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a b s t r a c t

Empirical fragility curves, constructed from databases of thousands of building-damage observations, are
commonly used for earthquake risk assessments, particularly in Europe and Japan, where building stocks
are often difficult to model analytically (e.g. old masonry structures or timber dwellings). Curves from
different studies, however, display considerable differences, which lead to high uncertainty in the
assessed seismic risk. One potential reason for this dispersion is the almost universal neglect of the
spatial variability in ground motions and the epistemic uncertainty in ground-motion prediction. In this
paper, databases of building damage are simulated using ground-motion fields that take account of
spatial variability and a known fragility curve. These databases are then inverted, applying a standard
approach for the derivation of empirical fragility curves, and the difference with the known curve is
studied. A parametric analysis is conducted to investigate the impact of various assumptions on the
results. By this approach, it is concluded that ground-motion variability leads to flatter fragility curves
and that the epistemic uncertainty in the ground-motion prediction equation used can have a dramatic
impact on the derived curves. Without dense ground-motion recording networks in the epicentral area
empirical curves will remain highly uncertain. Moreover, the use of aggregated damage observations
appears to substantially increase uncertainty in the empirical fragility assessment. In contrast, the use of
limited randomly-chosen un-aggregated samples in the affected area can result in good predictions of
fragility.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Fragility curves of buildings exposed to earthquakes express
the likelihood of damage to these assets from future seismic
events. Empirical fragility curves are based on the statistical
analysis of post-earthquake observations of the damage sustained
by the exposed buildings and the corresponding ground-motion
intensity level at the building locations. Currently at least 119
empirical fragility curves have been published [1]. These curves
have generally been constructed assuming that the measurement
error in the intensity-measure levels (IMLs) is negligible. However,
given the general lack of a dense strong-motion network in the
areas of damaging earthquakes, the intensity levels are typically
estimated though ground motion prediction equations (GMPEs) or,
more recently, ShakeMaps. Hence, the IMLs are associated with
high measurement error. In recent years, a handful of studies have
proposed undertaking a Bayesian regression analysis to explicitly

model this error [2–4]. Nonetheless, the impact of this measure-
ment error on empirical fragility curves is not well understood.

This study aims to examine the impact of the measurement
error in the IMLs on empirical fragility curves. A simulation study
is undertaken to investigate this issue, following a similar philo-
sophy to Gehl et al. [5], who studied the influence of the number
of dynamic runs on the accuracy of fragility curves. In the next
section the method of simulation is introduced. This approach is
applied in the subsequent section to undertake a parametric
analysis to study the influence of different assumptions on the
empirical fragility curves. The paper finishes with some discussion
of the results, the limitations of existing empirical fragility curves,
implications for the development of future empirical fragility
functions as well as possible ways forward.

2. Method

The impact of ground-motion variability and uncertainty on
empirical fragility curves is studied here by undertaking a series of
experiments. In these, an earthquake with specified characteristics
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(i.e. magnitude, location and faulting mechanism) affects a num-
ber of buildings (NBuildings) located in a number of towns (NTowns).

The construction of empirical fragility curves requires observa-
tions of two variables, namely: the damage sustained by the
considered buildings and their corresponding IMLs. IMLs are
generated assuming the absence or the presence of ground-
motion observations.

2.1. Seismic damage

In this study, the damage experienced by each building in the
affected area is considered random due to the uncertainty in its
IML as well as the uncertainty in its structural performance given
this IML. Therefore, seismic damage for each building is deter-
mined here by modelling these two uncertainties through a Monte
Carlo analysis. The procedure adopted is an extension of the
procedure used by Douglas [6] in order to study the density of
seismic networks required to monitor ground motions from
induced seismicity. According to this analysis, a large number,
NRealisations, of IMLs and subsequent damage states are generated.

According to the procedure proposed by Douglas [6], each
realisation of IMLs for the considered buildings occurs from the
generation of a ground-motion field using a given GMPE coupled
with models of spatial variability. To simulate the spatially-
correlated ground-motion fields the procedure of Strasser and
Bommer ([7], pp. 2625–2626) is used. The package geoR [8] of the
statistical software R allows such fields to be generated quickly
and then manipulated. The between-event and within-event
ground-motion variabilities are included within the fields. The
deterministic ground-motion field produced by evaluating the
considered IMLs for all building locations in the region is per-
turbed by the addition of a random field derived from a multi-
variate normal distribution based on a standard deviation equal to
the within-event variability of the selected GMPE and an expo-
nential correlation function, G(h), which is found to fit the
observed spatial correlation of earthquake ground motions [9,10]:

G hð Þ ¼ exp � h
h0

� �
ð1Þ

where h is the separation distance between locations of interest
and h0 is the correlation range. Because one ground-motion field
differs greatly from another, this procedure is repeated many
times so that robust conclusions can be drawn from the combined
results. The sensitivity of the results on the chosen GMPE, the
value of h0 and other input parameters (e.g. size of the region,
density of ground-motion measurements and aggregation level)
are investigated in this paper.

