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Influence of the Number of Dynamic
Analyses on the Accuracy of Structural
Response Estimates

Pierre Gehl,a) John Douglas,a) and Darius M. Seyedia), b)

Nonlinear dynamic analysis is often used to develop fragility curves within
the framework of seismic risk assessment and performance-based earthquake
engineering. In the present article, fragility curves are derived from randomly
generated clouds of structural response results by using least squares and
sum-of-squares regression, and maximum likelihood estimation. Different statis-
tical measures are used to estimate the quality of fragility functions derived by
considering varying numbers of ground motions. Graphs are proposed that can be
used as guidance regarding the number of calculations required for these three
approaches. The effectiveness of the results is demonstrated by their application
to a structural model. The results show that the least-squares method for deriving
fragility functions converges much faster than the maximum likelihood and sum-
of-squares approaches. With the least-squares approach, a few dozen records
might be sufficient to obtain satisfactory estimates, whereas using the maximum
likelihood approach may require several times more calculations to attain the
same accuracy. [DOI: 10.1193/102912EQS320M]

INTRODUCTION

Fragility curves assess the probability that a structural system suffers a certain damage
level given an assumed level of earthquake shaking, characterized by an intensity measure
(IM), such as peak ground acceleration or spectral acceleration at a period of interest. By
providing the link between the seismic hazard and the structure’s damage state (DS), through
the study of the structural response represented by an engineering demand parameter (EDP),
fragility curves represent a basis for the majority of modern earthquake risk assessments as
well as performance-based earthquake engineering. Consequently, many such curves have
been proposed for various structural types and IMs. The various methods of fragility evalua-
tion can be divided into two primary categories (Calvi et al. 2006): empirical, based on the
damage observed after earthquakes, and analytical. In analytical methods, damage distribu-
tions are simulated through the analysis of structural models, generally by using the static
pushover method [Applied Technology Council (ATC)-40 1996] or dynamic nonlinear
analysis.

The paucity of accelerograms for all earthquake scenarios of interest and the relatively
high cost of nonlinear dynamic calculations encourage the use of a minimal but sufficient
number of ground motions for deriving fragility curves. Incremental dynamic analysis (IDA)
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intends to overcome the first problem (Vamvatsikos and Cornell 2002). In IDA, a structural
model is subjected to a series of ground motion records, each scaled to various levels of
intensity. In this way, several records are produced by progressively increasing the ground
motion amplitudes, without modifying their spectral shapes, to obtain a sufficient number of
records. The primary concern is whether the damage states obtained from scaled records
accurately estimate those obtained from unscaled ones. It has been shown that the scatter
of structural response depends on the selected IM, which depends on the studied structure
(Bommer et al. 2004, Gehl et al. 2013). Thus, the accuracy of IDA will depend on the chosen
IM, the type of structure, and the scaling approach [Vamvatsikos and Cornell 2002, Pacific
Earthquake Engineering Research Center (PEER) 2009].

Currently, there is little guidance in the literature regarding how many dynamic runs (time-
histories) need to be used to obtain robust fragility curves. Shome et al. (1998), Hancock et al.
(2008), and more recently, Buratti et al. (2011) proposed that only a handful of well-chosen
dynamic runs are required to accurately assess structural responses for a given earthquake
scenario. Fragility curves seek to capture structural responses for all possible earthquake sce-
narios; therefore, it is likely that more time-histories are needed for their robust evaluation than
proposed by these authors for a single scenario. However, as shown by Shome et al. (1998) for a
five-story steel moment-resisting frame (and by others for different structures), after condi-
tioning for response spectral acceleration, there is little dependence in structural response
over a wider range of magnitude and distance (i.e., the IM is sufficient). The conjecture
that many records are required to define fragility curves is supported by the amounts used
by, for example, Shinozuka et al. (2000) and Karim and Yamazaki (2003) to develop fragility
curves for bridges using 80 and 250 accelerograms, respectively. A recent study (Saez et al.
2011) highlights the importance of the number of ground motions used to provide fragility
curves. The authors develop fragility curves by using the maximum likelihood method con-
sidering different numbers of nonscaled ground motions. Assuming a lognormal distribution
for the fragility curves, the Fisher information matrix is used to measure the ability of the data,
i.e., the accelerograms, to estimate the parameters of the curves. It is worth noting that the
Fisher information matrix can only be used when the maximum likelihood method is employed.

