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Abstract This article presents a method for the development of vector-valued fragility

functions, which are a function of more than one intensity measure (IM, also known as

ground-motion parameters) for use within seismic risk evaluation of buildings. As an ex-

ample, a simple unreinforced masonry structure is modelledusing state-of-the-art software

and hundreds of nonlinear time-history analyses are conducted to compute the response of

this structure to earthquake loading. Dozens of different IMs (e.g. peak ground acceleration

and velocity, response spectral accelerations at various periods, Arias intensity and vari-

ous duration and number of cycle measures) are considered tocharacterize the earthquake

shaking. It is demonstrated through various statistical techniques (including Receiver Oper-

ating Characteristic analysis) that the use of more than oneIM leads to a better prediction

of the damage state of the building than just a single IM, which is the current practice. In

addition, it is shown that the assumption of the lognormal distribution for the derivation

of fragility functions leads to more robust functions than logistic, log-logistic or kernel re-

gression. Finally, actual fragility surfaces using two pairs of IMs (one pair are uncorrelated

while the other are correlated) are derived and compared to scalar-based fragility curves us-

ing only a single IM and a significant reduction in the uncertainty of the predicted damage

level is observed. This type of fragility surface would be a key component of future risk
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evaluations that take account of recent developments in seismic hazard assessment, such as

vector-valued probabilistic seismic hazard assessments.

Keywords unreinforced masonry· uncertainties· fragility functions · ground-motion

parameters· intensity measures· earthquake risk evaluation

1 Introduction

Seismic fragility analysis is inherently probabilistic aseach of its constituents (e.g. hazard

level, material properties, structural model and limit-state definition) is uncertain. The uncer-

tainties can be split into two categories: aleatory (variability), which are inherently random,

and epistemic, which are consequences of lack of knowledge.Most engineering applications

are affected by both types of uncertainties. Although some researchers suggest that a clear

distinction must be made between them (e.g. Paté-Cornell,1996), it is often difficult to de-

termine whether an uncertainty is aleatory or epistemic from a modelling point of view (Der

Kiureghian and Ditlevsen, 2010). Practically speaking, this distinction is rather a choice of

the modeller. Separating the uncertainties into these two categories helps us to determine

which ones can be reduced (Der Kiureghian and Ditlevsen, 2010).

Two main sources of uncertainty, namely the variability in the ground motion and me-

chanical properties of the target building are considered in the following. A literature review

shows several attempts at taking into account this random character on seismic response

(e.g. Kwon and Elnashai, 2007; Ellingwood, 2007; Fragiadakis and Vamvatsikos, 2010).

Kwon and Elnashai (2007) investigated the effects of strong-motion variability and random

structural parameters on vulnerability curves of a reinforced concrete (RC) building and

they conclude that the effect of strong-motion variabilityis much more important than the

randomness in material parameters. Fragiadakis and Vamvatsikos (2010) introduced a static

pushover-based method to estimate the uncertainty in seismic performance of a nine-storey

steel-frame structure due to the variability of material properties.

Masonry constructions (the focus here) exhibit more variability in their mechanical

properties compared to RC and steel frame structures. It is thus expected that such a rank-

ing obtained for RC or steel structures cannot be applied directly to masonry constructions.

This belief is supported by two recent studies that seek to assess the relative importance of

the various sources of uncertainty in vulnerability asssessment for masonry buildings: seis-

mic demand, structural capacity and limit-state definition(Cattari et al, 2010; Pagnini et al,
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2011). They find, based on the capacity-spectrum approach, that variability in the structural

capacity is the main contributor to the global dispersion ofthe fragility curves.

The estimate of the uncertainty accompanying calculated fragility can be integrated in a

risk assessment analysis. As an example, Ellingwood (2007)proposed such a coupled risk

assessment analysis. Estimates of the annual probability of exceeding pre-defined perfor-

mance levels can then be computed.

On the other hand, a considerable source of epistemic uncertainty in seismic risk anal-

ysis is present in the construction of fragility curves. A fragility curve, by definition, repre-

sents the conditional probability of reaching a given damage state for a given hazard level

characterized by one intensity measure (IM, also known as a ground-motion parameter).

