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Prediction of changes in landslide rates induced by rainfall

S. Bernardie, N. Desramaut, M. Azib & G. Grandjean
BRGM, Orléans, Frances.bernardie@brgm.jr

J.-P. Malet
Institut de Physique du Globe de Strasbourg, CNRS UMR EOST, Université de Strasbourg, France

ABSTRACT: This work focuses on thuse of a combined statisticc-mechanical approach to pres
changes in landslide displacement rates from observed changamfall amounts. The forecasting t
associates a statistldenpulse response (IR) model to simulate the changes in idedates by computing
transfer function between thaput signal (e.g. rainfall) and the output signal (e.g. displacésh and
simple 1D mechanical (MA) model (e.g. visco-plastic rheoldgyake into account changes in pore w
pressures. The models have been applied to forecast the displacatesraitrthe Sup&auze landslic
(South East France), one of the most active and instrumented Gaygsjide in the European AlpResult
indicate that the three models are able to reproduce the dimgiatpattern in the general kinematic reg
with very good accuracysuccession of acceleration and deceleration phases); at therysoaktem:
kinematic regimes such as fluidization of part of the landslidssnare not being reproducelis statemer
guantitatively characterised by the Root Mean Square Erravebat the model and the observati
constitutes however a robust approach to predictggmin displacement rates from rainfall or groundyv
time series, several days before it happdine variability of the results, depending in particular or
fluidization events and on the location of displacement data is discussed.

1 INTRODUCTION
Forecasting the displacement pattern of continyoastive landslides is a challenge for scientistd ask
managers. Changes in displacement rates over timenastly controlled by hydro-meteorological trigge
(e.g. rainstorms, rapid snowmelt) and the consdguerease of pore water pressures, and by geodgnam
triggers (e.g. earthquakes, changes in landslidengey and stress conditions, changes in matdréalogy).
Most of the landslide monitoring systems consistneéasurements of rain, pore water pressure and
displacements (van Asch et al., 2007).

The most used and reliable approach to forecadirteeof failure at single slope scale makes useisf
placement (and its derivative, velocity) observasioOther approaches consider the use of raimfiasholds
to analyse the relationship between the triggepregipitation and the movement. The threshold naayee
spond to a critical value over which the probapitt landslide occurrence is higher. Other thredhnbdels
are based on dynamic temporal analyses of theathpdttern, as the FLalR model (Sirangelo and s@zs
1992). However, the aforementioned methods do rplicitly consider observed and measured landslide
guantities, as they are based on a binary claasdit (e.g. occurrence or not of a landslide). Asialg the
temporal component of a landslide constitutes #nmsajor improvement in the development of foreogsti
methods, as suspended and dormant landslides cesabigvated in periods of heavy rainfall, whildiae
landslides may show phases of acceleration andetatien (Flageollet, 1996; Corominas et al., 2000)

The objective of this work is thus to present tppleation of a combined statistical-mechanical mdde
investigate multi-parametric times series of laidstisplacements, pore water pressures and raimfatder
to define possible causal inferences among thgdrgand the responses of the slope, and to ptedisiope
kinematics. Three combinations of models are teStkd.first model uses a statistical impulse respgiide
function (e.g. TEMPO; Pinault and Schomburgk, 2008)ich allows to predict the changes in the laidés|
rate by computing the transfer function betweerngnut signal (e.g. time series of precipitation) amdout-
put signal (e.g. displacements). The second magkd & simple 1D mechanical (MA) model which combine
a simple 1D infiltration model and a visco-plagtieology to take into account changes in pore wates-
sures. The third model (IRMA) is a combination lo¢ two previous ones; the IR model allows obtairthrey
groundwater level from the precipitation time sgri@nd the visco-plastic model is applied usingcthraput-
ed groundwater level time series to simulate tspldcements.
The performances of the different combinations oflgis have been evaluated in previous studies éBeimn
et al., 2011), and the results show that the 3 coatisins are complementary according to the differen
contexts, and should therefore all be considergzhrallel.
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2 DESCRIPTION OF THE FORECASTING MODELS
2.1 Impulse Response model — IR

The impulse response model (IR model) is basedgiokal approach based on the use of a black balemo
It is derived from TEMPO software (Pinault and Stiboairgk, 2006), originally dedicated to hydrogeobadi
and hydrogeochemical data analysis. It permitsré@gss data and model temporal series, with coripata
of transfer functions between input data and outiad&, based on signal process methods, inversidmg:
timization technics.

More precisely, this model reproduces an outputai@ using convolution product of an input sigidly
a transfer function G as described in the equdtidnThis function is based on impulse responsetfans.

S(n.dt) =G+E(®X) =YX ,6(.dt)-E((n— i+ 1).dt) (1)

where n = the discretized interval time, and ke dnder (length) of the impulse response.

The shape of the transfer functions chosen ingtidy is a convolution of a Gaussian function byean
ponential function. Three parameters, T the positibthe Gaussian, D, the width of the Gaussianlaritie
half time duration of the drainage are necessafyllp define this shape.

Moreover, as the studied landslides are locatea imountain context with the occurrence of snow, the
snowmelt is taken into account (Bernardie et &1,13.

2.2 Mechanical viscoplastic model — MA

A 1D infinite viscous model is considered from Hger et al. (2009). In this approach, the model rassua
pre-existing slip surface, above which the slidingss moves as a rigid body. It considers a visstiplae-
havior of the landslide. The landslide is assuneelet a translational infinite slide with constaepth h and
constant slope a.

It takes directly into account the daily effectiranfall intensity (rainfall and snowmelt, as defthin para-
graph 3) and the dissipation of the excess poid-flith using a simple consolidation equation.

The momentum balance equation can be written dveslope direction as:

T—[c+ (on— Pw(t)).tangp| = m.a(t) + %v(t) (2)

wheret = the destabilizing shear stresg;= normal stressp = friction angle; ¢ = cohesion ; m = mass of the
landslide;n = viscosity; d = thickness of the shear zongt)p= pore water pressure; a(t) = acceleration and
v(t) = velocity.

With the assumptions of flow parallel to the slepeface, the pore water pressure is defined as:
Pw = 2(t)Yw-cos® a 3)

where z(t) = position of the groundwater level gpd specific weight of water. Changes in groundwéder
el have been taken directly proportional to theeffe rainfall intensity:

dz = Laint/1000/N 4)

where }uinsan = effective rainfall in mm/m2/day and n = porosity
The dissipation of the excess pore water pressutigel saturated layer is governed by the Terzagimésdi-
mensional consolidation theory, as described irfallewing relationship:

€Pw = €Pwo- e~t/Tv %)
where epo = initial excess pore water pressure and Time factor controlling the dissipation timetbé ex-
cess pore pressure defined as:

Ty = 22 (6)

mCv
where G = consolidation coefficient.
Prediction of the displacement is obtained by swihe equation 3, with using optimization functpn

permitting to optimize some geometry parameteranth d), and some material propertips¢@ n, nand T,
parameters).
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2.3 Coupled statistical-mechanical (IRMA) model

This model combines the IR and MA models. The IRJatas used to simulate groundwater level from the
rain and temperature observed time series; them#ahanical part of the MA model is used to comphée
displacement rate of the landslide directly frora tomputed groundwater levels transformed in patew
pressures.

3 DESCRIPTION OF THE SUPER-SAUZE LANDSLIDE

The studied landslide is located in the Frenchlsdups in the Barcelonnette Basin, on the left bahihe
Ubaye River. The Super-Sauze landslide is a cootisly active mudslide, within the Callovian-Oxfaadi
black marls. The mudslide extends over a horizasitthnce of 850 m, and occurs between an elevafion
1740m and 2105m with an average slope of 25°. Gtaé tolume is estimated at 750 008, m

From a hydrological and geotechnical viewpoint, tedslide is structured in two vertical units: first
unit (5 to 10 m thick) is a moderately stiff andrégpermeable material, while the second unit (vaithhaxi-
mum thickness of 10 m) is a stiff and impervioustenal (Malet and Maquaire, 2003). Both materials i
volve low plasticity, intensely fissured reworkeadk marls with a sandy-silt matrix.