Following an introduction to the derivation of fragility curves, this article provides gui-
dance on the statistical confidence of fragility curves by randomly generating dozens of sets
of structural response data from known fragility curves, then applying three commonly used
approaches [regression techniques based on least squares (LS), maximum likelihood (MLE),
and sum-of-squared errors (SSE) formulations] to derive fragility curves from these data,
which can then be compared to the original curves. This procedure leads to graphs that
can be used for guidance concerning how many calculations are required to obtain a certain
accuracy level in the fragility curve. This guidance is verified against simulated damage,
computed by using a single-degree-of-freedom (SDOF) model of nonlinear structural
response. The article ends with some brief conclusions.

STRUCTURAL RESPONSE ESTIMATION FOR THE DERIVATION OF
FRAGILITY CURVES

Using the PEER equation (Cornell and Krawinkler 2000) of the mean annual probability
of exceeding a given DS ¼ ds, the fragility of a structural system can be written as
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EQ-TARGET;temp:intralink-;e1;62;640PðDS ≥ dsjIMÞ ¼
ð

PðDS ≥ dsjEDPÞ ·

���� dPðEDPjIMÞ
dedp

���� · dedp (1)

where EDP represents the engineering demand parameter (e.g., interstory drift, local strain
or stress, or accumulated energy in the structural system) and IM stands for the intensity
measure of the seismic loading (e.g., elastic response spectral displacement or acceleration
at a period of interest). Maximum interstory drift ratio is a widely used EDP because its
computation through dynamic analyses is rather straightforward and the link with damage
to the structure can be performed through empirical correlations. Therefore, the rest of the
present study will assume drift as the EDP, although this EDP is not necessarily the most
appropriate for all structure types and additional parameters, such as peak floor accelera-
tion, are advocated by recent guidelines (e.g., ATC-58 2011). However, the conclusions
drawn from the present study apply to the generic probabilistic relation between an IM and
an EDP, regardless of their nature. The scope of this study is limited to the estimation of
the structural response, i.e., the conditional probability of exceeding a given EDP level
with respect to an IM. Indeed, there is a gap in the literature regarding the mapping
between EDP and the resulting DS, which can only be filled through extensive experi-
mentation and measurement campaigns (Moehle and Deierlein 2004). Therefore, most
common approaches rely on the definition of a certain EDP threshold (i.e., the structural
capacity, denoted Cds) that will imply the occurrence of a DS. Certain studies propose a
probabilistic relation between EDP and DS (e.g., a lognormal distribution) and its asso-
ciated standard deviation; for instance, βds ¼ 0.4, as suggested in the HAZUS framework
(NIBS 2004). This approach has been adopted here. It is represented by the following
equation:

EQ-TARGET;temp:intralink-;e2;62;345PðDS ≥ dsjEDPÞ ¼ Φ
�
ln EDP � ln Cds

βds

�
(2)

where Φ represents the normal cumulative distribution function and βds is established as
equal to 0.4. Based on this assumption, a combination of Equations 1 and 2 yields the
following expression of fragility:

EQ-TARGET;temp:intralink-;e3;62;257PðDS ≥ dsjIMÞ ¼
ð

Φ
�
ln EDP � ln Cds

βds

�
·

���� dpðEDPjIMÞ
dedp

���� · dedp (3)

One widely used method for estimating the probabilistic relation between the parameters
EDP and IM is to perform an LS regression on the results of dynamic analyses (Cornell et al.
2002, Ellingwood and Kinali 2009), assuming a lognormal distribution (Shome and Cornell
1999). The predicted demand parameter, dEDP, is represented by a power law, with βε being
the standard deviation of the error term of the logarithm of the predicted demand parameter
(see Figure 1). Parallel developments have been made in the estimation of the parameters of
fragility curves, based on MLE (Shinozuka et al. 2000), for which, as in the LS approach, a
lognormal distribution is usually assumed. The median and standard deviation (α and β,
respectively) of the lognormal distribution are then estimated through the maximization
of a likelihood function (see Figure 1b). Finally, similarly to MLE, an approach based
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(b)

(a)

Figure 1. Schematic representation of the derivation of fragility curves by using the approaches
under consideration: (a) least-squares regression and (b) maximum likelihood estimation when
the damage threshold, Cds, is assumed to be exactly known (i.e., βds ¼ 0). Here, b and c are
coefficients of the power law connecting the EDP to the IM and n is the number of calculations.
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on SSE has been investigated by Baker (2013), where the function to minimize is defined as
follows, using the same notations as in Figure 1:

EQ-TARGET;temp:intralink-;e4;62;615Lðα; βÞ ¼
Xn

i¼1

ðyi � PiÞ2 (4)

The use of the lognormal assumption to represent the relation between EDP and
IM enables the convolution of the two lognormal cumulative distribution functions.
Equation 3 can consequently be rewritten as follows, with a global standard deviation

βtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ β2

ds

q
:

EQ-TARGET;temp:intralink-;e5;62;509PðDS ≥ dsjIMÞ ¼ Φ

2
4ln IM � ln αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2 þ β2
ds

q
3
5 (5)

MLE was originally used to develop fragility curves from empirical data, including post-
earthquake observations of bridge damage (Shinozuka et al. 2000), because it requires only
binary information (damage or no damage) and no drift calculations or estimates, which can-
not be accurately obtained from post-earthquake field surveys (from which only residual
drifts can be observed). Several studies have also used MLE to postprocess the results of
nonlinear time-history analyses (Kim and Shinozuka 2004, Zentner 2010), directly switching
from drift values to the corresponding binary outcomes in terms of damage states. The use of
MLE in the latter context may seem counterproductive, because it results in the loss of infor-
mation (i.e., the actual value of the computed drifts). This drawback, however, may change to
an advantage when the development of near collapse or collapse fragility curves is considered
(Baker 2013) because, in this case, most computation codes may return unreliable results or
may not even converge, thus making LS regression difficult to apply (Shome and Cornell
2000). In addition, MLE does not assume a predefined relation between IM and EDP (e.g., a
power law), unlike the LS approach, which may be useful in the case of poorly correlated or
constrained dynamic results.

LS regression is an efficient way to establish a robust relation between EDP and IM
with only a few data points, because it uses all information contained in the simulation
results. It is also possible to extrapolate the regression line to higher or lower IM values
when such levels are not covered by the time-history analyses, although extrapolation is
generally not recommended because structural behavior may alter beyond the range
covered by the available analyses. One drawback of this method is that the standard
deviation, βε, of the error term is often computed over the whole IM range, resulting
in the same dispersion in the fragility curves for various damage levels. However,
this limitation can be avoided by performing piecewise regressions over different IM inter-
vals (Carausu and Vulpe 1996), which allows the power law and dispersion to vary with
the level of IM.

The review by Baker (2007) discussing ways to perform probabilistic structural response
assessment provides a useful summary of the pros and cons of the different methods. Out of
the several derivation techniques discussed by Baker (2007), only the so-called linear
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regression on a cloud is tested here (i.e., that corresponding to LS regression); the other
techniques covered by Baker (2007) may be viewed as more elaborate variants that rely
mostly on the scaling of ground motion records, which is out of the scope of the
present paper. Porter et al. (2007) also comprehensively review various techniques to
derive fragility curves, focusing on those used for experimental results, among which the
most similar to the LS regression evaluated here is designated method A. Other approaches
reviewed by Porter et al. (2007) imply the use of expert judgment or the combination of both
empirical and analytical data, which makes them difficult to apply in the present study.

TRIAL INVERSION PROCEDURE

To assess the reliability of fragility curves derived from a limited number of time-history
analyses, we undertake a series of inversions on simulated data. This procedure enables com-
parison between the computed estimates and the true fragility parameters, thus constituting an
efficient means to evaluate the robustness of the three regression techniques as a function of
the number of data points (i.e., dynamic analyses). This inversion procedure is broken down
into the following steps:

1. The initial fragility parameters, α0 and β0, are established, along with the corre-
sponding relation: log dEDP ¼ log b0 þ c0 · log IM þ ε (ε ∼ N½0; β2

ε �) and a prob-
abilistic damage threshold, Cds, is assumed. Therefore, the global standard deviation
of the relation between the IM and the damage state can be written as:

EQ-TARGET;temp:intralink-;sec3;41;373β0;tot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2

0 þ β2
ds

q
:

2. A set of n IM values are defined and the corresponding EDP values are sampled
based on the relation in step 1 and the corresponding error term, ε. The n data points
represent the n dynamic analyses that yield the pairs (IM, EDP). The IMs are
assumed to be applicable for all magnitude (M) and distance (R), and consequently,
should be considered for all possible earthquake scenarios and associated ground
motions. Assuming uniform distributions of M and R and lognormal ground motion
variability leads to IMs that are lognormally distributed (this has been numerically
verified by using a large strong-motion database), which is assumed with sufficient
standard deviation to cover the entire range of possible ground motions. The series
of IMs are also chosen such that approximately half of the points are below the
damage threshold (Cds) and half above, which corresponds to the most favorable
configuration for the estimation of parameters via MLE and SSE techniques.
Therefore, the use of a lognormal distribution of the IMs, with a median correspond-
ing to the damage threshold, represents the ideal case with the best use of the avail-
able data samples, as stressed by Kato et al. (2008) via their study of information
entropy.

3. Using the n pairs of IM-EDP values, fragility curves are derived, as defined in
Equation 5, by using the three regression techniques described in the previous sec-

tion. The estimated fragility parameters α̂ and β̂tot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̂2 þ β2

ds

q
can then be com-

pared to the “true” parameters, α0 and β0;tot.
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4. Steps 2 and 3 are repeated k times (k ≫ 1) to obtain stable estimates of the errors and
confidence intervals of the estimated fragility parameters.

Using the set of k fragility estimates, several metrics are computed to obtain objective
measures of the accuracy of fragility functions with respect to the number of data points.
Intuitive indicators are the standard deviations of both α̂ and β̂, which can be computed
for k pairs using a bootstrap technique (Efron and Tibshirani 1993).

By using the inversion procedure, the fragility parameters obtained from the simulated
data points can also be compared to the original parameters, α0 and β0. Therefore, this feature
can provide valuable information on the accuracy of the fragility estimates, and not only their
precision. The accuracy of an estimate can be quantified by how close it is to the true value,
whereas its precision represents only the narrowness of the confidence intervals (i.e., standard
deviation of the estimate), with no information about the level of bias. Thus, to compare two
fragility curves, the Kolmogorov-Smirnov statistic, D, has been chosen to measure the largest
absolute difference between the original and estimated lognormal distributions. This D metric
provides an adequate measure of the maximum bias induced by different curves and can be
viewed as an indicator of the accuracy of the fragility curve. However, the use of D may
induce a bias in the interpretation of results, particularly when addressing low probabilities.
A normalized D may be used as a metric measuring the difference between two curves
because this would give more weight to discrepancies between the curves at low probabil-
ities, which may be relatively more important than differences at the upper end of the curves.
However, because the calculation of normalized D requires division by the theoretical (log-
normal) distribution, it can overemphasize the lower tail of the distribution, which may not
satisfactorily describe the real damage distribution (Kennedy et al. 1980); additionally, the
midrange of the fragility curve is generally the most important when, for example, computing
the collapse risk (Eads et al. 2013).

RESULTS AND IMPLICATIONS

The trial inversion procedure introduced above is conducted with k ¼ 10;000 to obtain
stable statistics. The following robustness indicators are computed for various numbers of
data points (n ranging from 20 to 500) and for each of the three techniques (LS, MLE,
and SSE):

• Coefficients of variation (COVs, standard deviation divided by the mean) of the
parameters α̂ and β̂, to measure the precision of these terms.

• Mean of the Kolmogorov-Smirnov distance, D, over all k simulations, to compare
the initial true distribution with that estimated.

These results are presented in a series of graphs (see Figure 2) to show the evolution of
each indicator with respect to the number of dynamic analyses. For the LS approach, it is
possible (Draper and Smith 1981) to explicitly express the standard deviation of the terms
ln b and c in the regression equation, based on the numbers of samples (i.e., n), the standard
deviation of the regression, and the distribution of the input variable (i.e., IM). Therefore,
an analytical estimation of the standard deviations of ln b and c has been performed and the
COVs of α and β have been evaluated by using an error propagation procedure (Ku 1966).
It is found that the analytical results are within 5% of the values obtained from the numerical

INFLUENCE OF THE NUMBER OF ANALYSES ON THE ACCURACY OF STRUCTURAL RESPONSE ESTIMATES 103



approach, thus validating the results from the inversion procedure (see Appendix A). These
analytical estimations are valuable for verifying the dispersion of the coefficients of the fra-
gility curve (i.e., their precision), but they are not able to predict the accuracy of the curve, for
which the Monte Carlo approach is required.

Figure 2 constitutes objective guidance regarding how many simulations are required for
a given objective (value of D) and the derivation technique that is used. For example, if it is
decided that the fragility curve inaccuracy should not exceed D ¼ 0.05 (error of 5%), then
this goal implies that the coefficient of variation of α should not exceed 8.4% (top left graph),
thus requiring approximately 40 simulations for processing by using least-squares regression
(top right graph). These results show also the poor performance of the MLE and SSE
approaches, which require between 150 and 300 runs to attain the same level of accuracy.
This observation was to be expected, because MLE and SSE approaches rely on binary out-
comes and require less information than the LS regression (which directly uses EDP values).
These methods, however, still present other advantages, as explained above (e.g., in the case
of nonconvergence of dynamic runs, when considering collapse, or when analyzing post-
earthquake observations).

The number of simulations required for the ML approach, according to Figure 2, may
seem large at first glance because it is higher than the number of records usually used in
previous studies (Shinozuka et al. 2000). However, using the D metric as a measure of the
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Figure 2. (a) Correspondence between the uncertainty on the fragility median, α, and the
D metric; (b) evolution of the uncertainty on α with the number of simulations; (c), (d) same
construction for the fragility standard deviation, βtot. The results from the three regression tech-
niques (MLE, SSE, and LS, respectively) are plotted in blue, green, and red.
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accuracy of the resulting parameters, it can be shown that even with a limited number of
simulations (i.e., under 100), the derived curves would still be contained within an error
range of approximately 10%. Figure 2 provides a link between the precision and accuracy
of the results: whereas the precision of the fragility parameters (i.e., narrow confidence
bounds) can be obtained by using a straightforward bootstrap procedure, consequences on
the accuracy of the results, which are usually inaccessible without the knowledge of the
true distribution, can be approximated by the empirical relations provided in Figure 2a. As
a result, based on Figure 2, numerical results from the trial inversion procedure are pre-
sented in Table 1 to provide guidance on the level of performance that can be expected
for future fragility derivation studies, depending on the regression technique and the num-
ber of data points.

The introduction of additional uncertainty in the definition of DS (i.e., βds) puts into
perspective the effect of the record-to-record variability, which is the focus here. Indeed,
there is little point in trying to obtain a perfect estimate of the structural response
with respect to an IM, because other sources of variability, such as the damage state defini-
tion or modeling uncertainties, may be higher still and tend to dilute the effect of the varia-
bility due to the seismic input. The uncertainties related to structural response calculation
may be reduced by using more accurate structural models, particularly when addressing a
particular structure, whereas the record-to-record variability is related to the random nature
of earthquake hazard.

The results from Table 1 have been computed by selecting an initial standard deviation,
β0 ¼ 0.5, which lies within the common range of dispersion for most fragility curves (e.g.,
standard deviations proposed within HAZUS; NIBS 2004). A sensitivity study has also been
conducted to verify the effect of the standard deviation on the number of required simulations

Table 1. Results from the inversion procedure, providing the link between the number of
data points, the COV of α and β, and the Kolmogorov-Smirnov distance, D, for the three
derivation techniques

No. of
simulations

COV of α (%) COV of βtot (%) D

MLE SSE LS MLE SSE LS MLE SSE LS

20 24.7 27.0 11.3 26.0 32.3 9.6 0.162 0.182 0.067
30 19.5 22.5 9.1 21.8 28.5 8.0 0.127 0.156 0.054
40 16.8 19.2 8.0 18.9 25.3 6.7 0.110 0.134 0.047
50 14.9 17.0 7.1 17.1 23.2 6.1 0.096 0.120 0.042
80 11.8 13.4 5.6 13.5 18.7 4.9 0.075 0.093 0.033
100 10.4 11.8 5.1 12.1 16.9 4.3 0.067 0.082 0.030
150 8.5 9.5 4.1 9.8 13.5 3.5 0.055 0.065 0.024
200 7.2 8.1 3.5 8.5 11.5 3.0 0.046 0.055 0.021
300 6.0 6.6 2.9 7.0 9.4 2.5 0.038 0.045 0.017
400 5.1 5.7 2.5 6.0 8.1 2.1 0.033 0.039 0.015
500 4.6 5.1 2.2 5.2 7.1 1.9 0.029 0.034 0.013
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(see Table 2 and Figure 3). The calculations are performed for a range of β0 and three values
of βds. The following observations can be noted:

• For the three techniques, the value of βds has no effect on the precision of α, which
decreases (i.e., the estimate is associated with a higher standard deviation) roughly
linearly as β0 increases.

• For the least-squares approach, the precision of βtot is roughly unchanged by β0 and
βds, although it decreases slightly (i.e., higher COV) as β0 increases for nonzero βds;
whereas for the other two approaches, the precision of βtot decreases (i.e., higher
COV) to a peak and then increases (i.e., lower COV) for nonzero βds. However,
when βds ¼ 0, the precision of βtot increases for increasing β0 (the reason for

Table 2. Evolution of inversion results with the value of the initial standard deviation, β0,
for three sizes of data sets (50, 100, and 200 simulations)

No. of
simulations

Value
of β0

COV of α (%) COV of βtot (%) D

MLE SSE LS MLE SSE LS MLE SSE LS

20 0.1 10.4 11.3 2.2 3.1 5.4 0.9 0.083 0.082 0.018

0.5 24.5 26.8 11.3 25.7 31.5 9.9 0.163 0.184 0.067

1 — 45.4 24.5 — 46.0 13.9 — 0.202 0.085

30 0.1 8.2 9.2 1.8 2.9 4.6 0.8 0.056 0.076 0.014

0.5 19.1 21.7 9.4 21.6 28.1 7.8 0.126 0.152 0.055

1 31.4 34.5 19.0 30.7 39.2 11.2 0.130 0.160 0.069

40 0.1 8.5 7.5 1.6 2.8 3.9 0.7 0.062 0.062 0.013

0.5 17.2 19.5 8.0 19.1 25.3 6.7 0.112 0.137 0.047

1 26.2 28.9 16.3 24.9 32.4 9.7 0.110 0.135 0.059

50 0.1 6.6 6.5 1.4 2.8 3.8 0.6 0.051 0.055 0.011

0.5 14.8 16.8 7.1 17.0 23.2 6.2 0.096 0.119 0.042

1 23.2 25.3 14.5 22.7 29.5 8.6 0.097 0.118 0.052

100 0.1 4.5 5.1 1.0 2.2 2.9 0.4 0.036 0.041 0.008

0.5 10.5 11.6 5.0 12.0 16.9 4.3 0.067 0.081 0.030

1 16.2 17.5 10.2 15.3 19.3 6.2 0.068 0.078 0.037

200 0.1 3.2 3.6 0.7 1.6 2.3 0.3 0.026 0.030 0.006

0.5 7.3 8.1 3.6 8.5 11.6 3.1 0.047 0.056 0.021

1 11.3 12.1 7.2 11.0 13.4 4.3 0.048 0.054 0.026
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this behavior is the interaction between the standard deviation of βtot and the value of

βtot, which equals
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2

0 þ β2
ds

q
).

• Because of the strong influence of the precision of βtot on the overall accuracy of the
fragility curve, the dependence of D on changes in β0 and βds is similar to the beha-
vior of the curves for COV of βtot; i.e., insignificant impact of β0 and βds on the
accuracy when using LS, and generally increasing accuracy as β0 increases when
using the other two approaches.

APPLICATION TO A SIMPLE STRUCTURAL MODEL

In this section, the previously discussed findings are compared to results obtained by
considering the nonlinear structural response of an SDOF model. The modified Takeda
model (Takeda et al. 1970) for reinforced concrete, which has been widely studied by
Schwab and Lestuzzi (2007) and Lestuzzi et al. (2007), is used in this study because its
robustness and low computational demand allow for a very large number of dynamic
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Figure 3. (a) Evolution of the COV of α with the value of β0 for the three regression techniques
(i.e., MLE in blue, SSE in green, and LS in red) and for a sample size of 100 simulations; (b) evo-
lution of the COV of βtot with the value of β0 for the three regression techniques and for a sample
size of 100 simulations; (c) evolution of D with the value of β0 for the three regression techniques
and for a sample size of 100 simulations.
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analyses. The modified version of the model, initially developed by Takeda et al. (1970), is
proposed by Otani (1974) and Litton (1975). The Takeda bilinear model includes many fea-
tures to accurately mimic the behavior of reinforced concrete, such as a parameter governing
stiffness degradation attributable to increasing damage and another for the reloading curve.
Three other parameters are used to specify the behavior; namely, the initial (i.e., undamaged)
stiffness, the yield displacement, and the post-yield stiffness ratio. The model does not
account for strength degradation. A fundamental period of 0.5 s is chosen for this structure,
corresponding roughly to a five-story (medium rise) building. Standard values are assigned to
the parameters describing the model (see Table 3).

To obtain a reference fragility curve—that is a true distribution—the first step consists of
submitting the structure to a very large number of records. Because there are insufficient
natural ground motions in existing strong-motion databases, a set of synthetic ground
motions was generated by using the nonstationary stochastic procedure proposed by Pousse
et al. (2006). These signals have been generated for magnitudes (Mw) between 5.5 and 7.5
and epicentral distances between 10 and 100 km. The five Eurocode 8 soil classes are also
sampled to introduce additional variability in the ground motion input. Approximately
100,000 of these records are generated and applied to the simplified model to obtain a
well-constrained estimate of the structural response and its distribution. It is found that
the IMs of the generated ground motions follow a lognormal distribution, as assumed earlier
for the inversion. An arbitrary drift threshold is assumed so that approximately half of the
simulations are below and the other half above (i.e., Cds ¼ 0.16% for drift ratio, which does
not necessarily correspond to any particular damage state).

Using the LS regression approach, the large number of simulations allows confidence in
the estimated fragility parameters (i.e., probability of exceeding the threshold Cds given the
IM, assumed as PSA at 0.5 s): α0;LS ¼ 1.962 m∕s2 and β0;LS ¼ 0.400. However, the cloud
graph between PSA (0.5 s) and the drift shows that the dispersion in the relation
EDP ¼ f ðIMÞ is not constant over the full range of IM (see Figure 4). Therefore, this con-
figuration is slightly less ideal than that used in the inversion procedure above, and may lead
to some bias. Thus, these parameters are still considered to be true (i.e., the reference fragility
curve), but only for the LS regression approach. Using MLE and SSE, two different sets of
true fragility parameters are also estimated using all simulation results; the results are
α0;MLE ¼ 1.846 m∕s2 and β0;MLE ¼ 0.418, and α0;SSE ¼ 1.863 m∕s2 and β0;SSE ¼ 0.400,

Table 3. Parameters of the modified Takeda model of the studied structure

Parameter Assigned value

Yield displacement 0.002 m
Post-yield stiffness ratio 5%
Coefficient of stiffness degradation 0.4
Target for reloading curve 0.0
Reduction factor 2
Viscous damping ratio 5%
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respectively. These parameters are the basis of comparison for the successive fragility esti-
mates, for both the MLE and SSE techniques.

The series of 100,000 simulation results is used to randomly select subsets of IM–EDP
couples, their sizes ranging from 100 to 1,000. For each subset size, 10,000 samplings with
replacement are conducted (i.e., a bootstrapping technique) to obtain stable statistics about
the estimates of fragility parameters. The different metrics described in the previous section
are then computed to measure the performance of the different fragility derivation approaches
(LS, MLE, and SSE) for the different sample sizes and to verify whether the results obtained
with this structural model confirm the generic findings from the trial inversion procedure. To
remain consistent with the issue of dependence on the value of β0, the results are compared
with those of the inversion procedure conducted for β0 ¼ 0.4 (see Figure 5). Finally, the
computed series of β, as well as the initial β0, are combined with βds ¼ 0.4 to account
for the uncertainty attributable to the definition of damage state.

As shown in Figure 5, all metrics vary with the number of simulations in accordance with
the theoretical inversion. In the case of the LS regression approach, satisfactory agreement
with the theoretical findings is found and the metrics estimated through the inversion pro-
cedure are still slightly better than those obtained from the numerical model. This observation
correlates with the assumption that the inversion procedure is based on a true power law with
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constant dispersion, thus representing the ideal case. On the other hand, for the SSE method,
the application results are slightly less consistent with the theoretical results, although still
quite similar. The reason for this slight discrepancy is thought to be because of the nonlinear
relation between the IM and drift, and also because of the nonuniform dispersion (Figure 4),
in contrast to the assumptions made when developing the theoretical results. Moreover, the
assumed threshold for the drift does not split all results into exactly two equivalent sets
(above and below the threshold), which is the ideal case for the MLE and SSE techniques.

Whereas the choice of an SDOF model to perform this application may initially appear
overly simple, it results from the observation that the conclusions from the inversion
procedure are drawn from a basic statistical analysis of the relation between two parameters
(i.e., EDP and IM) with no consideration of specific structural modeling. Therefore, these
results are applicable to any type of structure, whether an SDOF or a more elaborate multiple-
degree-of-freedom (MDOF) model, provided that the computed EDP can be expressed as a
power law with respect to the IM. The huge number of runs required to generate an estimate
of the true distribution (i.e., approximately 100,000, as explained above) prevents the use of
an MDOF model for this validation example.

CONCLUSIONS

Generally, the LS regression method is preferred for the derivation of fragility curves
because it requires far fewer time-histories to obtain an accurate fragility curve than the
MLE and the SSE approaches. The MLE and SSE methods converge more slowly than
the LS method when the derived fragility curves are compared with a true reference
curve. However, MLE is recommended when drifts are unknown or inaccurate (e.g., for
deriving collapse probabilities or when following earthquakes, observations are made of
damaged/undamaged buildings). The use of the inversion procedure has allowed the
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comparison of the estimated fragility parameters with the true parameters, thus providing
valuable information that could not be reached by simply studying the convergence of
the estimated parameters (i.e., confidence bounds evaluated through bootstrapping, for
instance). For this reason, the use of such an inversion technique is preferable to the bootstrap
approach, although it requires knowledge of the true model, which is generally not the case.
The joint study of the precision and accuracy levels enables the proposal of relations between
the coefficient of variation of the fragility parameters and the resulting error in terms of vul-
nerability assessment. Here, based on a trial inversion procedure and its validation through a
simple case study, we provide guidance regarding the level of performance that can be
expected, depending on the regression technique and the number of data points. The obtained
results can be applied to any kind of structure if the computed EDP can be expressed as a
power law with respect to the IM. However, the number of necessary calculations to obtain a
given confidence level must be considered as an initial estimate because it is calculated for an
idealized case. When considered in the context of performance-based earthquake engineer-
ing, this study has focused on the concerns related to the prediction of EDP given IM. The
results indicate that a relatively small error is introduced into the final results by the limited
number of analyses usually used. This can be easily corrected by performing more simula-
tions. However, this is only one component in the risk assessment chain; other stages appear
to contribute more to the overall uncertainty (e.g., prediction of damage state given EDP).
These stages should receive more attention in the future.
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