Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A fuzzy constraint-based approach to data reconciliation in material flow analysis

Abstract : Data reconciliation consists in modifying noisy or unreliable data in order to make them consistent with a mathematical model (herein a material flow network). The conventional approach relies on least-squares minimization. Here, we use a fuzzy set-based approach, replacing Gaussian likelihood functions by fuzzy intervals, and a leximin criterion. We show that the setting of fuzzy sets provides a generalized approach to the choice of estimated values, that is more flexible and less dependent on oftentimes debatable probabilistic justifications. It potentially encompasses interval-based formulations and the least squares method, by choosing appropriate membership functions and aggregation operations. This paper also lays bare the fact that data reconciliation under the fuzzy set approach is viewed as an information fusion problem, as opposed to the statistical tradition which solves an estimation problem.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Marielle Arregros Connectez-vous pour contacter le contributeur
Soumis le : mercredi 4 mars 2015 - 15:47:45
Dernière modification le : mardi 14 juin 2022 - 12:23:52



Didier Dubois, Hélène Fargier, Meïssa Ababou, Dominique Guyonnet. A fuzzy constraint-based approach to data reconciliation in material flow analysis. International Journal of General Systems, Taylor & Francis, 2014, 43 (8), 23 p. ⟨10.1080/03081079.2014.920840⟩. ⟨hal-01122833⟩



Consultations de la notice