Deformation occurs as a consequence of a riseeopéinennial groundwater table, resulting in theetiev
opment of positive pore pressures in the movingenat Groundwater fluctuations are controlled batev
infiltration both in the soil matrix and in largénkematical cracks and fractures as well as rechioge the
torrents bordering the landslide (Malet et al., 2@B5Montety et al 2007).

The contact between the active mudslide and th#estallslopes comprises a shearing zone of a feav m
ters width characterized by tension cracks.

4 CALIBRATION OF THE MODEL

The objective of the model application is to prédiaily displacement from the precipitation timeisg
Therefore, the calibration procedure has been paddron a daily basis by optimizing model performance
over several sizes of time windows. The used opation algorithm is the SQP method (Sequential
Quadratic Programming) (Boggs and Tolle, 1995) Wiscadapted to the optimization of non-linear dyia
systems. Several parameters have to be optimizédhis procedure:

- For the IR model, for each type of input of thedal (i.e. rainfall, snow melt and source) the paeters
T, D andL are optimized. The respective contributions oséhmputs components to the response of the mass
movement, as well as the coefficienare also optimized.

- For the ME model, the choice of the parameterdeaooptimized depends on the knowledge of the
parameters for the specific site. For instancehia tase of Super-Sauze landslide, six parameters ar
optimizedg p, 1, n, T, andh and the other parameters are fixed.

- For the IR-ME model, the same parameters thathfiR model are optimized, including also the,,
and the adequate parameters of the mechanicabighee ME model), so in this cagep and.

The performance of the model is evaluated withNBash and RMSE (Root Mean Square Error) statistical
criteria.

5 APPLICATION OF THE METHODOLOGY: PREDICTION OF FLUIBFICATION EVENTS

In order to test the ability of the methodology lie used in an operative alert system deliverindydai
warnings in nearly real time, a prediction procedbas been developed and tested. The method has bee
applied as if the new data were received each mgrand treated in real time, on a daily basis. ldefar
each day, the “new” received data are added tohiserical time series. The models are calibrated a
presented in the previous paragraph, over time evisdwith different widths. The optimal calibratianthen
used to predict the displacement for the thre@Wahg days, based on the meteorological data clethieree
next days, assumed to be meteorological predictibins procedure is then repeated for the next Wit a
complete new calibration, and so on.
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Figure 1. Predicted and observed cumulated displants, and corresponding RMSE

The daily predicted displacements are compared thé@hobserved displacements (Fig. 1 and Fig.2). With
this approach, the IR model provides the best ptedidisplacements; the IRMA model overestimates th
displacement for the second part of the curve,taedVIA model slightly underestimates the displacetsie
These results suggest that the 3 models are adamppeddict the movements for a period of 3 follogvdays
in a normal regime.
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Figure 2. Predicted and observed cumulated displants, and corresponding RMSE, for 2 instrumenited sn the landslides (a,
SAZ1, b, SAZ2)

During the period preceding the occurrence of aiftation event the model is not able to reprodinee
displacement with a good accuracy anymore. IndgedRMSE criterion computed on the 3 predicted days
largely increases, as seen on Figure 3, possiligating an important change in the behaviour &edkine-
matic regime of the landslide. Moreover, the lamggrease of this criterion appears only before dbeur-
rence of a flow. This interesting result suggektt the RMSE variation could be a good indicatothef oc-
currence of a fluidization event several days keefbe occurrence of the event itself
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Figure 3. Predicted and observed cumulated displants