In order to simulate earthquake-damage fields, a known
fragility curve expressing the fragility of hypothetical buildings
in a region is applied. This curve takes as input the simulated
ground-motion fields and yields the building damage observations
used as the empirical dataset for the study. Consequently, the
impact of sparse or uncertain observations on fragility curves can
be evaluated by comparing the resulting empirical fragility curves
derived from different sampling and assumptions, with the curve
used as input in the simulations. The advantage of this approach is
that the ‘true’ fragility of the structures is known and can be
compared with the empirical fragility curves resulting from the
experiments.

In particular, for a realisation k, resulting in imlrealisationk, the
damage sustained by each building is randomly generated as
follows. In order to simplify the analysis, the determination of
the exact damage state of each building is not required. Instead,
we concentrate on whether the building has reached or not a
given damage state, dsi, assuming an appropriate fragility curve
from the literature. In particular, for a realisation k, the building, j,

is assigned an indicator, Yjk, where:

Yjk ¼
1 DSZdsi
0 DSodsi

(
ð2Þ

The indicator is randomly assigned to the building j, by
assuming that it follows a special case of the binomial distribution,
termed the Bernoulli distribution:

YjkjIM ¼ imlrealisationk
�

n

yjk

 !
μjk

yjk 1�μjk

h in�yjk

where μjk ¼ P DSZdsijimrealisationk

� �¼Φ
ln imlrealisationk

� ��λ
ζ

� �
ð3Þ

where n is the number of buildings for a given intensity measure
level, imlrealisationk, and in this case, n¼1; μj equals the probability
that the building is in damage state dsi or above given imlrealisationk;
μjk is the mean of the Bernoulli distribution, which is typically
expressed in the literature in terms of a cumulative lognormal
distribution; Φ is the cumulative standard normal distribution; λ
is the lognormal mean; and ζ is the lognormal standard deviation.

2.2. Ground-motion intensity

The determination of the IML at the location of each building is
necessary for the construction of empirical fragility curves. These
levels are considered known and measured without uncertainty,
an assumption commonly made when deriving such curves. The
determination of these ‘true’ IMLs depends on the absence or
presence of ground-motion observations.

2.2.1. The absence of ground motion recording stations
In the absence of ground-motion records, empirical fragility

curves are derived here by following the common assumption that
the IML at the location of each building is equal to the median
values obtained from a pre-selected GMPE. It should be noted that
the selected equation is not necessarily the same as the one used
to generate the damage levels because in practice the appropriate
GMPE for an earthquake is not known.

2.2.2. The presence of ground motion recording stations
The random fields of peak ground accelerations (PGAs) are

recovered assuming the presence of ground motion recording
stations located at a varying number of buildings. This considera-
tion suggests that the IMLs for the buildings at which records are
available are known and equal to the corresponding values
provided by the random field. The IMLs for the remaining build-
ings are estimated from these records using a procedure known as
kriging. In this study, kriging uses the same correlation model as
the one used for the generation of the random fields.

2.3. Empirical fragility curves

The empirical fragility curve is then constructed for the
k realisations of IMLs by considering the Yjk indicators generated
for all considered buildings, according to the procedure described
in Section 2.1, and the corresponding ‘true’ IMLs as determined in
Section 2.2. Their construction follows the procedure proposed in
the Global Earthquake Model empirical fragility assessment guide-
lines [3]:

YjkjIMtrue ¼ iml'true';k �
n

yjk

 !
μjk

yjk 1�μjk

h in�yjk
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where μjk ¼ P DSZdsijiml'true';k
� �

¼Φ
ln iml'true';k
� �

�λk
ζk

0
@

1
A ð4Þ

where λk is the lognormal mean and ζk is the lognormal standard
deviation for realisation k estimated by Eq. (4). Both of these
parameters fully describe the empirical fragility curve for realisa-
tion k.

