

Modeling the geochemical impact of an injection of CO2 and associated reactive impurities (SO2 and O2) into a saline reservoir

Laurent André, Mohamed Azaroual, Christian Bernstone, Andrea Wittek

▶ To cite this version:

Laurent André, Mohamed Azaroual, Christian Bernstone, Andrea Wittek. Modeling the geochemical impact of an injection of CO2 and associated reactive impurities (SO2 and O2) into a saline reservoir. Transport in Porous Media, 2015, 108(1), pp.185-205. 10.1007/s11242-014-0359-7. hal-01020077

HAL Id: hal-01020077 https://brgm.hal.science/hal-01020077

Submitted on 7 Jul 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MODELING THE GEOCHEMICAL IMPACT OF AN INJECTION OF CO2 AND

ASSOCIATED REACTIVE IMPURITIES (SO₂ ANDO₂) INTO A SALINE RESERVOIR

Laurent ANDRE¹, Mohamed AZAROUAL¹, Christian BERNSTONE², Andrea WITTEK²

¹BRGM - Water, Environment and Ecotechnologies Direction, Avenue Claude Guillemin, BP 36009, F-

45060 ORLEANSCedex 2 - France

² VATTENFALL, R&D Projects, Evenemangsgatan 13, 169 92STOCKHOLM – Sweden

l.andre@brgm.fr;

m.azaroual@brgm.fr;

christian.bernstone@vattenfall.com;

andrea.wittek@vattenfall.de

Abstract Carbon dioxide storage in deep geological structures is a strategic technology to mitigate climate

change and to promote green development. However, despitecontinuous efforts to develop cost effective

capture processes to clean the CO₂ stream before transportation and injection, traces of accessory gases

cannot be entirely removed. Consequently, before any injection of these gas mixtures, the impact of

impurities on the geochemical reactivity of the system must be evaluated. This paper describes numerical

simulations donewith TOUGHREACT that focus on the chemical reactivity of deep reservoir rock

impacted by an injection of CO₂ and associated reactive impurities (mainly SO₂ and O₂). A simplified

two-dimensional radial geo-model of the near wellbore domain of a saline reservoir enabled us to predict its

global geochemical behavior. Two CO₂:SO₂ratios were studied. The results show the high reactivity of the

near-well zone when ancillary gases (SO₂ and O₂) are co-injected with CO₂, which leads to the dissolution

of carbonates and the precipitation of sulfateminerals. Major reactions occur in the reservoir formation,

whereas clays in he caprock are only slightly affected by the injection of CO2 and associated reactive

impurities.

Keywords: gas storage, CO₂-SO₂-O₂ gas mixtures, saline reservoir, coupled modeling, geochemical

reactivity

- 1 -

1 INTRODUCTION

Carbon dioxide capture and storage (CCS) is anemerging technology for reducinggreenhouse gas emissions and addressing climate change. CO₂ geological storage in deep reservoirs isa promising greenhouse gas sequestrationmethod. However, in order to ensureeffective containment, investigations need to be carried out on reservoir behavior when subjected to physical and chemical perturbations causedby CO₂. Numerical studies have shownthat massive and continuous injection of pure CO₂leads toa disequilibrium of the physical (temperature, gas saturation, pressure, capillary pressure, etc.) (Bielinski et al., 2008; Yamamoto et al., 2009; Hansen et al., 2011)and geochemical (dissolution of supercritical CO₂ in the brine, pH variations, dissolution/ precipitation reactions of the porous rock minerals) characteristics of the host reservoir (Kharaka et al., 2006; Audigane et al., 2007; Gaus et al., 2008; André et al., 2007, 2010; Okuyama et al., 2013).

If CO₂ injection can disrupt the physico-chemical equilibrium of the deep reservoir, the presence of impurities in the CO₂ gas mightalso impair the capture, transport, and injectionprocesses. Some associated reactive gases, i.e. chemical species other than CO₂ in the injected stream – namely SOx, NOx, H₂S, or O₂, might require adaptations of the processes used for theinjection and storageof a pure CO₂stream.

The presence of associated gases in the CO₂ stream in relatively high proportions can affect the compressibility of the injected gas and reduce the CO₂ storage capacity of the reservoir. This is due both to the space taken up by these gases and the unfavorable volume balance of induced geochemical reactions. The effect of impurities on storage capacity has been evaluated using different gas mixture scenarios (IEAGHG, 2011) and results show that, for the unlikely case of high-impurity streams (e.g. 15% non-condensable gases like N₂, Ar, O₂), the storage capacity can be reduced by 10 to 40%, depending on the storage depth (i.e. pressure conditions). An opposite effect is however observed for supercritical CO₂ mixed with a condensable gas such as

 SO_2 :2.9% SO_2 in the CO_2 stream can increase the storage capacity by 5% at 110 bars because of intrinsic SO_2 properties (such as the critical temperature of SO_2 , which is higher than that of CO_2). Furthermore, depending on the type of geological storage, the presence of ancillary gases mighthave other specific effects such as trapping performances. When CO_2 is storedin deep saline formations, the presence of gas impurities affects both the gas solubility in the aqueous phase andthe rate and amount of CO_2 stored through mineral dissolution and precipitation. The presence of SO_2 and SO_2 , which causes a dramatic pH decrease of brine, decreases CO_2 solubility.

The behavior of these accessory gases in the context of CO₂storagehas only recentlyinterested the scientific community. Previously, the most important studieswere carried outby the oilindustry and concerned the storage of sourgases in geological structures. Azaroual et al. (2005) analyzed the impact of the injection of a gaseous H₂S-CO₂ mixture (50:50) in a carbonate reservoir. This high proportion of H₂S was selected to highlight the chemical reactionslikely to occur within the reservoir, along with their impact on reservoir properties and integrity. Gunter et al. (2000, 2004) and Bachu and Gunter (2004) used a coupled numerical and experimental approach to studythe injection of gas mixtures (CO₂-SO₂ and CO₂-H₂S) in Canada, but with H₂S and SO₂ proportions higher than those observed in CO₂storage.

When CO₂is stored in deep geological reservoirs, the gas compositions are expected tovary depending on the treatment processes and the industrial origin of the stream (Anheden et al., 2004). Over the last decade, R&D efforts have been made to reduce the energy penalty, and CO₂capture in power plants will result in CO₂streams with high CO₂contents. Today's technologies would give >95% CO₂ purity. However, despite continuous efforts to develop cost-effective capture processes to clean the CO₂ stream before transport and injection, traces of accessory gases are notentirely eliminated. For example, at a certain level of cleaning of theoxycombustion process, traces of argon and oxygen are assumed to remain in the injected gas, as well as oxidized forms of sulfur, SO₃, and nitrogen, NOx (IEAGHG, 2011).

Oxygen sulfide (SO₂) is one of theancillary gasesthat is most often studied. Palandri and Kharaka (2005a) were among the first to use a numerical approachto study the impact of SO₂ on ferric iron-bearing sediments. They showed that the SO₂ content in the CO₂-dominated gas phase couldinvolve different geochemical pathways. If there is enoughSO₂in the gas phase, dissolved iron is totally reduced as Fe2+, which reacts with dissolved CO2 to form siderite. However, if there is not enoughSO₂, the iron is only partially reduced and less CO₂is trapped by siderite precipitation. Knauss et al. (2005) also used a numerical approach to investigate the impact of SO₂(and H₂S)on the mineralogical assemblage modification of a geologic reservoir based on observations of the Frio pilot site (USA). The presence of SO₂with CO₂ in the injected stream generates significant impacts, in particular near the injection well. The lowpH resulting from SO₂ and CO₂ dissolution leads to massive carbonate dissolution (non-stability of calcite) and, under oxidizing conditions, to the precipitation of the sulfate mineral anhydrite. Xu et al. (2007) developed a more advanced conceptual model for the injection of CO₂ with SO₂(andH₂S) in a sandstone formation. These authors compared numerical modeling results for pure CO2 and CO₂-SO₂injections. They showed that theacidified zone is extensivewhen SO₂ is co-injected with CO₂. They also reported the potential precipitation of alunite and traces of anhydrite and pyrite, whereas CO₂ trapping is due to the precipitation of small quantities of ankerite, dawsonite, and siderite.