It is then essential to find rigorous thresholds i@rning the occurrence of a catastrophic fluidorat
event. The two first proposed thresholds are basetthe normal law distribution of the RMSE valuesth
the use of a threshold equal to the mean of the R8s three standard deviation values of the RMSE
and the second ongdtequal to mean of the RMSE plus one standard tiemigalues of the RMSE:

tla = mean(x) + 30, (7
t1b = mean(x) + oy 8)

A third threshold is defined, based on the distidyubf the sorted RMSE. The threshold is then chage
the limit of curve between the low and the highuesl, at the inflexion point of the distribution.

These thresholds are proved to be efficient toiptrélde occurrence of the fluidization for the stuzhse. .
However, the distributiothreshold based on the inflexion point does notnstebe robust enough to be used
in an early warning system. It is highly dependentthe length of the observed dataset .Therefoge thi

threshold is not considered further.
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Figure 4:Predicted RMSE and thresholds for the trRiehfor the 2001-2006 period

The prediction capabilities of the different modats proved to be fairly good in term of time ofajeac-
cording to the selected threshold (Tablel), exoef#w occasions, mostly on the slower part of ldrelslide
(SAZ1), where the fluidification event was less orant in 2012. Otherwise, the delay is similathe crite-
ria derived from velocities, but our method hasddeantage to be also based on other measures)grtaki

early warning system potentially more robust.

Table 1. Delay of alert before the occurrencehefftow (in day)

Delay in Day 2000 flow 2006 flow 2012 floBAZ1) 2012 flow (SAZ2)
tla tlb tla tlb tla tlb tla tlb

Observed velocity 11 11 7 19 4 8 9 14

Model IR 11 11 3 11 - 2 6 12

Model MA 11 11 2 11 2 8 5 11

Model IRMA 8 9 10 19 - 5 4 9
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6 DISCUSSION AND CONCLUSIONS

The capability to predict the complex displacemgattern (acceleration, deceleration) of landslglan im-
portant issue for early-warning. Most of the cutralarm systems are based on simple criteria, ascumu-
lated precipitation thresholds, which can providisé alarms and make them therefore unreliablpdople.

A methodology has therefore been tested to conieteorological observations with statistical and me
chanical models to simulate the kinematics of lédds in their normal regime. The three proposedi@
demonstrate their capability to reproduce the lhdelsnovements in ordinary situations, but not dgriluid-
ification events. Hence, these changes in modetlagacities of the models appear to be some gottiar
to predict the acceleration of the landslides. lkenmrnore, the use of models based on different appesa
either statistical or mechanical, ensures theirgementarity.

One limitation of the model is that due to condisan mountainous context and the dynamic of tHeabb
of study, most of the data might require some megssing. Snow depth measures are often lacking and
snow accumulation and additional water input dusrtow melting should therefore often be assessgedba
on empirical relationships (e.g. solution of degdeg adopted in our tool). Meteorological obserwadi and
predictions could also correspond to a station Wwismot located close to the monitored landslide.

Another question raised by the approach is thecsefe of the most pertinent thresholds. The use of
statistical criteria, even if objective and robusiuld be dependent on the length of the datadet.uBe of
other detection technics, such as the studied astdilted inflexion point, might be somewhat subjextand
highly dependent on the historical data.

The proposed tool has proven to be valuable foc#se study, with the aforementioned assumptiore, a
for the specific studied period, during which thifegdification events happened. In order to extehd
methodology and to make it a potential generic waysystem, it would however be necessary to tesh i
other sites to assess, for example, the potemtfhlence of other geomorphological contexts or alim
patterns (such as the absence of snow) on thatyadiche methodology.

This type of approach, quite innovative, would heelgather sufficient information from differentusoes
of information (monitoring at the slope, model slations) in order to find out if and when a sloe i
approaching its collapse and to reduce the unoédai (e.g. heuristic experience of the expertthe
assessment.
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