3. Results

A simulation study is undertaken to gain insight into the
influence on empirical fragility curves of the measurement error
in IMLs. Within this study, five hypothetical Turkish towns (termed
A to E), distributed at equal intervals of 22.5 km as presented in
Fig. 1, are considered. For simplicity, all ground motions are
predicted assuming uniform stiff soil (e.g., Vs30¼400 m/s) condi-
tions throughout the region. Each town includes N¼10,000 build-
ings, spatially distributed on the nodes of a grid with spacing of
20 m. To reduce the complexity of this study, masonry buildings are
assumed with fragility expressed by the analytical fragility curves of
Erberik [11], which adopt PGA as the intensity measure and use
three damage states. Here, only the curve corresponding to mod-
erate damage state is used for simplicity. The buildings in the five
towns (i.e. 5 towns�10,000 buildings¼50,000 buildings in total)
are assumed to be affected by a normal-faulting earthquake with
known location and magnitude. The effect on the empirical fragility
curves of the uncertainty in PGA estimates is examined by assuming
the absence as well as the presence of strong-motion stations in the
epicentral region. Table 1 lists the characteristics of the different
parametric analyses conducted.

Common to all sensitivity analyses is the reference scenario,
termed ‘BASE’, which assumes that the aforementioned 50,000
buildings are affected by an earthquake, with moment magnitude
Mw¼7.2, whose epicentre is located 10 km west of the centre of
town A, as depicted in Fig. 1. In addition, the PGAs experienced by
each building are estimated by the GMPE (termed GMPE1) derived
by Akkar and Bommer [12], which models a large intra-event as
well as inter-event variability. Following the procedure outlined in
Section 2.1, this variability as well as the spatial correlation is
taken into account by generating 1000 realisations of the PGA
levels experienced by the 50,000 buildings. It should be noted that
we assume h0¼10 km, which is a typical estimate of this para-
meter in recent studies [9,10], although it should be noted that this
parameter appears to vary with the structural period, geographical
location and earthquake and consequently there is much uncer-
tainty over the appropriate value. For each realisation of the PGAs,
the damage experienced by each building is generated according
to the procedure outlined in Section 2.1. The construction of
empirical curves requires the determination of the ‘true’ PGAs.
For this scenario, the absence of strong-motion stations in the
vicinity is considered. Therefore, the ‘true’ values are considered
equal to the median GMPE1 values. The empirical fragility curves
for moderate damage for each realisation, depicted in Fig. 2a, are
substantially flatter than the fragility curves of Erberik [11], which
express the actual fragility of the masonry buildings. This suggests
that the ground-motion variability leads to a considerable increase
in the uncertainty of empirical fragility curves.

The impact of the variability in PGA on the mean empirical
fragility curve as well as its 90% confidence intervals is examined
here by considering an alternative scenario, termed ‘CHECK’,
which sets the variability in GMPE1 to zero. According to this

Fig. 1. Location of the epicentre (star), the five towns and realisations of PGA fields for 'UNCORRELATED' (top row), 'FULLY CORRELATED' (middle row), and 'BASE'
(bottom row) scenarios. How the PGA (in g) fields shown here were generated is discussed later on in the paper.
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scenario, the ‘true’ PGAs are considered known and equal to their
corresponding values obtained from the 1000 random fields. The
procedure described above to construct empirical fragility curves
is again used and the results obtained are presented in Fig. 2a. The
mean fragility curve for this scenario is almost identical to the
‘true’ fragility curve, as expected. The very narrow width of the
90% confidence intervals can be attributed to the large sample size,
i.e. 50,000 buildings, used to produce each curve.

The differences in the empirical fragility curves constructed by
the two scenarios, i.e. ‘BASE’ and ‘CHECK’, are quantified in Table 1,
which lists the mean and 90% confidence intervals of these curves
for two example PGAs (0.07 g and 0.20 g). The flatter mean curve
for ‘BASE’ leads to a P(DSZ moderate damage/PGA¼0.07 g) that is
150% higher than its ‘CHECK’ counterpart. The difference is
reduced to 10% for 0.20 g. With regard to the width of the 90%
confidence intervals, this appears to be 54 and 36 times wider for
‘BASE’ than ‘CHECK’ given PGA¼0.07 g and 0.20 g, respectively.

Overall, the variability in the PGAs leads to a substantial
increase in uncertainty in the empirical fragility curves, which is
manifested both in terms of a flatter curve as well as wider
confidence intervals.