Otherlaboratory experiments have been carried out undertemperature and pressure conditions similar to thoseof geological storage in order to gather more information on the impactof the coinjection of SO₂and CO₂on water and minerals. Palandri et al. (2005b) carried out laboratory experiments (at 150°C and 300 bars) to test their numerical approach (Palandri and Kharaka, 2005a). These confirmed that the presence of SO₂ in the gas phase can favor the precipitation of stable siderite and, depending ontheproportion of SO₂, the potential precipitation of metastable pyrite and elemental sulfur (S°). Murphy et al. (2010) and Murphy et al. (2011) focused their experimental work on the reactivity of ferrihydrite and hematite nanoparticles in the presence of

supercritical CO₂ and sulfide-bearing solutions. They showed that both iron-bearing minerals react to form iron carbonate (siderite), iron sulfide (pyrite) and in specific conditions (at 100 °C with supercritical CO₂) elemental sulfur (S°). They also emphasized that the kinetics of the reaction are relatively rapid at temperatures ranging between 70 and 100°C. KummerowandSpangenberg (2011) studiedthe injection of pure CO₂ and a CO₂-SO₂ mixture (99:1 vol/vol)at laboratory scale on sandstone media from the Ketzin reservoir (Germany). They observed that the injection of pure CO₂does not drastically alter rock properties and identified no mineral reactions. However, with the CO₂-SO₂ mixture, rockproperties are greatly modified due, in particular, to the dissolution of intergranular cementation. According to XRD observations, the decrease inrock permeability is not due to precipitation of secondary minerals but to the remobilization of endogen fine particles in the samples. Erzinger et al. (2010) also observedan increase in the chemical reactivity when a supercritical CO₂-SO₂mixture (99.5:0.5vol/vol) reacts with different minerals (calcite, siderite, hematite, muscovite, biotite), with a particular increase in sulfate and cation (Fe, Si and Al) concentrations inaqueous solutions. Risse et al. (2011) also observed an increase inchemical reactivity in batch experiments at 120°C and 200 bars. An IEAGHG report (2011) estimated, using a modeling approach, that 1.5% vol total concentration of SO_x and NO_x in the injection steam can favor reactivity in limestone, where calcite dissolution increases by about 50%. At the same time, clogging can occur, in particular in the dry-out zone, thus limiting injectivity. According to these authors (IEAGHG, 2011), sulfate precipitation can play a role in porosity variations butthese impactsmightbe less significant than those generated by S⁰ (Claus reaction). The impact of SO₂ on the chemistry of the brine was also studied by Crandell et al. (2010). Using thermodynamic data such as SO₂solubility, the authors developed a model to calculate the spatial distribution of sulfur in the reservoir depending on storage conditions (T, P, salinity, etc.)., Ellis et al. (2010) used the same approach to analyzethe impact of SO₂ on pH, disregarding the potential mineral reactions that can buffer the pH of aqueous solutions. SO_2 may form sulfuric acid (H_2SO_4), which is stronger than carbonic acid. Wilke et al. (2012) went further by testing the reactivity of such acidic solutions onreservoir rocks.

Among theother impurities that might be injected with CO₂, traces of oxygen are expected in streams coming from the Oxyfuel capture technology. Previous studies have shown that the presence of high proportions ofO₂(such as the O₂ concentration in air) can generate oxidative reactions (Yu et al., 2010). However, underCO₂ storage conditions, the role of O₂is poorly understoodand laboratory experimental resultsare scarce (Heeschen et al., 2011, Langlais et al., 2012). Renard (2010) and Renard et al. (2011) studiedthe impactof SO₂ and O₂ with CO₂ on carbonate rocksunder reservoir conditions. The gas composition they studied was similar to thatof gas comingfrom an oxycombustion process prior toany conditioningprocedure: 82% CO₂, 4% SO₂, 4% O₂, 4% N₂ and 6% Ar(Note that conditioning will always be done, thus increasing the capture rate to >95%). These experiments showedthatthe chemical reactivity of the system increasedwhen SO₂ and O₂wereadded to the gas mixture (with respect to pure CO₂). With pure CO₂, minerals wereslightly altered, whereas massive dissolution of pyrite and calcite wereobserved in the presence of SO₂ and O₂ (Renard et al., 2011). Some precipitation of anhydrite and hematite was alsoobserved.

All of these studies show how important it is that we study the potential impact of these accessory gases on the reservoir. Numerical estimations are needed so that we canpredicthow the gas composition might impact the geochemical reactivity withinthe host reservoir, potentially modifying the porosity and permeability of the medium and influencing long-term well injectivity. This paper describes numerical simulations using coupled hydrogeological, thermal, and geochemical codes such as TOUGHREACT version 1 (Xu et al., 2006). These tools are suitable for exploring different evolution scenarios of gas injection in deep geological structures, and determining the behavior of the near-wellbore region of the targeted reservoir. These simulations will provide a methodological basis for future industrial-scale CO₂ storage projects now being developed. The simulation results (positive or negative impact on the caprock

integrity or reservoir injectivity) will condition subsequent simulations and show whether such simulations need to be repeated/improved in order to obtain standard practices (methodologies and tools).

The final objective of this studywas to identify the potential reactivity of any targeted system. Our calculations were not, therefore, done for a specific site. We modeled a generic (hypothetical) site inspired by existing sites – a sandstone aquifer and a clay caprock formation with properties similar to those of the Nordland Shale formation. Below, we describe the reservoir, caprock and fluid properties in each formation, give the assumptions used for model calculations, and describe two simulations done to study the impact of CO₂, SO₂ and O₂ mixtures on the main physicochemical characteristics of a deep saline aquifer. The results are compared to those of previous studies that did not consider the presence of impurities in the CO₂injected gas.

2 RESERVOIR PROPERTIES

2.1 Reservoir characteristics

The saline aquifer defined in the modelis a sandstone reservoir approximately 200 m thick. Before injection, the effective pressure is 150 barsand the temperature is 50°C.

Theporosity of both the reservoir rockand the caprock is around15%. This caprockvalueistaken from papers describing the Nordland Shale formation overlying the Sleipner reservoir. It is averaged from the porosity values estimated by Johnson et al. (2003) and Gauss et al. (2005) (5%) and those measured by Harrington et al. (2006) and Springer and Lindgren (2006) (about 40%). The caprock layer has a mean permeability of 0.003 mD (Johnson et al., 2003), whereas the permeability of the saline reservoir is about 300 mD.

Due to the injection of a gas phase (non-wetting phase) into the deep system, the relative permeability and the capillary pressure of the medium must be defined to accurately describe the relative flow of gas with respect to the aqueous solution. For the sandstone reservoir, we used literature data to define the representative curves and include them in the numerical code (e.g.

Bachu and Bennion (2007)). Because of the chosen characteristics of the modeled reservoir ($k_{mean} \# 300 \text{ mD}$; $\Phi \# 15\%$; $P_{reservoir} = 150 \text{ bars}$; $T = 50 \, ^{\circ}\text{C}$), the Cardium sandstone was used as the reference sandstone (Fig. 1). The characteristic curves for the relative permeability and capillary pressure of the caprock are assumed to be the same as those of the reservoir. The caprock's impermeability is represented by its low intrinsic permeability (0.003 mD).

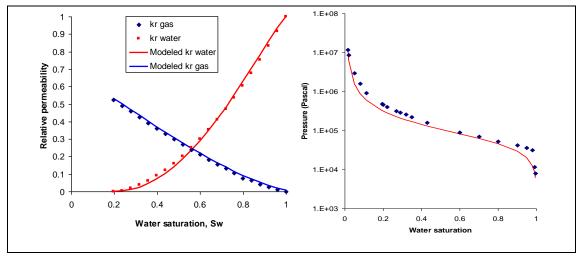


Figure 1. Relative permeability (left) and capillary pressure (right) curves for Cardium sandstone (from Bennion and Bachu, 2005). Fitted curves are calculated using TOUGHREACT for both the reservoir and caprock.

