Powerline harmonic noise in MRS data cancellation by sinusoidal subtraction An efficient solution to cancel powerline interferences
Sébastien Penz, Jean-Francois Girard

To cite this version:

Sébastien Penz, Jean-Francois Girard. Powerline harmonic noise in MRS data cancellation by sinusoidal subtraction An efficient solution to cancel powerline interferences. Colloque Geofcan 2014, Nov 2014, Orsay, France. 2014. hal-01080987

HAL Id: hal-01080987
https://hal-brgm.archives-ouvertes.fr/hal-01080987
Submitted on 6 Nov 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Powerline harmonic noise in MRS data cancellation by sinusoidal subtraction

S. Penz, J.F. Girard.
BRGM, 3 av. Claude Guillemin, BP 36009, 45060 Orléans Cedex 2

The surface magnetic resonance method (SNMR) is a valuable technique for hydrogeological studies, since it provides information on the porosity, hydraulic conductivity and water content. However the bad signal-to-noise ratio often encountered limits its application range. In particular, in suburban areas, strong powerline harmonics severely degrade the SNMR signals. The powerline fundamental frequency is subject to small variations in time that make high order harmonics filtering difficult using a classical notch filter without distorting the MRS signal. Harmonics cancellation using sinusoidal subtraction is an alternative, but requires a high accuracy of the instantaneous fundamental frequency value to be efficient. The power grid frequency being regulated we expect that the instantaneous frequency could be monitored with a good S/N ratio using a remote frequencemeter, synchronised with the SNMR device, and later used for processing.

Based on this accurate instantaneous frequency measurement we developed a processing method based on the subtraction of a powerline harmonics model of constant amplitudes. We performed numerical experiments to quantify the efficiency of this method, and compare it with classical notch or multi-channel filtering.

Studying real noise measurements, we encountered cases where harmonics amplitudes do not remains stable over time. We therefore proposed a classical notch or multi-channel filtering.

Hydraulic conductivity and water content. However the bad signal-to-noise ratio often encountered limits its application range. In particular, in suburban areas, strong powerline harmonics severely degrade the SNMR signals.

The harmonic model sinusoidal subtraction

The signal recorded in the reception channel can be described by the model:

\[H(t) = \sum_{m} A_m \cos(2\pi f_m t + \phi_m) \]

where \(f_m \) is the powerline instantaneous frequency.

After spikes removal, using the measured powerline frequency, phase and amplitudes of each harmonic is determined using the cross correlation with a reference sinusoid at the harmonic frequency. The complete harmonic model is later reconstructed as follows:

\[H(t) = \sum_{m} A_m \cos(2\pi f_m t + \phi_m) \]

Inversion method to fit time-variant amplitudes

In order to find a better solution for the case of harmonic amplitudes significantly changing over a signal length we define a new harmonic model:

\[H(t) = \sum_{m} A_m(t)\cos(2\pi f_m(t) t + \phi_m(t)) \]

Each harmonic amplitude is defined as a linear combination of \(B \)-spline functions. The \(\alpha \)-\(\beta \) parameters can be estimated solving a linear inverse problem. This problem consists in minimizing the following cost function:

\[\sum_{n} \left(H_n(t) - \sum_{m} A_m(t)\cos(2\pi f_m(t) t + \phi_m(t)) \right)^2 \]

Harmonic model sinusoidal subtraction

The signal recorded in the reception channel can be described by the model:

\[H(t) = \sum_{m} A_m(t)\cos(2\pi f_m(t) t + \phi_m(t)) \]

The powerline interference component of this model takes the adaptive form:

\[H(t) = \sum_{m} A_m(t)\cos(2\pi f_m(t) t + \phi_m(t)) \]

After spikes removal, using the measured powerline frequency, phase and amplitudes of each harmonic is determined using the cross correlation with a reference sinusoid at the harmonic frequency. The complete harmonic model is later reconstructed as follows:

\[H(t) = \sum_{m} A_m(t)\cos(2\pi f_m(t) t + \phi_m(t)) \]

Inversion method to fit time-variant amplitudes

In order to find a better solution for the case of harmonic amplitudes significantly changing over a signal length we define a new harmonic model:

\[H(t) = \sum_{m} A_m(t)\cos(2\pi f_m(t) t + \phi_m(t)) \]

Each harmonic amplitude is defined as a linear combination of \(B \)-spline functions. The \(\alpha \)-\(\beta \) parameters can be estimated solving a linear inverse problem. This problem consists in minimizing the following cost function:

\[\sum_{n} \left(H_n(t) - \sum_{m} A_m(t)\cos(2\pi f_m(t) t + \phi_m(t)) \right)^2 \]

Signal parameters are better recovered even with a high noise level

• Signal parameters are better recovered even with a high noise level
• Time variant harmonics amplitude inversion is promising
• Performance of filtering combination strategies remains to be evaluated on a large site database

An efficient solution to cancel powerline interferences

• Measurements of the fundamental powerline frequency is the key for a good sinusoidal subtraction

Acknowledgment: This work was partly funded through the french national research project CRITEX.

Contact
Girard Jean-Francois
BRGM Orléans
DURREG
jfgirard@brgm.fr

www.brgm.fr