocarbon analysis, Science of The Total Environment, vol.408, issue.19, pp.4251-4256, 2010.
DOI : 10.1016/j.scitotenv.2010.06.002

S. J. Rowland, R. Alexander, R. I. Kagi, D. M. Jones, and A. G. Douglas, Microbial degradation of aromatic components of crude oils: A comparison of laboratory and field observations, Organic Geochemistry, vol.9, issue.4, pp.153-161, 1986.
DOI : 10.1016/0146-6380(86)90065-3

J. K. Volkman, R. Alexander, R. I. Kagi, S. J. Rowland, and P. N. Sheppard, Biodegradation of aromatic hydrocarbons in crude oils from the Barrow Sub-basin of Western Australia, Organic Geochemistry, vol.6, pp.619-632, 1984.
DOI : 10.1016/0146-6380(84)90084-6

J. A. Williams, M. Bjorøy, D. L. Dolcater, and J. C. Winters, Biodegradation in South Texas Eocene oils ??? Effects on aromatics and biomarkers, Biodegradation in South Texane Eocene oilseffects on aromatics and biomarkers, pp.451-461, 1986.
DOI : 10.1016/0146-6380(86)90045-8

V. Flotron, C. Delteil, Y. Padellec, and V. , Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton???s reagent process, Chemosphere, vol.59, issue.10, pp.1427-1437, 2005.
DOI : 10.1016/j.chemosphere.2004.12.065

R. J. Watts, P. C. Stanton, J. Howsawkeng, and A. L. Teel, Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide, Water Research, vol.36, issue.17, pp.4283-4292, 2002.
DOI : 10.1016/S0043-1354(02)00142-2

C. L. Yap, S. Gan, and H. K. Ng, Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils, Chemosphere, vol.83, issue.11, pp.1414-1430, 2011.
DOI : 10.1016/j.chemosphere.2011.01.026

B. R. Petigara, N. V. Blough, and A. C. Mignerey, Mechanisms of Hydrogen Peroxide Decomposition in Soils, Environmental Science & Technology, vol.36, issue.4, pp.639-645, 2002.
DOI : 10.1021/es001726y

A. Cébron, P. Faure, C. Lorgeoux, S. Ouvrard, and C. , Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: Consequences on biodegradation, Environmental Pollution, vol.177, pp.98-105, 2013.
DOI : 10.1016/j.envpol.2013.01.043

J. L. Vasseur and C. Morel, In situ assessment of phytotechnologies for multicontaminated soil management, Int. J. Phytorem, vol.13, pp.245-263, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01486337

A. Pernot, S. Ouvrard, P. Leglize, and P. Faure, Protective role of fine silts for PAH in a former industrial soil, Environmental Pollution, vol.179, pp.81-87, 2013.
DOI : 10.1016/j.envpol.2013.03.068

URL : https://hal.archives-ouvertes.fr/hal-01119519

S. Jonsson, Y. Persson, S. Frankki, B. Van-bavel, S. Lundstedt et al., Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton's reagent: A multivariate evaluation of the importance of soil characteristics and PAH properties, Journal of Hazardous Materials, vol.149, issue.1, pp.149-86, 2007.
DOI : 10.1016/j.jhazmat.2007.03.057

G. L. Northcott and K. C. Jones, Partitioning, Extractability, and Formation of Nonextractable PAH Residues in Soil. 1. Compound Differences in Aging and Sequestration, Environmental Science & Technology, vol.35, issue.6, pp.35-1103, 2001.
DOI : 10.1021/es000071y

S. Ouali, Bioremediation Trials of Polycyclylic Aromatic Compound Contaminated Soils, Essais De Traitabilité Par Voie Biologique Des Sols Contaminés Aux Composés Aromatiques Polycycliques)

J. Lemaire, M. Buès, T. Kabeche, K. Hanna, and M. Simonnot, Oxidant selection to treat an aged PAH contaminated soil by in situ chemical oxidation, Journal of Environmental Chemical Engineering, vol.1, issue.4, pp.1261-1268, 2013.
DOI : 10.1016/j.jece.2013.09.018

URL : https://hal.archives-ouvertes.fr/hal-00916658

B. W. Bogan and V. Trbovic, Effect of sequestration on PAH degradability with Fenton???s reagent: roles of total organic carbon, humin, and soil porosity, Journal of Hazardous Materials, vol.100, issue.1-3, pp.285-300, 2003.
DOI : 10.1016/S0304-3894(03)00134-1

C. Kazunga, M. D. Aitken, A. Gold, and R. Sangaiah, Fluoranthene-2,3- and -1,5-diones Are Novel Products from the Bacterial Transformation of Fluoranthene, Environmental Science & Technology, vol.35, issue.5, pp.35-917, 2001.
DOI : 10.1021/es001605y

H. H. Richnow, R. Seifert, J. Hefter, M. Kästner, B. Mahro et al., Michaelis, Metabolites of xenobiotica and mineral oil constituents linked to macromolecular organic matter in polluted environments

H. Weigand, K. U. Totsche, I. Kögel-knabner, E. Annweiler, H. H. Richnow et al., Fate of anthracene in contaminated soil: transport and biochemical transformation under unsaturated flow conditions, European Journal of Soil Science, vol.28, issue.1, pp.71-81, 2002.
DOI : 10.1016/S0045-6535(97)00249-X

S. Figure, 16 PAH concentrations in (a.) the coking plant, (b.) the gas plant and (c.) the wood-treating facility soils, for the references and the H2O2 treated, p.0

S. Figure, 16 PAH concentrations in (a.) the coking plant, (b.) the gas plant and (c.) the wood-treating facility soils, for the references and the Fenton-like treated, p.0