Experimental capillary pressure and liquid relative permeability values were fitted using the Van Genuchten model (Van Genuchten, 1980). The parameters used in the simulations for relative permeability and capillary pressure lawsare summarized in Table 1.

Table 1: Van Genuchten parameters used for fitting the characteristic curves of relative permeability and capillary pressure for brine and gas phases

Relative permeability parameters for brine					
m = 1 - 1/n	0.466				
Residual liquid saturation	0.197				
Liquid saturation	1.000				
Residual gas saturation	0.050				
Capillary pressure parameters					

m = 1 - 1/n	0.497
Residual liquid saturation	0.197
P_0 (Pa)	60240
P_{max} (Pa)	10^{6}
Liquid saturation	1.000

2.2 Mineralogical assemblage

For the numerical simulations, the mineral assemblages of the caprock and the reservoir were defined using literature data. The caprock minerals were taken from Gaus et al. (2005) and the reservoir minerals from Kjoller et al. (2011), who described the mineralogy of the sandstone Gassum reservoir.

The caprock is made up for the most part of illite and quartz (74wt%) while the reservoir rock contains mostly quartz and K-feldspar (91 wt%). In the reservoir and caprock formations, the end-membersalbite (NaAlSi₃O₈) and anorthite (CaAl₂Si₂O₆)are substituted for the plagic classes series (solid solution) as stated by Gauset al. (2005). The carbonate end member is represented by calcite in the reservoir and by siderite in the caprock.

Chlorite (Mg_{2.5}Fe_{2.5}Al₂Si₃O₁₀(OH)₈),siderite and pyrite are iron-bearing minerals in the caprock formation, whereas the reservoir formation does not contain any Fe minerals. Rutile and anatase are common detrital minerals. Anatase, which comes from Ti-bearing minerals, waschosen for this study (Table 2).

Table 2. Mineralogical composition of the caprock and the reservoir rocks

	Minerals	Wt%
	Illite	60
	Quartz	14
	Albite	6
Caprock	Anorthite	3
	Chlorite	5
	K-Feldspar	4

	Pyrite	4
	Siderite	3
	Anatase	1
	Quartz	81
	K-Feldspar	10
Reservoir	Albite	5
	Calcite	3.6
	Anhydrite	0.4

The selection of the secondary minerals that are able to precipitate in the reservoir and caprock formationsis a key parameter since this can have an impact on the overall reactive pathways. As CO₂is the major component of the gas phase, variouscarbonates werechosen for the reservoir (dolomite, dawsonite, siderite) and for the caprock (calcite, dolomite, dawsonite). Because of the high redox potential (Eh) of the injected solution due to the presence of O₂ in the gas phase, only oxidized iron-bearing minerals were selected (hematite). The high Eh alsohas an impact on the SO₂, which is fully oxidized as sulfate. Consequently, although we did monitor pyrite behavior during these simulations, we focused primarily on a sulfate mineral. Because of the temperature of the reservoir (50°C), anhydrite was selected. Aluminosilicates (illite, kaolinite and chlorite)were also included in the calculations as potential secondary minerals (newly precipitating) in the reservoir formation.

2.3 Chemical composition of the initial water

Details concerning thephysico-chemical characteristics of the formation water are givenin Table 3. The water is representative of the saline solutions found in the Gassum reservoir (Kjoller et al., 2011).

The water composition for *in situ* conditions (150 bars, 50°C) was determined using an appropriate hypothesis and thermodynamic calculations for highly saline aqueous systems using the SCALE2000 code (Azaroual et al., 2004). The pH and bicarbonate concentration of the brine were recalculated for the reservoir and caprockpressure and temperature conditions, assuming that the brine is in thermodynamic equilibrium with respect to primary minerals. This

gave a bicarbonate concentration of 103 mg L⁻¹ in the reservoir. Under these conditions, the brine remains slightly undersaturated with respect to the evaporitic (halite, sylvite, etc) andiron sulfide (pyrite, pyrrhotite)minerals, but is slightly supersaturated with respect to dolomite. In the caprock, the aqueous solution is supersaturated with respect to dolomite but undersaturated with respect to sulfide (pyrrhotite) and sulfate (anhydrite) minerals.

Table 3. Chemical composition (mg L⁻¹)of the waters

Element	Aquifer	Caprock	
Na	125,764	78,085	
K	21	196.2	
Ca	18,872	18,896	
Mg	3,059	28,042	
Fe	176	540.5	
Cl	236,252	238,063	
Al	0.002	0.0002	
Si (as SiO ₂)	10.2	7.4	
S (as SO ₄ ² -)	723.7	785	

2.4 Injected gas mixture

We used two gas steam mixtures provided by Vattenfallin 2008 (Table 4). They contain mostlyCO₂ (90.28 to91.61 % vol) and a range of 8.38 to 9.71 % vol of impurities (i.e. other chemical species). These two mixtures differ mainly in theirSO₂ concentrations (due to different capture options). One has a low SO₂content (0.08 % vol) and is calledhere "Low SO₂-O₂mixture", whereas the otherhas a higher SO₂content (1.53 % vol) and is called "High SO₂-O₂mixture". For O₂, the same concentration is considered for the two injected gases. The other impurities are not discussedhere.

Table 4: Gas stream mixture compositions (in vol%) to be injected. Data provided by Vattenfall.

	Low SO ₂ -O ₂ mixture	High SO ₂ -O ₂ mixture
CO_2	91.61	90.28
Ar	5.70	5.62
O_2	1.60	1.58
$egin{array}{c} O_2 \ N_2 \end{array}$	0.61	0.60

NO	0.25	0.24
H_2O	0.14	0.14
SO_2	0.08	1.53
Total of impurities	8.38	9.71
Total	99.99	100.00

These two compositions were specifically chosen so that we could determine the consequences of relatively large amounts of impurities. The likely compositions are constantly being updated and the CO₂ content would currently exceed 95%.

3 NUMERICAL APPROACH

3.1 Calculation code

TOUGHREACT (version 1 - Xuet al., 2006) wasused for all simulations. This code, which was developed by introducing reactive chemistry into TOUGH2 V2 (Pruess et al., 1999), couples thermal, hydraulic and chemical (THC) processes and is applicable to one-, two-, or three-dimensional geologic systems with physical and chemical heterogeneity. TOUGHREACT is coupled with ECO2n (Pruess, 2005), a fluid property module developed specifically to simulate geologic sequestration of CO₂ in saline aquifers. It can be used to model isothermal or non-isothermal multiphase flow in water/brine/CO₂ systems.

TOUGHREACT simulates the chemical reactivity of systems using an extended thermodynamic database. We used the database provided with the program, i.e., a modified version of the EQ3/6 database (Wolery, 1992).

Thermodynamic equilibrium between the gas phase and the aqueous phase is assumed for CO_2 dissolution. An extension of Henry's law, including salting-out effect, is used to estimate the solubility of CO_2 in the aqueous phase at high pressure and high salinity.

For this work, the advancement of dissolution and precipitation reactions of minerals wasmodeled under kinetic constraints. The general form of the rate law proposed by Lasaga (1984) was applied for both the dissolution and precipitation of minerals:

$$r_n = \pm k_n A_n \left| 1 - \Omega_n^{\theta} \right|^{\eta}$$

Positive values for r_n correspond to the dissolution of the mineral n (negative values for precipitation), k_n is the rate constant (mol m⁻² s⁻¹), A_n is the specific reactive surface area per kg_{H2O}, Ω_n is the saturation ratio of the mineral n ($\Omega_n = Q_n/K_n$), and θ and η are empirical parameters determined from experiments, usually taken as 1.

The dependence of the rate constant k_n ontemperature is calculated using the Arrhenius equation:

$$k_n = k_{25} \exp \left[\frac{-E_a}{R} \left(\frac{1}{T} - \frac{1}{298.15} \right) \right]$$

where E_a is the activation energy (J mol⁻¹), k_{25} is the rate constant at 25°C, R is the gas constant (J mol⁻¹ K⁻¹), and T is the temperature in Kelvin.