In the construction of empirical fragility curves for ‘BASE’, the
‘true’ IMLs have been considered equal to the median values of
GMPE1. Nonetheless, the selection of a GMPE to express the ‘true’
PGA levels depends on the analyst. What is the impact of using
median values of an alternative GMPE? To address this question,
the GMPEs proposed by Cauzzi and Faccioli [13] and Zhao et al.
[14], identified by Delavaud et al. [15] as suitable for Europe and
the Middle East, are used to estimate the ‘true’ PGAs. The modified
‘BASE’ scenario is re-run and the estimated mean and 90%
confidence intervals for the two scenarios, termed ‘GMPE2’ and
‘GMPE3’, respectively, are depicted in Fig. 2b. The ‘true’ intensity
measure levels for ‘GMPE2’ and ‘GMPE3’ are higher than their
‘BASE’ counterparts as presented in Fig. 3. This leads to the mean

Table 1
Scenario simulations and characteristics of the inverted fragility curves.

Name Mw h0 (km) Grid
(m2)

Aggregation of
buildings

N PGAmedian PGArealisation PGA¼0.07 g PGA¼0.20 g

σ τ 95% Mean 5% 95% Mean 5%

Sensitivity to uncertainty in GMPE
CHECK 7.2 10 20�20 No 5�10,000 GMPE1 σGMPE1 τGMPE1 9.0 9.2 9.5 67.1 67.7 68.3
BASE 7.2 10 20�20 No 5�10,000 GMPE1 σGMPE1 τGMPE1 11.0 23.0 38.0 37.6 60.7 80.6
Sensitivity to GMPE
GMPE2 7.2 10 20�20 No 5�10,000 GMPE2 σGMPE1 τGMPE1 4.3 14.3 27.9 24.7 42.5 60.7
GMPE3 7.2 10 20�20 No 5�10,000 GMPE3 σGMPE1 τGMPE1 3.7 13.1 26.1 23.8 41.5 59.4
Sensitivity in h0

Uncorrelated 7.2 Uncorrelated 20�20 No 5�10,000 GMPE1 σGMPE1 τGMPE1 8.4 18.7 32.2 44.9 62.4 78.4
Fully correlated 7.2 Fully

correlated
20�20 No 5�10,000 GMPE1 σGMPE1 τGMPE1 0.07 19.8 71.0 7.6 63.2 99.0

Sensitivity to buildings' density
Density¼50 m�50 m 7.2 10 50�50 No 5�10,000 GMPE1 σGMPE1 τGMPE1 12.0 23.2 36.5 42.7 60.2 76.5
Sensitivity to the number of buildings
N¼5�100 (Ordered 1) 7.2 10 20�20 No (Ordered 1) 5� 100 GMPE1 σGMPE1 τGMPE1 7.4 22.9 43.8 29.9 60.4 87.9
N¼5�100 (Ordered 2) 7.2 10 20�20 No (Ordered 2) 5�100 GMPE1 σGMPE1 τGMPE1 8.9 22.6 39.4 35.6 61.0 83.1
N¼5�100 (Random) 7.2 10 20�20 No (Random) 5�100 GMPE1 σGMPE1 τGMPE1 9.7 22.8 38.5 36.9 60.6 81.5
N¼5�1000 (Ordered 1) 7.2 10 20�20 No (Ordered 1) 5�1000 GMPE1 σGMPE1 τGMPE1 9.1 22.8 40.1 34.5 60.5 84.1
Sensitivity to buildings aggregation
Aggregated¼1 point per town 7.2 10 20�20 1�1 per town 5�10,000 GMPE1 σGMPE1 τGMPE1 1.7 17.7 44.1 18.8 63.4 97.7
Aggregated¼100 points per town 7.2 10 20�20 10�10 per town 5�10,000 GMPE1 σGMPE1 τGMPE1 2.1 18.0 40.8 22.5 63.6 96.5

Name Mw h0 (km) Grid
(m2)

