On the Energy Efficiency and Performance of Irregular Application Executions on Multicore, NUMA and Manycore Platforms

Abstract : Until the last decade, performance of HPC architectures has been almost exclusively quantifiedby their processing power. However, energy efficiency is being recently considered as importantas raw performance and has become a critical aspect to the development of scalablesystems. These strict energy constraints guided the development of a new class of so-calledlight-weight manycore processors. This study evaluates the computing and energy performanceof two well-known irregular NP-hard problems — the Traveling-Salesman Problem (TSP) andK-Means clustering—and a numerical seismic wave propagation simulation kernel—Ondes3D—on multicore, NUMA, and manycore platforms. First, we concentrate on the nontrivial task ofadapting these applications to a manycore, specifically the novel MPPA-256 manycore processor.Then, we analyze their performance and energy consumption on those di↵erent machines.Our results show that applications able to fully use the resources of a manycore can have betterperformance and may consume from 3.8x to 13x less energy when compared to low-power andgeneral-purpose multicore processors, respectively
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal-brgm.archives-ouvertes.fr/hal-01092325
Contributeur : Marielle Arregros <>
Soumis le : lundi 8 décembre 2014 - 15:28:02
Dernière modification le : lundi 8 juillet 2019 - 15:08:38
Document(s) archivé(s) le : lundi 9 mars 2015 - 12:01:24

Fichier

Francesquini_et_al_JPDC_2014.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

Citation

Emilio Francesquini, Márcio Castro, Pedro Penna, Fabrice Dupros, Henrique Freitas, et al.. On the Energy Efficiency and Performance of Irregular Application Executions on Multicore, NUMA and Manycore Platforms. Journal of Parallel and Distributed Computing, Elsevier, 2015, 76, pp. 32-48. ⟨10.1016/j.jpdc.2014.11.002⟩. ⟨hal-01092325⟩

Partager

Métriques

Consultations de la notice

1815

Téléchargements de fichiers

539