For some minerals, specifically alumino-silicates and salts, dissolution and precipitation also depend on H^+ (acid mechanism) and OH^- (alkaline mechanism) concentrations, in addition to the neutral mechanism. In this case, k_n is calculated using the following equation:

$$k_{n} = k_{25}^{nu} \exp \left[\frac{-E_{a}^{nu}}{R} \left(\frac{1}{T} - \frac{1}{298.15} \right) \right] + k_{25}^{H} \exp \left[\frac{-E_{a}^{H}}{R} \left(\frac{1}{T} - \frac{1}{298.15} \right) \right] a_{H}^{n_{H}} + k_{25}^{OH} \exp \left[\frac{-E_{a}^{OH}}{R} \left(\frac{1}{T} - \frac{1}{298.15} \right) \right] a_{H}^{n_{OH}}$$

where superscripts and subscripts nu, H, and OH indicate neutral, acid, and alkaline mechanisms, respectively, and a is the activity of the species.

For carbonate minerals, dissolution/precipitation mechanisms are catalyzed by HCO_3 , and reaction rates depend on the activity of aqueous CO_2 . k_n is calculated according to:

$$k_{n} = k_{25}^{nu} \exp\left[\frac{-E_{a}^{nu}}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right] + k_{25}^{H} \exp\left[\frac{-E_{a}^{H}}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right] a_{H}^{n_{H}} + k_{25}^{CO_{2}} \exp\left[\frac{-E_{a}^{CO_{2}}}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right] a_{CO_{2,aq}}^{nCO_{2,aq}}$$

The kinetic parameters used for the last two equations are given in Table 5 and come from Palandri and Kharaka (2004). The dissolution rates depend on the three mechanisms proposed in Table 5, whereas the precipitation rate depends only on the neutral mechanism. The kinetic parameters for siderite are assumed to be the ones of dolomite rates (Gunter et al., 2000)

Table 5 – Kinetic parameters for mineral dissolution and precipitation (C stands for minerals from the caprock and R for minerals from the reservoir). k (calculated at 25°C and pH=0) = Rate constant in mol m⁻² s⁻¹, E = Arrhenius activation energy in kJ mol⁻¹, n_H and n_{OH} = reaction order with respect to H⁺ and OH⁻, n_{CO2} = reaction order with respect to CO₂

		Acid mechanism		Neutral mechanism		Base/Carbonate mechanism			
		Log k	Е	n _H	Log k	Е	Log k	Е	$n_{\mathrm{OH}}/n_{\mathrm{CO2}}$
С	Illite	-12.71	48.0	0.220	-14.41	48.0	-14.41	48.0	-0.130
C&R	Quartz				-13.40	90.9			
C&R	Plagioclase (Albite)	-10.16	65.0	0.457	-12.56	69.8	-15.60	71.0	-0.572
C&R	Plagioclase (Anorthite)	-3.50	16.6	1.411	-9.12	17.8			
C&R	Chlorite	-11.11	88.0	0.500	-12.52	88.00			
C	K-Feldspar	-10.06	51.7	0.500	-12.41	38.0	-21.20	94.1	-0.823
C	Hematite	-9.39	66.2	1.000	-14.60	66.2			
C	Siderite	-3.19	36.1	0.500	-7.53	52.2	-5.11	34.8	0.500
R	Calcite	-0.30	14.4	1.000	-5.81	23.5	-3.48	35.4	1.000
R	Anhydrite				-3.19	14.3			
C	Rutile	Assumed to beat equilibrium							
C	Pyrite			Assumed	to be at equi	ilibrium			

The reactive surface area of the dissolving minerals is a complex factor since the dissolution rate depends on the available surface area in contact with the aqueous solution. This contact surface is difficult to estimate. According to White and Peterson(1990), it can vary between 1 and 3 orders of magnitude with respect to the total surface area measured using the BET method. We assumed that all of the minerals except illite have the same specific surface area (about 10 cm².g⁻¹). A value of 100 cm².g⁻¹ was used for illite. These values are consistent with the data chosen by Xu et al. (2007).

Mineral dissolution and precipitation reactions causetemporal changes in reservoir porosity. Indeed, variations in the mineral volume fraction owing to chemical reactions make it possible tocalculate resulting porosity. Permeability variations were not calculated in this study

because of the poor knowledge of the relationship between permeability evolution and porosity changes.

3.2Geometrical Model

The saline aquifer is represented by a 2D-radial model that includes the reservoir and caprock units (Fig.2).

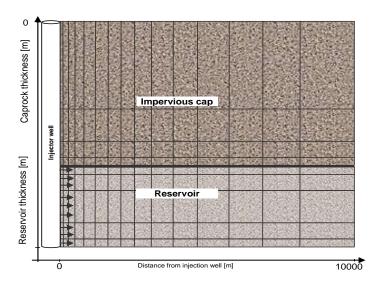


Figure 2. The geometrical 2-D radial model (vertical cross-section)

This conceptual model is able to calculatethe evolution of the geochemical reactivity induced by gas injection inboth time and space. The 200-mthick reservoir is centered on a vertical injection well with a radius of 0.2 m. The maximum radial extent is 100 km. The system is represented by 800grid blocksmaking upthe model mesh. Along the radius axis, there are 29 grid cells between 0.2 m and 1 km, 50 grid cells between 1 km and 10 km, and 20 grid cells between 10 and 100 km. In each interval, the width of the radial elements follows a logarithmic scale. Vertical discretization is achieved by dividing the reservoir into 5 layers, 20, 40, 80, 40, and 20 m thick, from bottom to top, and the caprock into 3 layers, 5, 10, and 25 m thick. The objective of this greaterrefinement near the injection well is to more preciselyidentify both the details of geochemical processes and the migration of the desiccation front in the near-well region.

3.3 Injecting supercritical CO₂ with SO₂ and O₂ impurities

TOUGHREACT cannot handle CO₂-SO₂-O₂-H₂O gas mixtures – only CO₂-H₂O mixtures (specificity of the ECO2n module). A mixture of supercritical CO₂ and reservoir brine containing dissolved SO₂ and O₂ (hereafter called "SO₂-O₂mixture") were therefore co-injected into the reservoir.

The injection rates of supercritical CO₂ and SO₂-O₂ dissolved in brinewere 30 kg s⁻¹and 15 kg s⁻¹, respectively. The mass ratio of 2 was arbitrary chosen for the simulations. Gas and brine were injected over the total thickness of the reservoir during an assumed exploitation period of 30 years. The specific injection rates were 0.15 kg s⁻¹ m⁻¹ for CO₂ and 0.075 kg s⁻¹ m⁻¹ for brine containing dissolved SO₂-O₂ because of the thickness of the reservoir formation. Since the reservoir had a high permeability (about 300 mD), the pressure buildup was limited to about 10 bars and enabled a long injection period.

Two gas stream mixtures are studied:

- "Low SO₂-O₂mixture" containing CO₂ (91.61 % vol) and 9.71 % vol of impurities,
 including a negligible amount of SO₂ (0.08 % vol) and 1.6 % vol of O₂ (Table 4);
- "High SO₂-O₂mixture" containing 90.28 % vol of CO₂, 1.53 % vol of SO₂, and 1.6 % vol of O₂ (Table 4)

The chemical composition of the SO₂-O₂-acidified brine(co-injected with supercritical CO₂) wasdetermined in different steps:

- First, the injected brine wasequilibrated with the reservoirminerals at the reservoir temperature.
- SO₂ and O₂ gases werethen dissolved in the brine. Given the chosen mass ratio of 2 between the injected mass of supercritical CO₂ and the mass of SO₂-O₂ brine, the SO₂

and O_2 concentrations in the solution were defined to ensure consistency with the gas composition of an oxy-combustion capture process (given data from the industry).

These preliminary simulations were done with the batch option of the PHREEQC code (Parkhurst and Appelo, 1992). The hypothesis that SO₂ is totally dissolved in the SO₂-O₂ brine is acceptable since its solubility is very high at such temperatures (Ellis et al., 2010).

3.4Initial Conditions

The following assumptions were used fornumerical modeling:

- Hydrostatic equilibrium: no regional flow is considered, and a hydrostatic pressure is imposed in the outermost column of the mesh.
- Thermal equilibrium: before starting gas injection, reservoir and caprock are at the same temperature, i.e., 50°C. The numerical simulations are donein isothermal mode.
- Geochemical equilibrium: the aqueous solutions initially present in the reservoir and caprock are in equilibrium with their respective mineral assemblages at the temperature of the system.

The Davies modelwas used as the activity model in the batch simulations with PHREEQC. The TOUGHREACT code uses an extended Debye-Hückel model, although these models are poorlyadapted tohighly saline solutions such as those in the reservoir (Table 2). For this reason, and for more reliable results, the elemental concentrations of each species of the acidified water were divided by 10 in order to decrease the ionic strength of the solution (Table 6). This artificial dilution does not drastically modify the simulation results and thereaction paths, but it can change the dissolution/precipitation magnitudes of minerals. Another change related to the dilution is the initial saturation state of water with respect to rock minerals. After dilution, the "low SO₂-O₂ mixture" is undersaturated with respect to anhydrite, whereas the "high SO₂-O₂mixture" is supersaturated with respect to anhydrite. The consequences on numerical results will be analyzed in paragraph 4.2.

Table 6. Chemical characteristics of the fluids used for numerical calculations

	Reservoir brine	Low SO ₂ -O ₂ mixture	High SO ₂ -O ₂ mixture
рН	7.9	1.5	0.2
pe	-3.9	17.7	19.0
$TDS (g/kg_{H2O})$	38.6	~38.6	~38.6
$[SO_4^{-2}]$ (mol/L)	1.7e-02	5.0e-02	7.2e-01

The "SO₂-O₂mixtures" are highlyacidic, with oxidative and sulfateconcentrations higher than in the reservoir brines. These brines were expected to be highly reactive with reservoir minerals.

4 RESULTS AND INTERPRETATION

4.1 Case 1: Injection of a"Low SO₂-O₂mixture"

The injection ofgas and water in the reservoir changes the physical parameters (gas saturation, pressure, etc.) and geochemical properties at different scales, with a major impact on the near-wellbore zone.

The injection of the gas/solution mixture changesthe gas saturation around the injection well. Because the supercritical CO₂ density is lower than that of the formation brine, CO₂ reaches the top of the aquifer and spreads out along it (Fig. 3). Although the caprock is less permeable than the reservoir, the supercritical CO₂ is able to penetrate it over a few centimeters. The pressure around the injector, initially between 143 and 160 bars between the top and the bottom of the reservoir, increases to 167 bars by the end of the injection period.

The pH of the formation water iscontrolled by water-rock interactions. Initially, the formation water isinequilibrium with the mineral assemblage of the reservoir: the pH isclose to 7.9 (Table 6). Co-injection of supercritical CO₂ and SO₂-O₂ brinemodifies this equilibrium. The evolution of pH follows the evolution of the gas saturation in the reservoir, with the impacted zone extending up to 3000 m from the injector after an injection period of 30 years (Fig. 3b). Consequently, the

formation water around the injector acidifies, becomes undersaturated with respect to all minerals, and dissolves them (preferentially the carbonates). Calcite dissolution is illustrated by the increase in the calcium concentration in the low pH zone (Fig. 3c). As long as reactive carbonates are present, the aqueous solution is equilibrium with them and the pH is buffered. However, continued injection exhausts some minerals. All of the carbonates are consumed around the injector and the buffering stops. pH is no longer controlled and decreases to very low values. Near the well, the mineral assemblage is drastically modified, and the pH decreases to a minimum value of 1.4, similar to that of the injected fluid (Table 6). Further within the impacted zone of the reservoir, the pH is buffered to a value ranging between 4 and 6, since not all of the carbonates are consumed. The pH does not change in the non-impacted zone.

Because of this acidification of the medium, calcite isthe mineral most affected by the injection of the acid solution. It dissolvesnear the injection well (50 m around it), but isnot significantlyimpacted elsewhere in the reservoir (Fig. 3e). Anhydrite is also affected by gas and water injection. The behavior of anhydrite differsin time and space. Atfirst, anhydrite precipitates near the injection well because the injected fluid contains sulfur, which is oxidized to sulfate by oxygen. Calcite is dissolved by the acidified injected water, releasing Ca²⁺ in solution (Fig. 3c). With SO₄²⁻ present in the injected water (Fig. 3d), these ions combine to form anhydrite according to the following successive geochemical reactions:

$$CO_{2(g)} + H_2O \rightarrow H^+ + HCO_3^ CaCO_3$$
 (calcite) $+ H^+ \rightarrow Ca^{2+} + HCO_3^ SO_{2(g)} + H_2O \rightarrow SO_3^{2-} + 2H^+$
 $SO_3^{2-} + 0.5 O_{2(aq)} \rightarrow SO_4^{2-}$
 $Ca^{2+} + SO_4^{2-} \rightarrow CaSO_4(anhydrite)$

However, when all of the calcite has beenconsumed, the Ca²⁺ source disappears and anhydrite precipitation stops. Because the injected solution is undersaturated with respect to anhydrite, the

secondary precipitated anhydrite and the original anhydrite (initially present in reservoir) dissolve. This is why some zones show deficit inanhydrite, whereas others show a positive balance of anhydrite compared to its initial amount (Fig. 3f). However, because of the amount of sulfate injected, the dissolution and precipitation of anhydrite have a limited impact on sulfate concentration.

As a consequence of calcite and anhydrite reactivity, porosity increases near the injector (Fig. 3g). After 30 years of injection, it is estimated that the porosity 10 m from the injection well is around 19 % (due to calcite and anhydrite dissolution). In any case, these values must be considered to beindicative (qualitative) and not quantitative, because of some limiting working hypotheses (dilution of the initial brine, limitations of kinetic parameters, restrictions of multiphase reactive transport, etc.).

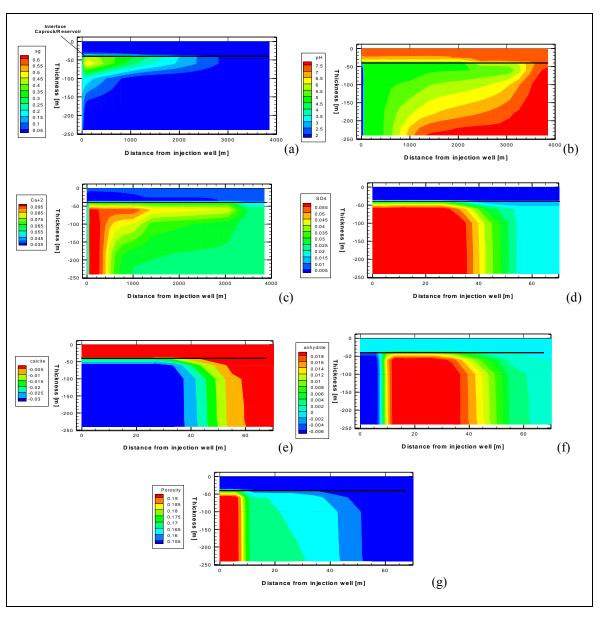


Figure 3.State of the reservoir and caprock after a 30-yearinjection period. a)Gas saturation (Sg), b) pH pattern, c) Calcium concentration (mol/kg_{H2O})with x-axis up to 4000 m, d) Sulfate concentration (mol/kg_{H2O}), e) Volumic fraction of calcite, f) Volumic fraction of anhydrite, g) Porosity with x-axis up to 70 m from injection well

All other minerals in the reservoir react, but less than calcite and anhydrite (by 2 to 5 orders of magnitude) and their impact on porosity isnegligible.

Because of the assumptions made regarding caprock permeability, supercritical CO₂ is able to penetrate it slightly, which causes some reactivity, in particular at the interface between reservoir

and caprock formations. The amount of CO₂infiltrating the caprockistoo low and the impact on chemical reactivity and porosity variations are too limited to be seen in the graphs. Some reactivity of Fe minerals is however observed. In relation to the extent of the CO₂ gas bubble (spreading about 2,000 m from the injection well) and the decrease in pH, siderite and chlorite are the most impacted minerals, with dissolution of these two minerals over a few centimeters inside the caprock. There is little dissolution of minerals but it causes an increase in the iron (III) concentration and a potential precipitation of hematite at the interface.

One key concern associated withCO₂storage in geological reservoirs is the potential durable trapping of gas as minerals. For this specific case,CO₂could be stored as carbonate but because of the acidity of the injected fluid, no mineral precipitation is observed. The primary carbonates are totally dissolved (close to the injection well), which leads to a release of carbon in the reservoir instead of trapping. The only gas storage observed was that of SO₂, which is stored as anhydrite (after oxidation as sulfate). However, because of the low amount of calcium in solution (coming from carbonate dissolution), the trapped fraction of SO₂ is relatively low and has a low impact on the sulfate concentration (Fig. 3d).

4.2Case 2: Injection of a "High SO₂-O₂mixture"

At the temperature of the reservoir (i.e. 50°C), the "High SO₂-O₂ mixture" is slightly oversaturated with respect to anhydrite. Consequently, after 12 years ofinjection, anhydrite precipitation has fully cloggedthe porosity nearthe injection well, putting an end to injection if no corrective measures have beentaken.

In order to studyanhydrite precipitation conditions, we rananother simulation, injecting a different solution. This time, the reservoir brine, once again diluted 10-fold, was not initially equilibrated with the mineralogical assemblage of the reservoir before the SO_2 and O_2 were added, and the injected solution was undersaturated with respect to anhydrite.

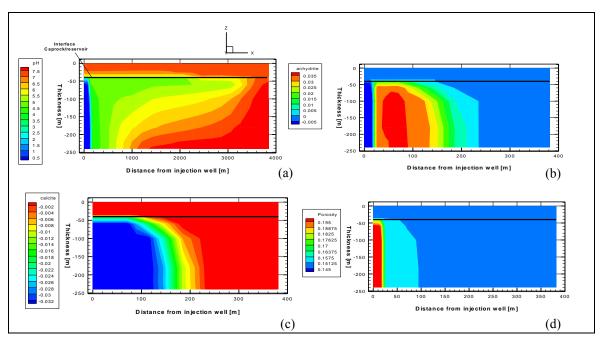


Figure 4.State of the reservoir and caprock after an injection period of 30 years. a) pH pattern with x-axis up to 4000 m, b) Volumic fraction of anhydrite, c) Volumic fraction of calcite, d) Porosity with x-axis up to 400 m from inejction well.

The impact of the co-injection of supercritical CO₂ and acidified brine is a decrease in pH around the injection well and a co-dissolution of both carbonates and anhydrite (since the solution is undersaturated with respect to anhydrite) (Fig. 4). Since the acidity is higher than that ofthe "low SO₂-O₂ mixture" (Table 3), the impacted zone is larger than in the first case (about 50 m in case 1 and 200 m in case 2).

The other minerals of the assemblage arealso impacted by this strong acidification. They are less impacted than carbonates or anhydrite, but the dissolution of some (K-feldspar) and the precipitation of others (quartz, kaolinite) must be carefully monitored.

The higher acidity of the injected fluid in this case is neutralized to a lesser extent by reactions with minerals. Smaller variations in porosity are observed in the near-well region, whereas the impacted zone is enlarged by the mineral dissolution and precipitation reactions.

4.3 Discussion

In order to determine the effect of impurities (SO₂ and O₂) co-injected with CO₂ in deep saline reservoirs, we comparedour results with those of Audigane et al. (2007), which were obtained with the injection of pure CO₂. The initial mineralogical assemblage and the secondary minerals in our study were the same as those of Audigane et al. (2007). These authors investigated both the injection period (25 years) and the post injection period (10,000 years). During the injection period, theypredicted a minor alteration of the alumino-silicates (chlorite, albite, muscovite). Calcite is the most reactive mineral with dissolutionmainly in the reservoir formation and some precipitation of secondary calcite near the shale layers at the interface between the CO₂-saturated brine and the initial brine. Our study gives the same results with predominantly carbonate dissolution (no traces of secondary precipitations) and only weak reactivity of alumino-silicates.

The main difference is the reactivity of sulfur-bearing minerals. When SO₂ is co-injected with CO₂, the geochemistry of the system is controlled primarily by the sulfur, in particular its reduced form S(-II). Redox reactions are activated by the presence of sulfide in solution. Because of acidification, iron-bearing minerals like ferrihydrite (Fe(OH)₃) and hematite (Fe₂O₃) are dissolved, releasing Fe(III) in solution. Because of reduced conditions, iron III is reduced to iron II, which can react with dissolved CO₂ to form siderite (mineral trapping of CO₂) or H₂S (coming from the solubilization of SO₂) to form pyrite.

$$Fe_{2}O_{3}+6 H^{+} = 2 Fe^{+3}+3 H_{2}O$$

$$Fe(OH)_{3}+3 H^{+} = Fe^{+3}+3 H_{2}O$$

$$8 Fe^{+3}+HS^{-}+4 H_{2}O = 8 Fe^{+2}+SO_{4}^{-2}+9 H^{+}$$

$$Fe^{+2}+CO_{3}^{-2} = FeCO_{3} \text{ (siderite)}$$

$$4 Fe^{+2}+SO_{4}^{-2}+7 HS^{-}+H^{+} = 4 FeS_{2} \text{ (pyrite)}+4 H_{2}O$$

In our calculations, enough oxygen is injected to fully oxidize the injected SO₂. Consequently, the geochemical system is dominated by the reactions involving sulfates and carbonates with complex links with oxygen (through pH and redox conditions). Sulfate minerals play a major role, in relation to the carbonates – the precipitation of the former being correlated with the dissolution of the latter. Simulations predict anhydrite precipitation, in agreementwith Renard et al. (2011). Wilke et al. (2012) carried out laboratory experiments and reportedthe presence of gypsum as a secondary mineral. The nature of sulfate minerals is complex and frequently debatedbecause it can have a major influence on rock properties: the molar volume of anhydrite is about 46 cm³/mol (under standard conditions), whereas that of gypsum is 60% higher (about 74.7 cm³/mol). Consequently, gypsum precipitation mighthave a significantimpact on the porosity of the porous medium. According to the thermodynamic properties of sulfate minerals, anhydrite is more stable than gypsum above 40°C. Moreover, recent experiments with micro-capillarytubeshave shown that gypsum, in the presence of anhydrous CO₂, can change into eitherbassaniteor anhydrite, depending ontemperature (Pironon et al., 2012). We can then assumethat, in a deep CO₂ storage reservoir, anhydrite will be the mainsulfate mineral that is able to precipitate.

Brines present in the reservoir are modified by acid gases. CO_2 dissolution generates carbonic acid and SO_2 + O_2 produces sulfates, both of which lead to adecrease in pH. Because of mineral reactions (carbonate dissolution), the pH does not dropbelow 4, which is in agreement with the observations of Ellis et al. (2010). This pH-buffering capacity is, however, controlled by carbonates only as long as these minerals are present in the mineral ogical assemblage (Gunter et al., 2000).

The high solubility of SO₂causesa massive dissolution of this gas, which is oxidized by the O₂co-injected with the CO₂. This oxidation produces sulfates, as described by Rumpf and Maurer (1993), whereas no precipitation of hematite is predicted, despite the presence of iron in the initial solution (Table 3). This is probably due to the absence in the initial mineral

assemblage of iron-bearing minerals such as pyrite (Renard et al. 2011) or daphnite (Thibeau et al. 2009), which could release iron in solution.