Aggregation of
buildings

N PGAmedian PGArealisation PGA¼0.07 g PGA¼0.20 g

95% Mean 5% 95% Mean 5%

Kriging
5�1 st, COR. 7.2 10 20�20 10�10 p town 5�100 GMPE1 1 station p

town
12.1 25.2 39.5 28.6 48.7 73.9

5�10 st, COR. 7.2 10 20�20 10�10 p town 5�100 GMPE1 10 stations p
town

15.5 21.5 28.4 42.1 53.9 65.2

5�50 st, COR. 7.2 10 20�20 10�10 p town 5�100 GMPE1 50 stations p
town

12.6 16.8 21.0 53.0 59.8 66.2

5�100 st, COR. 7.2 10 20�20 10�10 p town 5�100 GMPE1 100 stations p
town

5.8 9.1 12.6 61.6 68.1 75.0

5�1 st, UNCOR. 7.2 Uncorrelated 20�20 10�10 p town 5�100 GMPE1 1 station p
town

0.0 21.1 59.8 20.8 73.6 100.0

5�10 st, UNCOR. 7.2 Uncorrelated 20�20 10�10 p town 5�100 GMPE1 10 stations p
town

7.1 20.5 31.3 57.5 73.3 89.0

5�50 st, UNCOR. 7.2 Uncorrelated 20�20 10�10 p town 5�100 GMPE1 50 stations p
town

9.6 17.5 25.0 62.6 71.3 79.4

5�100 st, UNCOR. 7.2 Uncorrelated 20�20 10�10 p town 5�100 GMPE1 100 stations p
town

5.8 9.1 12.6 61.7 67.9 74.6

5�1 st, FCOR. 7.2 Fully
correlated

20�20 10�10 p town 5�100 GMPE1 1 station p
town

11.0 25.0 40.6 27.3 48.9 73.7

5�10 st, FCOR. 7.2 Fully
correlated

20�20 10�10 p town 5�100 GMPE1 10 stations p
town

15.3 21.5 27.9 44.5 54.1 63.5

5�50 st, FCOR. 7.2 Fully
correlated

20�20 10�10 p town 5�100 GMPE1 50 stations p
town

12.6 16.7 21.2 52.7 59.8 66.8

5�100 st, FCOR. 7.2 Fully
correlated

20�20 10�10 p town 5�100 GMPE1 100 stations p
town

5.8 9.0 12.6 61.7 67.9 74.6
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fragility curves for the two scenarios to be shifted to the right
indicating an improved seismic performance than their ‘BASE’
counterparts (see Fig. 2b). It should be noted, however, that
improved performance does not make the curves closer to the
‘true’ fragility curve [11]. In particular, for PGA¼0.07 g, the
difference between the mean fragility curve for ‘GMPE2’ and the
‘true’ fragility curve is reduced to 55% and 37% for ‘GMPE2’ and
‘GMPE3’, respectively. By contrast, the width of the 90% confidence
intervals is the same as for ‘BASE’. This is expected given that the
width is related to the ground-motion variability, which remains
the same for all three scenarios (the standard deviations asso-
ciated to GMPE2 and GMPE3 were assumed equal to that for
GMPE1). The true total standard deviations of GMPE2 (0.344 in
terms of log10 PGA) and GMPE3 (0.314) are similar to that of
GMPE1 (0.279) and hence using these values instead would not
have a large impact on the results.

Having established that the event's characteristics mainly affect
the range of IMLs, the influence on the empirical fragility curves of
the spatial correlation parameters, namely h0 and the building
density, are examined next.

The impact on the empirical fragility curves of the correlation
introduced by the exponential model, used to model the Gaussian
random fields in Section 2.1, is examined here by re-running the
‘BASE’ scenario assuming that the intra-event residuals in GMPE1
are uncorrelated or fully correlated. According to the former
scenario, the intensity measure level experienced by each building
does not depend on the intensity at adjacent buildings. Fig. 4a
shows that this assumption leads to a steeper mean fragility curve,
which appears to be closer to its ‘true’ counterpart, and notably

smaller confidence intervals than ‘BASE’. This agrees with the
findings of Crowley et al. [9]. In particular for PGA¼0.20 g, the
confidence intervals around the empirical fragility curves are 22%
narrower than for ‘BASE’. By contrast, if the intra-event residuals
are considered fully correlated, the confidence intervals round the
fragility curve are significantly wider. In particular, they are
2.6 times wider than their ‘BASE’ counterparts (see Table 1).

The impact of the density of the buildings is studied by re-
running the ‘BASE’ scenario assuming that, in each town, the
10,000 buildings are located on the nodes of a wider 50�50 m2

grid. By repeating the procedure outlined above, the mean and
90% confidence intervals of the empirical fragility curves con-
structed from this scenario are plotted against their ‘BASE’ coun-
terparts in Fig. 4b. A wider grid means that the buildings cover a
larger area. This leads to an IML range 11% larger than for the
‘BASE’. In addition, the confidence intervals appear to be narrower,
suggesting that surveying buildings far away from each other
reduces the impact of the spatial correlation. For example, for
PGA¼0.20 g the width of the confidence limits is 20% smaller than
for ‘BASE’.

The sensitivity analyses so far used the entire building inven-
tories in the five examined towns. In reality, surveying 50,000
buildings would be a time-consuming and expensive task, which
leads to the questions: can the accuracy of a large sample size be
reached using fewer samples? And, if so, does the adopted
sampling technique matter?

The impact of the sample size on empirical fragility curves is
examined by considering two scenarios. The first scenario, termed
‘N¼5�100 (Ordered 1)’, considers 100 buildings uniformly dis-
tributed on the 20�20 m2 grid around the centre of each town, as
presented in Fig. 5a. The second scenario, termed ‘N¼5�1000
(Ordered 1)’, considers 1000 buildings uniformly distributed on the
20�20 m2 grid around the centre of each town, as presented in
Fig. 5b. For each building, the corresponding 1000 indicators
generated for ‘BASE’ are assigned. For each realisation of indicators,
empirical fragility curves are then constructed by fitting the probit
model (Eq. (3)) to the 500 or 5000 indicators and their associated
median PGA values obtained from GMPE1. Fig. 6 shows that the
mean fragility curves for both scenarios are identical to their ‘BASE’
counterpart. However, the width of the confidence intervals varies
considerably with the sample size. From Table 1, it can be inferred
that the width of the 90% confidence intervals for ‘N¼5�100
(Ordered 1)’ is 35% larger than for ‘BASE’. This difference is reduced
to 15% for ‘N¼5�1000 (Ordered 1)’.

Fig. 2. Sensitivity of fragility curves (FC) and their 90% confidence intervals (CI FC) to (a) uncertainty in GMPE and (b) selection of GMPE.

Fig. 3. Median PGAs (in g) against the source-to-site distance for GMPE1, GMPE2
and GMPE3.
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The influence of the sampling technique adopted is examined
next by examining whether the large uncertainty around the mean
empirical fragility curve for scenario ‘N¼5�100 (Ordered 1)’ is
reduced by changing the sampling technique. This investigation is
conducted by considering two further scenarios. The scenario,
termed ‘N¼5�100 (Ordered 2)’ assumes that 50 buildings uni-
formly distributed on the 20�20 m2 grid are obtained from two

different areas of each town, as presented in Fig. 5c. The scenario
termed ‘N¼5�100 (Random)’ randomly selects 100 buildings from
each town (see Fig. 5d). Empirical fragility curves are constructed
using the procedure adopted for the two aforementioned scenarios.
Fig. 6 shows that the mean fragility curves for both scenarios are
also identical to ‘BASE’. In this case, the width of the confidence
intervals appears to be closer to ‘BASE’. From Table 1, it can be

Fig. 4. Sensitivity of fragility curves (FC) and their 90% confidence intervals (CI FC) to (a) h0 and (b) spatial distribution of buildings.

Fig. 5. Distribution of 100 and 1000 selected buildings in town A for the four considered scenarios. (a) N¼5x100(Order 1), (b) N¼5x1000(Order 1), (c) N¼5x100(Order 2),
and (d) N¼5x100(Random).
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inferred that the width of the 90% confidence intervals for
‘N¼5�100 (Ordered 2)’ and ‘N¼5�100 (Random)’ for
PGA¼0.07 g is 13% and less than 10% the width of ‘BASE’, respec-
tively. This suggests that the sampling technique adopted affects the
results substantially. More importantly, relatively small carefully
selected samples can yield results close to the curves obtained if
every single affected building is surveyed.

Post-earthquake damage observations are often available in
aggregated form. What is the effect of aggregation on the empirical
fragility curves in the absence of strong-motion stations? This
question is addressed by considering two scenarios with different
levels of aggregation. The scenario termed ‘aggregated¼1 per town’
aggregates the 10,000 buildings in each town to a single bin. The
PGA for each of the five bins is estimated at the corresponding
town's centre. This is a common assumption found in the literature.
Similarly, the scenario termed ‘aggregated¼10�10 per town’
aggregates the 10,000 buildings in each town to 100 equally sized
sub-areas. The intensity measure level for each subarea is estimated
at its centre. The mean and 90% confidence intervals of the
empirical fragility curves for the two scenarios are presented in
Fig. 7. The mean curve is identical for the two scenarios and they