The standard method to develop fragility curves neglects the uncertainty in the estimated

damage caused by the use of a single IM, which cannot represent all characteristics of a

ground motion. Recently, some efforts have been made to model the effect of several IMs

on structural damage. Baker and Cornell (2005) proposed a vector-based IM made of two

parameters: spectral acceleration (SA) and epsilon, whichis defined as the difference be-

tween the logarithms of observed SA and predicted SA at a given period. They showed that

considering two IMs instead of one can improve the collapse probability calculation for a

multi-degree-of-freedom structure. Kafali and Grigoriu (2007) used an alternative IM ex-

pressed by two parameters: earthquake magnitude and source-to-site distance. Rajeev et al

(2007) used SA at the first (T1) and second eigenperiods (T2) of the structure as the IMs.

With reference to an example RC-frame structure, the accuracy of prediction of the seis-

mic risk using the considered vector IM versus a conventional scalar IM is presented. They

showed that an effective choice ofT2 leads to a better estimate of the seismic risk than that

obtained employing a scalar IM consisting of SA atT1 only, while reducing the associated

dispersion in the estimate. However, for the studied example structure, the reduction is neg-

ligible in light of the effort required in switching from a scalar to a vector IM. Seyedi et al

(2010) went the extra step in developing fragility functions for various damage states ex-

plicitly involving more than one IM (i.e. fragility surfaces) for an eight-storey RC building

using nonlinear time-history analysis. Koutsourelakis (2010) introduced a Bayesian frame-

work to derive vector-valued fragility functions from the limited data available. He used a

statistical-learning model based on logistic regression to assess the relative importance of

different IMs: peak ground acceleration (PGA), root-mean-squared (RMS) intensity, Arias
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(1970) intensity and the power of the excitation spectrum ata period close to that of the

structure.

The main goal of the present article is to introduce a complete framework to develop

vector-valued fragility functions characterizing the physical vulnerability of buildings against

earthquakes. A stochastic approach based on the results of several hundred nonlinear time-

history analysis is proposed. The selected IMs should be strongly correlated to the seismic

response of the target structure. To this end, the damage level of an unreinforced masonry

(URM) building is evaluated by the use of nonlinear numerical calculations. The whole

structure is modeled by specific macro-elements representing the seismic behaviour of ma-

sonry panels. The maximum transient displacement at the topof the structure is used as the

damage indicator. A statistical analysis is proposed to evaluate the correlation between dif-

ferent IMs and their correlation with the structural response. For each structural typology,

a specific vector-valued IM can thus be defined. A method for deriving fragility surfaces

is then proposed for the studied structure. Note that the derived surfaces are not proposed

for use in practice because the example structure is a small box-type building without the

geometrical complexity of real buildings. However, the presented method and discussion

provide new insights on risk analysis of masonry structures.

2 General framework

The method described in this paper mainly relies on the exploitation of numerous nonlinear

dynamic analyses because their use, as opposed to pushover curves and response spectra, al-

lows study of the influence of many IMs. At first, a structural model of the studied building

is considered and characterized. Modal analysis is performed to identify dynamic proper-

ties of the model. Damage limit states are determined through pushover analysis. Several

variants of the structural model are also considered in order to account for variability in its

mechanical properties. Then the model is subjected to many accelerograms that have been

selected based on the seismotectonic context of the region of interest.

The results enable the study of the effects of many ground-motion characteristics on

the building response, using various data mining techniques, such as: the variable cluster-

ing method, comparison of standard deviations and ROC (Receiver Operating Character-

istics) analysis. The performance of single IMs can then be compared to combinations of

two (or more) IMs, with respect to their ability to reduce thedispersion in fragility func-
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tions. Fragility curves, based on a lognormal distributionand a hybrid parameter, can finally

be represented as fragility functions (or surfaces) with respect to two IMs. The proposed

method is applied here, as an example, to a two-storey URM building. Each step is detailed

in the following sections.

The proposed method aims to progress beyond the state of the art in the following ways.

The selection of adequate couples of IMs is based on a rigorous procedure and not solely

on linear correlations (e.g. use of ROC analysis and creation of clusters of variables). The

generally strong correlation between IMs had not been addressed in previous works (e.g.

Seyedi et al, 2010). This issue is tackled thanks to the introduction of confidence bounds.

Besides, a review of the various probabilistic models that were recently proposed is made

at the end of the paper, and the efficiency of different modelsis examined by considering

the damage estimates obtained from the dynamic analyses. Finally, a set of vector-valued

IMs are introduced. The use of a combination of these IMs enables the development of

robust and analytical fragility functions that take the usual form of fragility curves and can

be incorporated directly into existing seismic risk evaluation procedures.