Although simulation results seem to corroborate experimental results, they must be interpreted with caution because of the many assumptions made to do the calculations. First of all, the gases are not all injected as a gas phase. Some of them $(O_2$ and $SO_2)$ are dissolved in brine. This has an impact on the variations in gas saturation inside the reservoir and on the chemical reactions that might occur in the aqueous phase. Secondly, the activity model used in TOUGHREACT does not handle highly saline solutions. As demonstrated by André et al. (2007) by calculations with different numerical codes and activity models, the use of a specific approach (such as the one proposed in the Pitzer formalism) might increase the accuracy of geochemical predictions, in particular the quantitative results. This is crucial because the predicted amounts of minerals able to precipitate or dissolve depend entirely on these calculations in the aqueous phase. Furthermore, there is no Equation of State (EoS) for the fugacity correction for the complex gas mixture (CO₂-SO₂-O₂-(H₂O)). The calculation of porosity variations might, therefore, be highly uncertain, even though the overalltrend seems to make sense. Thirdly, there are few data concerning the reactivity and the kinetic behavior of alumino-silicate minerals when these are exposed to acidified brines. Many studies emphasize the high reactivity of carbonates and intergranular cementation in sandstone. Studies (numerical and experimental) must be done to analyze the possible long-term effect of these acid gases on alumino-silicates after the buffering effect of carbonates has disappeared.

5CONCLUSIONS

The objectives of this paper were to present the results of numerical simulations of the coinjection of acid gases in a deep saline aquifer. Since the TOUGHREACT code cannot represent the co-injection of these components in a gaseous (non-wetting phase) mixture, some limiting hypotheses were used: CO_2 injection was simulated in a supercritical form, whereas SO_2 and O_2 injections were simulated as dissolved species in an aqueous solution. After an injection period of 30 years, simulation results indicate:

- The injected supercritical CO₂ dissolves in solution, increasing its ability to dissolve carbonates. Since calcite is one of the components of the mineralogical assemblage, it dissolves around the injection well and therebyincreases porosity. However, because of the negligible initial amount of calcite in the mineralogical assemblage, the impact on pore volume is limited.
- SO₂ reacts rapidly around the injection well, forming sulfatesdue tothe traces of oxygen in the injected gas. Bythe recombining of Ca²⁺ (from calcite) and SO₄²⁻ (from SO₂ and O₂), anhydrite precipitates. The SO₂ concentration determines the extent of the anhydrite deposition occurring around the injection well.
- The higher the SO₂ concentration in the injected stream, the larger the radius of anhydrite deposition around the well. However, the SO₂ concentration seems to have no effect on the geochemical mechanisms in terms of, for instance, reaction paths.
- Calcite and anhydrite are the most reactive minerals. All of the other initial minerals are
 also affected by the injection of the acid solution, but to a lesser extentand with a minor
 impact on porosity.
- When calcite and anhydrite haveopposite behaviors, numerical simulations predictthat
 calcite dissolution will have a greater impact on porosity than anhydrite precipitation.
 Consequently, increasing porosity is expected around the injection well, assumingan
 increase in well injectivity and a potential long-term injection period.

However, these results are onlyqualitative and highlight only the global trends of the system under investigation. Indeed, the real (quantitative)impact is still very hardto predict. For example, how the dissolution/precipitation of a particular mineral will affect rock porosity

depends on the characteristics of the rock (e.g., micro/macro porosity, connected porosity). Our results must, therefore, be interpreted with caution.

AcknowledgmentThis work is part of the OXYGAS (phase II) project funded by VATTENFALL. The authors thankthe VATTENFALL Directorate and BRGM Research Directorate for allowing publication of these results.

References

- André, L., Audigane, P., Azaroual, M., Menjoz, A.: Numerical modeling of fluid-rock chemical interactions at the supercritical CO₂-liquid interface during supercritical carbon dioxide injection into a carbonated reservoir, the Dogger aquifer (Paris Basin, France). Energ.Convers.Manag., 48, 1782-1797 (2007).
- André, L., Azaroual, M., Menjoz, A.: Numerical Simulations of the Thermal Impact of Supercritical CO₂
 Injection on Chemical Reactivity in a Carbonate Saline Reservoir. Transp. Porous Med., 82, 247-274 (2010).
- Anheden, M., Andersson, A., Bernstone, C., Eriksson S., Yan J., Liljemark S., Wall, C.: CO₂ quality requirement for a system with CO₂ capture, transport and storage. 7th International Conference on Greenhouse Gas Control Technologies (GHGT7), Vancouver, Canada (2004).
- Audigane, P., Gaus, I., Czernichowski-Lauriol, I., Pruess, K., Xu, T.: Two-dimensional reactive transportmodeling of CO2 injection in a saline Aquifer at the Sleipner site, North Sea. Am.J. Sci., 307, 974-1008 (2007).
- Azaroual, M., Kervévan, C., Durst, P., Durance, M.-V.: SCALE2000 (V3.1): Logiciel de calculs thermodynamiques et cinétiques ; application aux saumures pétrolières, hydrothermales et industrielles. Manuel d'utilisation; BRGM Editions, ISBN2-7159-0939-X.70 p.(2004).
- Azaroual, M., Lacharpagne, J.-C., Caroli, E., Czernichowski-Lauriol,I.: Thermo-kinetic modelling of mass-exchange mechanisms between water-rock-gas induced by acid gas injection in carbonate reservoirs. 2005 AAPG Annual Convention, Calgary, Canada,June 19-22nd (2005).
- Bachu, S., Bennion, B.: Effects of in-situ conditions on relative permeability characteristics of CO₂-brine

- systems. Environ. Geol., 54, 1707-1722 (2007).
- Bachu, S., Gunter, W.: Acid gas injection in the Alberta basin, Canada: a CO₂ storage experience. In Baines, S.J. & Worden, R.H. (Eds), Geological Society Special Publication 233, 225-234 (2004).
- Bennion, B., Bachu, S.: Relative permeability characteristics for CO₂ displacing water in a variety of potential sequestration zones in the WesternCanadaSedimentaryBasin. SPE Paper 95547, 15 p.(2005).
- Bielinski, A., Kopp, A., Schütt, H., Class, H.: monitoring of CO₂ plumes during storage in geological formations using temperature signals: numerical investigation. Int. J. Greenhouse Gas Control, 2, 319-328 (2008).
- Ellis, B.R., Crandell, L.E., Peters, C.A.: Limitations for brine acidification due to SO₂ co-injection in geologic carbon sequestration. Int. J. Greenhouse Gas Control, 4, 575-582 (2010).
- Erzinger, J., Wilke, F., Wiersberg, T., Vasquez Parra, M.: Experimental studies on the interaction of scCO₂ and scCO₂-SO₂ with rock forming minerals at conditions of geologic carbon storages—First results. Abstract GC31B-0874.2010 Fall Meeting, AGU, San Francisco, California, USA, 13rd–17thDecember (2010).
- Gaus, I., Azaroual, M., Czernichowski-Lauriol, I.: Reactive transport modelling of the impact of CO₂injection on the clayey caprock at Sleipner (North Sea). Chem. Geol., 217, 319-337 (2005).
- Gaus, I., Audigane P., André, L., Lions, J., Jacquemet, N., Durst, P., Czernichowski-Lauriol, I., Azaroual, M.: Geochemical and solute transport modelling for CO₂ storage, what to expect from it ?Int. J. Greenhouse Gas Control, 2, 605-625 (2008).
- Gunter, W.D., Perkins, E.H., Hutcheon, I.: Aquifer disposal of acid gases: modelling of water-rock reactions for trapping of acid wastes. Appl. Geochem., 15, 1085-1095 (2000).
- Gunter, W.D., Allen Pratt, Buschkuehle, B.E., Perkins, E.H.: Acid gas injection in the BrazeauNisku Q carbonate reservoir: Geochemical reactions as a result of the injection of an H₂S-CO₂ waste stream.

