Retention processes in clay-rocks
Christophe Tournassat, Sylvain Grangeon

To cite this version:
Christophe Tournassat, Sylvain Grangeon. Retention processes in clay-rocks. Goldschmidt 2015, Aug 2015, Prague, Czech Republic. 2015. <hal-01140507>

HAL Id: hal-01140507
https://hal-brgm.archives-ouvertes.fr/hal-01140507
Submitted on 8 Apr 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Retention processes in clay-rocks
CHRISTOPHE TOURNASSAT1 AND SYLVAIN GRANGEON1

1BRGM, 3 av. Claude Guillemin, Orléans, France.
c.tournassat@brgm.fr; s.grangeon@brgm.fr

Within the context of the clay barrier concept for underground nuclear waste storage, montmorillonite and bentonite have been widely used as reference materials for radionuclides (RN) retention studies. Associated modeling work aims at understanding and predicting the retention of RN in clay-rocks where clay minerals are assumed to be representative of the most reactive phases. This “bottom-up” approach relies on a good confidence in the mechanistic understanding of adsorption processes on clay mineral surfaces, and in the understanding of the reactivity of associated mineral (or organic) phases.

In the first part of the presentation, experimental and modeling works will be reviewed with a focus on divalent metals surface complexation on clay mineral surfaces, showing the limitations of current modeling approaches [1]. Missing information, which is necessary to model adsorption data in a mechanistic way, together with experimental features that cast doubt on the ability of surface complexation models to catch adequately the nature of divalent metal adsorption, will be highlighted.

In the second part of the presentation, “bottom-up” modeling approaches and related uncertainties will be detailed for the prediction of divalent metals retention in clay-rocks. The example of Ni²⁺ retention [2] will be used to show how the chemical reactivity of non-clay mineral phases can lower or enhance RN retention through time-dependant processes taking place in laboratory experiments as well as in storage conditions.

References: