Fragility curves for risk-targeted seismic design maps - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Bulletin of Earthquake Engineering Année : 2014

Fragility curves for risk-targeted seismic design maps

(1) , (1) , (1)
1

Résumé

Seismic design using maps based on 'risk-targeting' would lead to an annual probability of attaining or exceeding a certain damage state that is uniform over an entire territory. These maps are based on convolving seismic hazard curves from a standard probabilistic analysis with the derivative of fragility curves expressing the chance for a code-designed structure to attain or exceed a certain damage state given a level of input motion (e.g. peak ground acceleration, PGA). There are few published fragility curves for structures respecting the Eurocodes (ECs, principally EC8 for seismic design) that can be used for the development of risk-targeted design maps for Europe. In this article a set of fragility curves for a regular three-storey reinforced-concrete building designed using EC2 and EC8 for medium ductility and increasing levels of design acceleration (ag) is developed. These curves show that structures designed using EC8 against PGAs up to about 1 m/s2 have similar fragilities to those that respect only EC2 (although this conclusion may not hold for irregular buildings, other geometries or materials). From these curves, the probability of yielding for a structure subjected to a PGA equal to ag varies between 0.14 (ag=0.7 m/s2) and 0.85 (ag=3 m/s2) whereas the probability of collapse for a structure subjected to a PGA equal to ag varies between 1.7 × 〖10〗^(-7) (ag=0.7 m/s2) and 1.0 × 〖10〗^(-5) (ag=3 m/s2).
Fichier principal
Vignette du fichier
ulrichetal2014.pdf (316.19 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00919111 , version 1 (16-12-2013)

Identifiants

Citer

Thomas Ulrich, Caterina Negulescu, John Douglas. Fragility curves for risk-targeted seismic design maps. Bulletin of Earthquake Engineering, 2014, 12 (4), pp.1479-1491. ⟨10.1007/s10518-013-9572-y⟩. ⟨hal-00919111⟩

Collections

BRGM
217 Consultations
873 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More