 7th International Conference on Greenhouse Gas Control Technologies (GHGT7). Volume 1: Peer-Reviewed Papers and Plenary Presentations, Vancouver, Canada, September 5th-9th (2004).
- Hansen, O., Eiken, O., Ostmo, S., Johansen, R.I., Smith, A.: Monitoring CO₂ injection into a fluvial brinefilled sandstone formation at the Snøhvit field, Barents Sea. 81st Annual Meeting of the Society of

- Exploration Geophysicists, San Antonio, Texas, USA, September, 18th-23rd(2011).
- Harrington, J.F., Noy, D.J., Horseman, S.T., Birchall, J.D., Chadwick, R.A.: A Laboratory study of the Nordland Shale, Sleipner, North Sea: Final Report. British Geological Survey Commissioned Report, 57p. (2006).
- Heeschen, K., Risse, A., Stadler, S., Ostertag-Henning, C.: Mineral alteration due to accessory gases in the geological storage of CO₂. Goldschmidt Conference Abstract, Mineralogical Magazine, 1000 (2011).
- IEAGHG: Effects of impurities on geological storage of CO₂.2011/04, June 2011 (2011).
- Johnson, J.W., Nitao, J.J., Morris, J.P., Blair, S.C.: Reactive Transport Modeling of Geohazards

 Associated withCO₂ Injection for EOR and Geologic Sequestration. Offshore Technology

 Conference, Houston, Texas (U.S.A.), 5–8 May 2003 (2003).
- Kharaka, Y.K., Cole, D.R., Hovorka,S.D., Gunter, W.D., Knauss, K.G., Freifeld,B.M.: Gas-water-rock interactions in Frio Formation following CO₂ injection: Implications for the storage of greenhousegases in sedimentary basins. Geology, 34, 577-580(2006).
- Kjøller, C., Weibel, R., Bateman, K., Laier, T., Nielsen, L.H., Frykman, P., Springer, N.: Geochemical impacts of CO₂storage in saline aquifers with various mineralogy results from laboratory experiments and reactive geochemical modeling. Energy Procedia, 4, 4724–4731(2011).
- Knauss, K., Johnson, J., Steefel, C.: Evaluation of the impact of CO₂, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO₂. Chem. Geol., 217, 339-350 (2005).
- Kummerow, J., Spangenberg E.: Experimental evaluation of the impact of the interactions of CO₂-SO₂, brine, and reservoir rock on petrophysical properties: A case study from the Ketzin test site, Germany. Geochem.Geophys.Geosyst., 12(5), Q05010 (2011).
- Langlais, C., Cezac, P., Contamine, F., Serin, J.P., André, L., Azaroual, M.: Geological and mineralogical effects of the presence of oxygen on the caprock and reservoir rocks for CO₂ storage application.

 3ème Colloque franco-espagnol, Orléans, France, October 17th-19th (2012).
- Lasaga, A.C.: Chemical kinetics of water-rock interactions. J. Geophys. Res., 89, 4009-4025 (1984).
- Murphy, R., Lammers, K. Smirnov, A., Schoonen, M.A.A., Strongin, D.R.: Ferrihydrite phase

- transformation in the presence of aqueous sulfide and supercritical CO_2 . Chemical Geology, 271(1-2), 26-30 (2010).
- Murphy, R., Lammers, K. Smirnov, A., Schoonen, M.A.A., Strongin, D.R.: Hematite reactivity with supercritical CO₂ and aqueous sulfide. Chemical Geology, 283(3-4), 210-217 (2011).
- Okuyama, Y., Todaka, N., Sasaki, M., AjimaS., Akasaka, C.: Reactive transport simulation study of geochemical CO₂ trapping on the TokyoBay model Withfocus on the behavior of dawsonite.

 Appl. Geochem., 30, 57-66 (2013).
- Palandri, J., Kharaka, Y.K.: A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modelling. US Geol.Surv. Open File Report 2004-1068, 64 p. (2004).
- Palandri, J.L., Kharaka, Y.K.: Ferric iron-bearing sediments as a mineral trap for CO₂ sequestration: Iron reduction using sulfur-bearing waste gas. Chemical Geology, 217, 351-364 (2005a).
- Palandri, J.L., Rosenbauer, R.J. Kharaka, Y.K.: Ferric iron in sediments as a novel CO₂ mineral trap: CO₂-SO₂ reaction with hematite. Applied Geochemistry, 20, 2038-2048 (2005b).
- Parkhurst, D.L., Appelo, C.A.J.: User's guide to PHREEQC (Version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259, US Geol.Surv. (1999).
- Pironon, J., Dubessy, J., Sterpenich, J., Robert, R., Andjar, K., Randi, A., Parmentier, M., Lassin, A., Renard S.: Dehydration of Gypsum under Dry CO₂ Injection. 11st International Conference on Greenhouse Gas Control Technologies(GHGT11), Kyoto, Japan, November 18th-22nd (2012).
- Pruess, K., Oldenburg, C.M., Moridis, G.J.: TOUGH2 User's Guide, Version 2.0. LawrenceBerkeley National Laboratory Report LBNL-43134, Berkeley, CA (USA) (1999).
- Pruess, K.: ECO2n: a TOUGH2 fluid property module for mixtures of water, NaCl and CO₂. Lawrence Berkeley National Laboratory Report LBNL-57952, Berkeley, CA (USA) (2005).
- Renard, S.: Rôle des gaz annexes sur l'évolution géochimique d'un site de stockage de dioxyde de carbone.

 Application à des réservoirs carbonatés. pH-D, University of Nancy, France (2010).
- Renard, S., Sterpenich, J., Pironon, J., Chiquet, P., Lescanne, M., Randi, A.: Geochemical study of the reactivity of a carbonate rock in a geological storage of CO₂: implications of co-injected gases. 10th

 International Conference on Greenhouse Gas Control Technologies (GHGT-10), Amsterdam,

- Netherlands, in Energy Procedia, 4, 5364-5369 (2011).
- Risse, A., Heeschen, K., Stadler, S., Ostertag-Henning, C.: Alteration of carbonates in saline aquifers due to CO₂ and accessory gases at geological storage conditions. Goldschmidt Conference Abstract, Mineralogical Magazine, 1730 (2011).
- Rumpf, B., Maurer, G.: Solubility of sulfur dioxide in aqueous solutions of sodium- and ammonium sulfate at temperatures from 313.15 K to 393.15 K and pressures up to 3.5MPa. Fluid Phase Equilibria, 91, 113-131 (1993).
- Springer, N., Lindgren, H.: Caprock properties of the Nordland Shale recovered from the 15/9-A11 well, the Sleipner area. In: 8th Greenhouse Gas Control Technologies Conference (GHGT-8), Trondheim, Norway, June 2006.
- Thibeau, S., Chiquet, P., Mouronval, G., Lescanne, M.: Geochemical assessment of the injection of CO₂ into Rousse depleted gas reservoir. 9th International Conference on Greenhouse Gas Control Technologies(GHGT9), Washington DC, USA,in Energy Procedia, 1, 3383–3390(2009).
- Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc.Am. J., 44, 892-898 (1980).
- Wilke, F.D.H., Vásquez, M., Wiersberg, T., Naumann, R., Erzinger J.: On the interaction of pure and impure supercritical CO₂ with rock forming minerals in saline aquifers: An experimental geochemical approach. Appl.Geochem., 27, 1615-1622 (2012).
- Wolery, T.: EQ3/6: Software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 7.0). LawrenceLivermore National Laboratory Report UCRL-MA-210662, CA (USA) (1992).
- Xu, T., Sonnenthal, E., Spycher N., Pruess, K.: TOUGHREACT—A simulation program for non-isothermalmultiphase reactive geochemical transport in variablysaturated geologic media: Applications to geothermalinjectivity and CO₂ geological sequestration. Computer and Geosciences, 32, 145–165 (2006).
- Xu, T., Apps, J.A., Pruess, K., Yamamoto, H.: Numerical modeling of injection and mineral trapping of CO₂ with H₂S and SO₂ in a sandstone formation. Chemical Geology, 242, 319-346 (2007).
- Yamamoto, H., Zhang, K., Karasaki, K., Marui, A., Uehara, H., Nishikawa, N.: Large-scale numerical

simulation of CO₂ geologic storage and its impact on regional groundwater flow: A hypothetical case study at Tokyo Bay, Japan. 9th International Conference on Greenhouse Gas Control Technologies(GHGT9), Washington DC, USA,in Energy Procedia, 1, 1871-1878 (2009).

Yu, H.-M., Ren, S.-R., Niu, B.-L., Zuo, J.-L.: Experimental on oxidation reaction rate for EOR by air injection in light-oil reservoirs. Journal of Petrochemical Universities, 3, 55-57 (2010).