appear to be steeper than the ‘BASE’ mean curve, although the
differences, especially at the lower end of the curves, remain
significant. For example, for PGA¼0.07 g the probability of excee-
dance for ‘Aggregated¼1 per town’ is reduced, compared to its
‘BASE’ counterpart, to 92%. The confidence intervals appear to be
significantly wider than for ‘BASE’. Fig. 7b shows that the aggre-
gated results are closer to the fully aggregated results, which is
expected given that aggregation of buildings assumes that they are
all subjected to the same ground motion. From Table 1, larger
differences in the width of the confidence intervals can be observed
for PGA¼0.20 g. In particular, the 90% confidence intervals for
‘Aggregated¼1 per town’ and ‘Aggregated¼10�10 per town’ are
83% and 72% wider than for ‘BASE’. This indicates that data
aggregation leads to a significant loss of information, which appears
to substantially increase the uncertainty in the empirical fragility
curves. This observation seems to contradict the conclusions of Bal
et al. [16] that the uncertainty introduced by the geographical
resolution of observations of the mean repair-to-replacement ratio
(MDR) is too small to justify a systematic effort to reduce it. It
should be noted that Bal et al. [16] generated a large number of loss
scenarios and they did not perform empirical fragility analysis. In

Fig. 6. Sensitivity of fragility curves (FC) and their 90% confidence intervals (CI FC) to the number of buildings and their location aggregation. ((a)-(d), PGA in g).
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particular, they generated random fields of ground motion intensity
for a hypothetical town affected by a given earthquake and for each
IML, the response of each building was simulated. A damage state
was then assigned and finally the MDR was estimated and aggre-
gated over the total number of buildings in the town. This
aggregation might be the reason for the relatively small uncertainty
around MDRs for each event. More research is needed in order to
examine the effect of empirical fragility curves accounting for
ground-motion uncertainty on the scenario loss.

So far, the considerable influence of ground-motion variability
on empirical fragility curves in the absence of ground motion
recording stations has been highlighted. Nonetheless, the presence
of ground motion recording stations (accelerographs) is expected
to reduce this uncertainty. Does this mean that the presence of a
relatively small number of stations can lead to more accurate
empirical curves?

In order to address this question, the influence of the presence
of a varying number of recording stations in each town is
examined following the procedure described in Section 2.2.2. It
should be noted that this procedure is computationally intensive.
In order to improve its efficiency, the sensitivity analyses are based
on the modification of the scenario ‘N¼5�100 (Random)’. In
particular, each town has 100 randomly-distributed buildings. The
damage in each building is characterised by the 1000 indicators
obtained for the ‘N¼5�100 (Random)’ case. For this analysis,
however, the ‘true’ PGAs account for the presence of 1, 10, 50 and
100 stations per town located in some of the 100 selected
buildings following the procedure outlined in Section 2.2.2. The
procedure is repeated assuming that the correlation model
required for kriging varies. In particular, the case where the spatial
correlation is ignored is considered by setting h0¼0 km and the
case where the ‘true’ intensity experienced by the 100 buildings is
considered fully correlated is also simulated by assuming
h0¼100,000 km.

The mean and 90% confidence intervals of the empirical
fragility curves obtained assuming that the PGA values have been
recorded (i.e. ‘5�100 st, COR.’, ‘5�100 st, UNCOR.’ or ‘5�100 st,
FCOR.’) in all 100 buildings for the three correlation models are
presented in Fig. 8 together with their counterparts obtained for
‘BASE’ and the ‘true’ fragility curve. As expected, the results for the
former three scenarios are identical. Their mean fragility curves

are identical to the ‘true’ fragility curve corresponding to the
moderate damage state. It should be noted that the confidence
intervals for the three considered scenarios appear to be wider
than their ‘CHECK’ counterparts due to the smaller number of
buildings used (i.e. 500 instead of 50,000).