2.1 Test structure

A numerical model was developed based on the results of an experiment at the University of

Pavia (Magenes et al, 1995) on a real-scale building. The exact geometry of the real build-

ing is considered, while the mechanical properties displayed in Table 1 were either taken

from Magenes et al (1995) (i.e. shear and compressive strength) or selected from common

features of brick masonry and calibrated using the experimental pushover curve. The struc-

ture is 6.4m high, with plan dimensions of 6×4.4m. The mock-up consists in a single-cell

building, without any internal walls. As axial forces play acrucial role in the strength of the

masonry, concrete blocks were added on each floor to account for live loads: this is trans-

lated into the model by a vertical load of around 250kN on eachfloor. The numerical model

was built using the TREMURI code (Lagomarsino et al, 2006), which allows a masonry

wall to be discretized into several components (vertical elements, named ‘piers’, horizontal

ones, named ‘spandrels’, and rigid zones), through an equivalent-frame approach (see Fig-

ure 1). The behaviour of the masonry panel is represented by amacroelement developed

by Gambarotta and Lagomarsino (1996), and later improved byPenna (2002) and Galasco

et al (2006). This nonlinear macromodel takes into account the common in-plane damage
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mechanisms of a masonry panel, namely: shear failure (sliding or diagonal cracking) and

bending failure (tensile and compressive cracking). The out-of-plane failure mechanism of

wall is not taken into account. Even though out-of-plane behaviour may play an important

role in local damage, this mechanism is commonly neglected when the overall behaviour of

a structure is being considered (Calderini et al, 2009).

[Fig. 1 about here.]

[Table 1 about here.]

The building tested by Magenes et al (1995) was subjected to acyclic lateral loading

on each of the two façade walls: the façade with the door (referred as the ’door wall’, see

Figure 1) is disconnected from the transverse walls in the experiment, thus allowing focus on

the in-plane mechanism of a masonry panel. It was decided to model the same façade wall

to calibrate the model. Therefore, pushover analysis on the‘door wall’ was compared to the

results of the experiment and a good agreement, in terms of initial stiffness, maximum shear

strength and yield displacements, between the model and thebehaviour of the tested building

was found (see Figure 2a). The experiment carried out by Magenes et al (1995) consisted

of a series of cyclic loadings of increasing amplitude: therefore only the extrema of each

cyclic loading have been used to compare to the monotonic pushover analysis performed

on the TREMURI model. Finally, the actual pushover curve forthe whole building has

also been computed using the results from the single wall analysis (Figure 2b). A force

distribution according to the first modal shape has been used, whereas the pushover analysis

on the façade wall is based on a uniform force distribution (i.e. in the same conditions as the

experiment).

[Fig. 2 about here.]

Modal analysis of the 3D model gives the first mode along the façade of the build-

ing (referred to as theX-direction), with a periodT = 0.149s. Higher modes along the

X-axis (torsion and opposite-floor displacements) are observed with periods around 0.05s.

Pushover analysis of the building in theX-direction enables estimation of the ultimate dis-

placement (du = 18.8mm) as well as the elastic-limit point (dy = 5.6mm for a shear force of

210kN), using an idealized bilinear curve that has been fitted to the actual pushover curve

(see Figure 2b). The bilinear curve is calculated based on the Eurocode-8 criteria for the

computation of ULS (ultimate limit-state) and DLS (damage limit-state).
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The evaluation of damage states for the complete building isnot trivial, as the criteria

used to define the local damage level of a macroelement cannotbe simply extrapolated to

the global level. Numerous damage indicators are availablein the literature, such as indices

based on hysteretic-energy dissipation (e.g. Park and Ang,1985), the determinant of the

stiffness matrix or the maximum strain at various locationsand floor displacements. The

maximum transient displacement at the top of the structure is used in the following be-

cause its evaluation is straightforward and many correlations between floor displacement

and damage states are available. Milutinovic and Trendafiloski (2003) propose relations to

link top displacementsdy anddu to the EMS-98 (Council of Europe, 1998) damage scale

(see Table 2). The studied structure has a predominant first mode, which corresponds to a

uniform distribution of deformations along the building height. The pushover analysis has

been carried out with an adaptive scheme based on the first modal shape, thus ensuring that

the damage thresholds estimated from the static analysis and based on top displacement

are adequate proxies for the floor drifts and a relevant indicator for both local and global

damage. Still, it is noted that the choice of a given damage indicator may affect the results

(e.g. identification of optimal IMs), as displacement-baseddamage measures are strongly

correlated with ‘peak’ IMs (e.g. PGA and PGV), whereas energy-based indexes are more

influenced by IMs representing the energy content of the signal (e.g. Arias intensity or cyclic

damage parameters).

