P. Audigane, I. Gaus, I. Czernichowski-lauriol, K. Pruess, and T. Xu, Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site, North Sea, American Journal of Science, vol.307, issue.7, pp.974-1008, 2007.
DOI : 10.2475/07.2007.02

URL : https://hal.archives-ouvertes.fr/hal-00564444

P. Audigane, J. Lions, I. Gaus, C. Robelin, P. Durst et al., Geochemical modeling of CO 2 injection into a methane gas reservoir at the K12-B Field, North Sea, Carbon dioxide sequestration in geological media -State of the science, 2009.

S. J. Baines and R. H. Worden, storage, Geological Society, London, Special Publications, vol.233, issue.1, pp.59-85, 2004.
DOI : 10.1144/GSL.SP.2004.233.01.06

J. C. Baker, G. P. Bai, P. J. Hamilton, S. D. Golding, K. et al., Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney Basin system, eastern Australia, Journal of Sedimentary Research, vol.65, pp.522-530, 1995.

S. M. Benson, C. , and D. R. , CO2 Sequestration in Deep Sedimentary Formations, Elements, vol.4, issue.5, pp.325-331, 2008.
DOI : 10.2113/gselements.4.5.325

P. Bénézeth, D. A. Palmer, L. M. Anovitz, and J. Horita, Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: Implications for mineral trapping of CO2, Geochimica et Cosmochimica Acta, vol.71, issue.18, pp.4438-4455, 2007.
DOI : 10.1016/j.gca.2007.07.003

P. Blanc, A. Lassin, and P. Piantone, Thermoddem a database devoted to waste minerals, 2007.

P. Blanc, A. Lassin, P. Piantone, M. Azaroual, N. Jacquemet et al., Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials, Applied Geochemistry, vol.27, issue.10, pp.2107-2116, 2012.
DOI : 10.1016/j.apgeochem.2012.06.002

URL : https://hal.archives-ouvertes.fr/hal-00846739

B. Cantucci, G. Montegrossi, O. Vaselli, F. Tassi, F. Quattrocchi et al., Geochemical modeling of CO2 storage in deep reservoirs: The Weyburn Project (Canada) case study, Chemical Geology, vol.265, issue.1-2, pp.181-197, 2009.
DOI : 10.1016/j.chemgeo.2008.12.029

C. A. Chen and W. L. Marshall, Amorphous silica solubilities IV. Behavior in pure water and aqueous sodium chloride, sodium sulfate, magnesium chloride, and magnesium sulfate solutions up to 350??C, Geochimica et Cosmochimica Acta, vol.46, issue.2, pp.279-288, 1982.
DOI : 10.1016/0016-7037(82)90255-1

A. Coudrain-ribstein, P. Gouze, and G. De-marsily, Temperature-carbon dioxide partial pressure trends in confined aquifers, Chemical Geology, vol.145, issue.1-2, pp.73-89, 1998.
DOI : 10.1016/S0009-2541(97)00161-7

I. Czernichowski-lauriol, C. Rochelle, I. Gaus, M. Azaroual, J. Pearce et al., Geochemical interactions between CO 2 , pore-waters and reservoir rocks Advances in the Geological Storage of Carbon Dioxide, NATO Science Series: IV: Earth and Environmental Sciences, pp.157-174, 2006.

P. Debye and E. Hückel, The theory of electrolytes. I. Lowering of freezing point and related phenomena, Physikalische Zeitschrift, vol.24, pp.185-206, 1923.

F. Dethlefsen, C. Haase, M. Ebert, and A. Dahmke, Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations, Environmental Earth Sciences, vol.73, issue.2, pp.1-13, 2011.
DOI : 10.1007/s12665-011-1360-x

Z. Duan and R. Sun, An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chemical Geology, vol.193, issue.3-4, pp.257-271, 2003.
DOI : 10.1016/S0009-2541(02)00263-2

A. Förster, R. Schöner, H. J. Förster, B. Norden, A. W. Blaschke et al., Reservoir characterization of a CO2 storage aquifer: The Upper Triassic Stuttgart Formation in the Northeast German Basin, Marine and Petroleum Geology, vol.27, issue.10, pp.2156-2172, 2010.
DOI : 10.1016/j.marpetgeo.2010.07.010

J. Ganor, P. Lu, Z. Zheng, and C. Zhu, Bridging the gap between laboratory measurements and field estimations of silicate weathering using simple calculations, Environmental Geology, vol.69, issue.6, pp.599-610, 2007.
DOI : 10.1007/s00254-007-0675-0

Y. Gao, L. Liu, and W. Hu, Petrology and isotopic geochemistry of dawsonite-bearing sandstones in Hailaer basin, northeastern China, Applied Geochemistry, vol.24, issue.9, pp.1724-1738, 2009.
DOI : 10.1016/j.apgeochem.2009.05.002

I. Gaus, Role and impact of CO2???rock interactions during CO2 storage in sedimentary rocks, International Journal of Greenhouse Gas Control, vol.4, issue.1, pp.73-89, 2010.
DOI : 10.1016/j.ijggc.2009.09.015

I. Gaus, M. Azaroual, and I. Czernichowski-lauriol, Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea), Chemical Geology, vol.217, issue.3-4, pp.319-337, 2005.
DOI : 10.1016/j.chemgeo.2004.12.016

S. J. Hangx and C. J. Spiers, Reaction of plagioclase feldspars with CO2 under hydrothermal conditions, Chemical Geology, vol.265, issue.1-2, pp.88-98, 2009.
DOI : 10.1016/j.chemgeo.2008.12.005

H. C. Helgeson, Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions???I. Thermodynamic relations, Geochimica et Cosmochimica Acta, vol.32, issue.8, pp.853-877, 1968.
DOI : 10.1016/0016-7037(68)90100-2

H. C. Helgeson, T. H. Brown, and R. H. Leeper, Handbook of theoretical activity diagrams depicting chemical equilibria in geologic systems involving an aqueous phase at one Atm and 0, 1969.

H. Hellevang, P. Aagaard, E. H. Oelkers, and B. Kvamme, ?, Environmental Science & Technology, vol.39, issue.21, pp.8281-8287, 2005.
DOI : 10.1021/es0504791

H. Hellevang, J. Declercq, B. Kvamme, and P. Aagaard, The dissolution rates of dawsonite at pH 0.9 to 5 and temperatures of 22, Applied Geochemistry, vol.25, pp.60-77, 2010.

H. Hellevang, J. Declercq, and P. Aagaard, Charged Reservoirs?, Oil & Gas Science and Technology ??? Revue d???IFP Energies nouvelles, vol.66, issue.1, pp.119-135, 2011.
DOI : 10.2516/ogst/2011002

C. Hermanrud, O. Eiken, O. R. Hansen, H. Nordgaard-bolaas, T. Simmenes et al., Importance of pressure management in CO 2 storage, Offshore Technology Conference Special report on carbon dioxide capture and storage. Special report of the Intergovernmental Panel on Climate Change ? Summary for Policymakers and technical summary. Intergovernmental Panel on Climate Change, 2007.

J. W. Johnson, J. J. Nitao, and K. G. Knauss, storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning, Geological Society, London, Special Publications, vol.233, issue.1, pp.107-128, 2004.
DOI : 10.1144/GSL.SP.2004.233.01.08

J. W. Johnson, J. J. Nitao, C. Steefel, and K. G. Knauss, Reactive transport modelling of geological CO 2 sequestration in saline aquifers; the influence of intra-aquifer shales and the relative effectiveness of structural, solubility and mineral trapping during prograde and retrograde sequestration, First Annual Conference on Carbon Sequestration, 2001.

J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000??C, Computers & Geosciences, vol.18, issue.7, pp.899-947, 1992.
DOI : 10.1016/0098-3004(92)90029-Q

J. P. Kaszuba, D. R. Janecky, and M. G. Snow, Carbon dioxide reaction processes in a model brine aquifer at 200????C and 200 bars: implications for geologic sequestration of carbon, Applied Geochemistry, vol.18, issue.7, pp.1065-1080, 2003.
DOI : 10.1016/S0883-2927(02)00239-1

J. P. Kaszuba, D. R. Janecky, and M. G. Snow, Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: Relevance to the integrity of a geologic carbon repository, Chemical Geology, vol.217, issue.3-4, pp.277-293, 2005.
DOI : 10.1016/j.chemgeo.2004.12.014

J. P. Kaszuba, H. S. Viswanathan, C. , and J. W. , Relative stability and significance of dawsonite and aluminum minerals in geologic carbon sequestration, Geophysical Research Letters, vol.21, issue.8, p.8404, 2011.
DOI : 10.1029/2011GL046845

J. M. Ketzer, R. Iglesias, S. Einloft, J. Dullius, R. Ligabue et al., Water???rock???CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil, Applied Geochemistry, vol.24, issue.5, pp.760-767, 2009.
DOI : 10.1016/j.apgeochem.2009.01.001

Y. K. Kharaka and J. S. Hanor, 16 -Deep Fluids in the Continents: I. Sedimentary Basins, Treatise on Geochemistry, 2003.

J. Kihm, J. Kim, S. Wang, and T. Xu, Hydrogeochemical numerical simulation of impacts of mineralogical compositions and convective fluid flow on trapping mechanisms and efficiency of carbon dioxide injected into deep saline sandstone aquifers, Journal of Geophysical Research: Solid Earth, vol.60, issue.2, p.6204, 2012.
DOI : 10.2516/ogst:2005015

K. G. Knauss, J. W. Johnson, and C. I. Steefel, Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2, Chemical Geology, vol.217, issue.3-4, pp.339-350, 2005.
DOI : 10.1016/j.chemgeo.2004.12.017

V. Lagneau, A. Pipart, C. , and H. , Modélisation couplée chimie-transport du comportement à long terme de la séquestration géologique de CO 2 dans des aquifères salins profonds. Oil & Gas Science and Technology -Rev, pp.231-247, 2005.

A. C. Lasaga, J. M. Soler, J. Ganor, T. E. Burch, and K. L. Nagy, Chemical weathering rate laws and global geochemical cycles, Geochimica et Cosmochimica Acta, vol.58, issue.10, pp.2361-2386, 1994.
DOI : 10.1016/0016-7037(94)90016-7

A. Linjordet, G. Olsen, and R. , The Jurassic Snøhvit gas fields, Hammerfest Basin, offshore Northern Norway Giant oil and gas fields of the decade 1978-1988, Proceedings of the Conference, 1990.

W. F. Linke and A. Seidell, Solubilities of inorganic and metalorganic compounds, 1965.

N. Liu, L. Liu, X. Qu, H. Yang, L. Wang et al., Genesis of authigene carbonate minerals in the Upper Cretaceous reservoir, Honggang Anticline, Songliao Basin: A natural analog for mineral trapping of natural CO2 storage, Sedimentary Geology, vol.237, issue.3-4, pp.166-178, 2011.
DOI : 10.1016/j.sedgeo.2011.02.012

L. Luquot, M. Andreani, P. Gouze, and P. Camps, CO 2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation ? Otway Basin?Australia), Chemical Geology, pp.294-295, 2012.
DOI : 10.1016/j.chemgeo.2011.11.018

URL : https://hal.archives-ouvertes.fr/hal-00712829

A. M. Marchand, R. S. Haszeldine, P. C. Smalley, C. I. Macaulay, and A. E. Fallick, Evidence for reduced quartz-cementation rates in oil-filled sandstones, Geology, vol.29, issue.10, pp.915-918, 2001.
DOI : 10.1130/0091-7613(2001)029<0915:EFRQCR>2.0.CO;2

L. Marini, Geological sequestration of carbon dioxide. Thermodynamics, kinetics and reaction path modeling, 2006.

G. M. Marion, D. C. Catling, and J. S. Kargel, Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars, Geochimica et Cosmochimica Acta, vol.67, issue.22, pp.4251-4266, 2003.
DOI : 10.1016/S0016-7037(03)00372-7

W. L. Marshall and J. M. Warakomski, Amorphous silica solubilities???II. Effect of aqueous salt solutions at 25??C, Geochimica et Cosmochimica Acta, vol.44, issue.7, pp.915-924, 1980.
DOI : 10.1016/0016-7037(80)90281-1

W. L. Marshall and C. A. Chen, Amorphous silica solubilities V. Predictions of solubility behavior in aqueous mixed electrolyte solutions to 300??C, Geochimica et Cosmochimica Acta, vol.46, issue.2, pp.289-291, 1982.
DOI : 10.1016/0016-7037(82)90256-3

S. Martens, T. Kempka, A. Liebscher, S. Lüth, F. Möller et al., Europe???s longest-operating on-shore CO2 storage site at Ketzin, Germany: a progress report after three years of injection, Environmental Earth Sciences, vol.4, issue.5, pp.323-334, 2012.
DOI : 10.1007/s12665-012-1672-5

J. Moore, M. Adams, R. Allis, S. Lutz, R. et al., Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs: An example from the Springerville???St. Johns Field, Arizona, and New Mexico, U.S.A., Chemical Geology, vol.217, issue.3-4, pp.365-385, 2005.
DOI : 10.1016/j.chemgeo.2004.12.019

J. A. Neufeld, M. A. Hesse, A. Riaz, M. A. Hallworth, H. A. Tchelepi et al., Convective dissolution of carbon dioxide in saline aquifers, Geophysical Research Letters, vol.45, issue.11-12, p.22404, 2010.
DOI : 10.1029/2010GL044728

Y. Okuyama and S. Take, Dawsonite-aragonite association in the Cretaceous Izumi Group, SW Japan: Evidence of CO2-rich fluid invasion in the area of classical study, Journal of Mineralogical and Petrological Sciences, vol.106, issue.2, pp.79-84, 2011.
DOI : 10.2465/jmps.101013

D. A. Palmer and D. J. Wesolowski, Aluminum speciation and equilibria in aqueous solution, 1992.

D. L. Parkhurst and C. A. Appelo, User's guide to PHREEQC (Version 2)--a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, 1999.

H. Pauwels, I. Gaus, Y. M. Le-nindre, J. Pearce, and I. Czernichowski-lauriol, Chemistry of fluids from a natural analogue for a geological CO2 storage site (Montmiral, France): Lessons for CO2???water???rock interaction assessment and monitoring, Applied Geochemistry, vol.22, issue.12, pp.2817-2833, 2007.
DOI : 10.1016/j.apgeochem.2007.06.020

J. M. Pearce, S. Holloway, H. Wacker, M. K. Nelis, C. Rochelle et al., Natural occurrences as analogues for the geological disposal of carbon dioxide. Energy Conversion and Management, pp.1123-1128, 1996.

J. M. Pearce, G. A. Kirby, A. Lacinska, L. Bateson, D. Wagner et al., Reservoir-scale CO2 -fluid rock interactions: Preliminary results from field investigations in the Paradox Basin, Southeast Utah, Energy Procedia, vol.4, pp.5058-5065, 2011.
DOI : 10.1016/j.egypro.2011.02.479

D. L. Pinti and B. Marty, Noble gases in crude oils from the Paris Basin, France: Implications for the origin of fluids and constraints on oil-water-gas interactions, Geochimica et Cosmochimica Acta, vol.59, issue.16, pp.3389-3404, 1995.
DOI : 10.1016/0016-7037(95)00213-J

K. S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations, The Journal of Physical Chemistry, vol.77, issue.2, pp.268-277, 1973.
DOI : 10.1021/j100621a026

K. S. Pitzer, Activity coefficients in electrolyte solutions, Boca Raton, 1991.

K. Pruess and J. García, Multiphase flow dynamics during CO2 disposal into saline aquifers, Environmental Geology, vol.42, issue.2-3, pp.282-295, 2002.
DOI : 10.1007/s00254-001-0498-3

C. Rochelle, J. M. Pearce, R. Shaw, H. Taylor, G. Turner et al., Geochemical interactions between CO 2 and host rocks at the Snøhvit field. Results of fluid-rock interaction experiments, 2007.

J. W. Smith and C. Milton, Dawsonite in the Green River Formation of Colorado, Economic Geology, vol.61, issue.6, pp.1029-1042, 1966.
DOI : 10.2113/gsecongeo.61.6.1029

C. Taberner, G. Zhang, C. , and L. , Injection of Supercritical CO<sub>2</sub> into Deep Saline Carbonate Formations. Predictions from Geochemical Modeling, EUROPEC/EAGE Conference and Exhibition, 2009.
DOI : 10.2118/121272-MS

A. H. Truesdell and B. F. Jones, WATEQ a computer program for calculating chemical equilibria of natural waters, Journal of Research of the U.S. Geological Survey, vol.2, pp.233-248, 1974.

C. Q. Vong, N. Jacquemet, P. Audigane, and P. Frykman, Compilation of geochemical data and injected gas compositions for modeling of fluid-rock reactions in the, Salah, Snøhvit, Ketzin and Sleipner CCS sites. CO2REMOVE, Deliverable D2.2.2C+D, 2010.

M. N. Watson, N. Zwingmann, and N. M. Lemon, The Ladbroke Grove???Katnook carbon dioxide natural laboratory: A recent CO2 accumulation in a lithic sandstone reservoir, Energy, vol.29, issue.9-10, pp.1457-1466, 2004.
DOI : 10.1016/j.energy.2004.03.079

A. F. White and S. L. Brantley, The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field?, Chemical Geology, vol.202, issue.3-4, pp.479-506, 2003.
DOI : 10.1016/j.chemgeo.2003.03.001

A. F. White and S. L. Brantley, The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field?, Chemical Geology, vol.202, issue.3-4, pp.479-506, 2003.
DOI : 10.1016/j.chemgeo.2003.03.001

B. Wiese, J. Böhner, C. Enachescu, H. Würdemann, and G. Zimmermann, Hydraulic characterisation of the Stuttgart formation at the pilot test site for CO2 storage, Ketzin, Germany, International Journal of Greenhouse Gas Control, vol.4, issue.6, pp.960-971, 2010.
DOI : 10.1016/j.ijggc.2010.06.013

M. Wilkinson, R. S. Haszeldine, A. E. Fallick, N. Odling, S. J. Stoker et al., CO2-Mineral Reaction in a Natural Analogue for CO2 Storage--Implications for Modeling, Journal of Sedimentary Research, vol.79, issue.7, pp.486-494, 2009.
DOI : 10.2110/jsr.2009.052

M. Wolf, O. Breitkopf, and R. Puk, Solubility of calcite in different electrolytes at temperatures between 10?? and 60??C and at CO2 partial pressures of about 1 kPa, Chemical Geology, vol.76, issue.3-4, pp.291-301, 1989.
DOI : 10.1016/0009-2541(89)90097-1

R. H. Worden, Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen: A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction, Marine and Petroleum Geology, vol.23, issue.1, pp.61-77, 2006.
DOI : 10.1016/j.marpetgeo.2005.07.001

R. H. Worden, M. L. Coleman, and J. M. Matray, Basin scale evolution of formation waters: a diagenetic and formation water study of the Triassic Chaunoy Formation, Paris Basin, Geochimica et Cosmochimica Acta, vol.63, issue.17, 1999.
DOI : 10.1016/S0016-7037(99)00121-0

H. Würdemann, F. Möller, M. Kühn, W. Heidug, N. P. Christensen et al., CO2SINK???From site characterisation and risk assessment to monitoring and verification: One year of operational experience with the field laboratory for CO2 storage at Ketzin, Germany, International Journal of Greenhouse Gas Control, vol.4, issue.6, pp.938-951, 2010.
DOI : 10.1016/j.ijggc.2010.08.010

T. Xu, TOUGHREACT testing in high ionic strength brine sandstone systems, 2008.
DOI : 10.2172/941168

T. Xu, J. A. Apps, and K. Pruess, Reactive geochemical transport simulation to study mineral trapping for CO 2 disposal in deep arenaceous formations, J. Geophys. Res, vol.108, 2003.

T. Xu, Y. K. Kharaka, C. Doughty, B. M. Freifeld, and T. M. Daley, Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I Brine Pilot, Chemical Geology, vol.271, issue.3-4, pp.153-164, 2010.
DOI : 10.1016/j.chemgeo.2010.01.006

P. E. Zalba, M. S. Conconi, M. Morosi, M. Manassero, and M. Comerio, DAWSONITE IN TUFFS AND LITHARENITES OF THE CERRO CASTANO MEMBER, CERRO BARCINO FORMATION, CHUBUT GROUP (CENOMANIAN), LOS ALTARES, PATAGONIA, ARGENTINA, The Canadian Mineralogist, vol.49, issue.2, pp.503-520, 2011.
DOI : 10.3749/canmin.49.2.503

B. Zerai, B. Z. Saylor, and G. Matisoff, Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio, Applied Geochemistry, vol.21, issue.2, pp.223-240, 2006.
DOI : 10.1016/j.apgeochem.2005.11.002

G. Zhang, N. Spycher, T. Xu, E. Sonnenthal, and C. Steefel, Modeling reactive geochemical transport of concentrated aqueous solutions, Water Resources Research, vol.27, issue.1-4, 2006.
DOI : 10.1029/2004WR003097

G. Zhang, Z. Zheng, W. , and J. , Modeling reactive geochemical transport of concentrated aqueous solutions, Water Resources Research, vol.27, issue.1-4, 2005.
DOI : 10.1029/2004WR003097

W. Zhang, Y. Li, T. Xu, H. Cheng, Y. Zheng et al., Long-term variations of CO2 trapped in different mechanisms in deep saline formations: A case study of the Songliao Basin, China, International Journal of Greenhouse Gas Control, vol.3, issue.2, pp.161-180, 2009.
DOI : 10.1016/j.ijggc.2008.07.007

C. Zhu, In situ feldspar dissolution rates in an aquifer, Geochimica et Cosmochimica Acta, vol.69, issue.6, pp.1435-1453, 2005.
DOI : 10.1016/j.gca.2004.09.005

?. Springerville and . Field, Hailer Basin; 8) Miller Field; 9) Magnus Field; 10) Bravo Dome; 11) Vert le Grand; 12) Ladbroke Grove Field; 13) Montmiral reservoir; 14) Paradox Basin, Salah and Snøhvit case-study sandstone compositions are also reported

. Wilkinson, of CO 2 in the gas phase, related to recent volcanic activity (<1 Ma) 97.2 % of CO 2 in the gas phase. CO 2 accumulated since 35 Ma About 50 % of CO 2 in the gas phase, for at least 50 Ma Temperature during rock-CO 2 interaction 103 °C at present-day 80 to 85 °C Mineralogical composition Lithic-rich sandstones: Quartz (45 to 70 %), feldspars (5 to 9 %), CO 2 intrusion 26 to 57 volcanic rock fragments (2 to 7 %), kaolinite Mg/Fe-carbonates (2 to 8 %), siderite (1 to 8 %), calcite (<3 %) and chlorite (<2 %), 2009.

. Pearce, CO 2 accumulation related to Pio-Pliocene volcanic activity Circulation of CO 2 -rich fluids related to Pio-Pliocene volcanic activity Temperature during rock-CO 2 interaction Mineralogical composition Siltstones: Quartz (26 to 46 %), plagioclases and K-feldspars (6 to 13 %, each), 5 to 18 % of illite, muscovite and biotite, CO 2 intrusion About 90 to 6 %), dolomite (10 to 15 %), calcite (1 to 2 %), dawsonite (5 to 17 %), gypsum (1 to 9 %), 2011.