On the other hand, the presence of one station per town
produces empirical fragility curves, whose mean and confidence
intervals depend on the correlation model adopted. With regard to
the mean fragility curves, the curve for scenario ‘5�1 st, UNCOR’
appears to be closer to the ‘true’ fragility curve than that for ‘5�1
st, FCOR’, Nonetheless, the differences between the mean curves
and the ‘true’ remain significant in the lower tails for all cases. For
example, for PGA¼0.07 g, the probability of exceedance for ‘5�1
st, UNCOR’ and ‘5�1 st, FCOR’ is 129% and 174% higher than for its
‘true’ counterpart, respectively. The curve for scenario ‘5�1 st,
COR’ is included in the envelope formed by the two extreme
correlation models and it is almost identical to its counterpart for
the fully correlated scenario. The mean curve for ‘BASE’ is also
included in this envelope. With regard to the confidence intervals,
their width appears to be significantly wider for ‘5�1 st, UNCOR’
and reduced for ‘5�1 st, FCOR’. In this case, the 90% confidence
intervals for ‘BASE’ appear to be very close to their counterparts for
‘5�1 st, FCOR’. The aforementioned observations suggest that the
presence of a very small number of stations, distributed in the
affected area, does not improve the accuracy of the empirical
fragility curves. To explore the reason behind this, the actual
IMLs are plotted against their corresponding values estimated
by kriging in Fig. 8. The closer the values to the 451 line, the
better the prediction provided by a given number of stations
in the area. From this figure, it can be seen that the presence
of only one station per town leads to poor prediction of the actual
IMLs and this affects the accuracy of the empirical fragility curves.

The presence of larger number of stations, i.e. ‘5�10 st, COR’
and ‘5�50 st, COR’, improves the prediction of the actual values
(see Fig. 9) and this results in increasingly steeper mean fragility
curves with increasingly narrower confidence intervals. In parti-
cular, for PGA¼0.07 g, the width of the confidence intervals is 52%
and 69%, for the two aforementioned scenarios, smaller than its
‘BASE’ counterpart. This indicates that the presence of ground-
motion measurements at 10% or 50% of the surveyed buildings
greatly improves the confidence around the mean empirical

Fig. 7. Sensitivity of fragility curves (FC) and their 90% confidence intervals (CI FC) to the level of aggregation ((a), and (b), PGA in g).
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fragility curve. However, despite a decrease from 134% to 83% for
the two aforementioned scenarios, the difference between the
mean fragility curves and the ‘true’ fragility curve remains high.
Similar observations can be noted for the other two correlation
models. This lack of significant improvement in the mean empiri-
cal fragility curves provided by the extrapolation of PGAs from
stations located in half of the total number of buildings (which is
equivalent to 25 stations per km2) considered indicates that a very

dense network of ground motion recording stations is required in
order to construct reliable empirical fragility curves.

4. Conclusions

In this study, a series of experiments were conducted in order
to assess the importance of modelling the variability and

Fig. 8. Fragility curves (FC) and their 90% confidence intervals (CI FC) corresponding to the moderate damage state assuming the presence of a varying number of ground-
motion stations assuming three different correlation models ((a)-(l), PGA in g).
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uncertainty in earthquake ground motions on empirical fragility
curves. The following four main conclusions can be drawn from
this study.

� The impact of variability in ground-motion levels is significant,
and leads to considerably flatter fragility curves and wider
confidence intervals. Further research is required in order to
examine the impact of the uncertainty in the intensity measure
levels in the seismic risk assessment's main products. These
include, e.g., the estimation of the economic loss suffered by a
group of buildings for a given event or the annual failure
probability in a given location, estimated using the correspond-
ing empirical fragility curves.

� There is a need for a very dense network of ground motion
recording stations in order for the recorded data to reduce
uncertainty in empirical fragility functions. This observation is
in line with the main findings of Crowley et al. [9].

� The use of aggregated damage data, which is typical of existing
empirical fragility curves, is found to increase substantially the
uncertainty in the empirical fragility assessment. This raises
questions about the accuracy of existing empirical fragility
curves, but requires further research as only five towns and a
single earthquake have been considered in this study.

� Finally, the sampling technique adopted in the collection of
data can improve the accuracy of the empirical fragility curves.
It was found that the use of a randomly selected, relatively
small sample of buildings (e.g. 100 buildings per town) can
potentially lead to improved fragility curves compared to using
buildings from a single neighbourhood.

Overall, the findings of this study highlight, in line with similar
appeals in the literature, the need for denser networks of ground
motion recording stations in urban areas, without which the
reliability of the empirical fragility curves is questionable. Low-
cost Internet-enabled sensors, such as those in the Quake–Catcher
Network [17], provide a possible cost-effective method of drama-
tically increasing the density of available ground-motion observa-
tions of damaging earthquakes. The results also highlight the
important role that reconnaissance teams can play in the collec-
tion of small samples of high-resolution damage data for the
construction of reliable empirical fragility curves.
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