[Table 2 about here.]

Once the reference building model has been developed, the uncertainties in the mechan-

ical properties of the brick masonry can be taken into account by deriving a set of variants

with respect to the basic model. These variants are developed by randomly sampling mate-

rial properties, which are assumed to follow a normal distribution. These distributions are

defined by using the mean values in Table 1 and by setting coefficients of variation between

10 and 20% (Rota et al, 2008, 2010). For each parameter, bounds (set at±2σ ) prevent gen-

eration of unrealistic buildings. Twenty variant models are generated out of the parametric

distribution. A Latin hypercube sampling scheme is used to capture the possible combi-

nations with a reduced number of models. Thus, with 20 models, intervals of 5% can be

defined and, for each parameter, an aleatory interval pickedto sample the value for a given

model. This procedure results in a total of 21 structures (one basic model plus 20 variants):
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for each of them, a pushover analysis is performed to identify the boundaries of the EMS-98

damage states, which are specific to each variant.

2.2 Nonlinear dynamic analyses

Dynamic analyses of the models require a large set of strong-motion records to build ro-

bust fragility functions. A dataset of 777 accelerograms has been assembled, using both

a sample of records from the European Strong-Motion Database (Ambraseys et al, 2004)

and synthetic signals generated using the non-stationary stochastic procedure proposed by

Pousse et al (2006). The records correspond to shallow crustal earthquakes of magnitude

(Mw) between 4.5 and 6.5 and epicentral distances between 10 and 100km . The signalsalso

sample the five Eurocode-8 soil classes to account for local site variability. The consistency

between real records and synthetic accelerograms has been checked for a wide selection of

ground-motion parameters: the overall distribution of thetwo datasets (mean and standard-

deviation) shows good agreement, except for duration-related IMs, which have a tendency

to be underestimated in the synthetic signals used here (Pousse et al, 2006).

The selected accelerograms are then applied at the base of the structure, along theX-

direction. The number of simulations has been optimized andthe dataset of 777 accelero-

grams divided into 37 groups of 21 records each. Thus, withineach group, it is possible to

randomly assign each accelerogram to one of the 21 models. Itis worth noting that the 37

groups were selected by ranking all accelerograms with respect to PGA (IM selecteda pri-

ori to represent the ‘damage potential’ of the signal). This ensures that each group contains

comparable signals, and as a result it can be assumed that all21 models are subjected to

accelerograms with similar intensity levels.

Finally, all nonlinear dynamic analyses are carried out andthe maximum transient dis-

placement at the top of the building is used to identify the different damage states, based

on Table 2. The results of the analyses show that 63% of the simulation runs did not dam-

age the structure, while about 17% of them induced collapse.Intermediate levels (slight to

very heavy damage) are clearly under-represented: only 2% of the simulations stopped in

the ‘slight damage’ state, 5% in ‘moderate’, 6% in ‘extensive’ and 7% in ‘very heavy’. As a

result, it appears that EMS-98 intermediate damage states are too narrow. The five damage

states are thus merged into only two. As proposed by recent studies (Crowley et al, 2011),

damage states from ‘slight’ to ’extensive’ are considered as ‘yield’; the damage states ‘very
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heavy’ and ‘collapse’ are also merged into one (near-collapse/collapse), as the numerical

simulations near the ultimate deformation limits of the macroelements are usually less ac-

curate and there is no benefit in setting a clear boundary between these damage states.

2.3 Studied IMs

For each of the accelerograms used in the simulations, fifty IMs are calculated, ranging from

PGA to cyclic and duration parameters and elastic response spectral ordinates. One useful

approach to present these parameters is to rank them according to their cross-correlation. To

do this a variable clustering technique is performed using the TANAGRA software (Rako-

tomalala, 2005). It consists of a succession of principal component analyses and the merging

of the parameters with strong correlation into distinct class-variables, called ‘clusters’. This

procedure is helpful in reducing the many IMs to only three orfour less-correlated parame-

ters that are representative of the range of studied IMs (seeTable 3). For each accelerogram,

the ratios PGA/PGV and PGA/SA(0.15s) are also computed, as such ratios roughly charac-

terize the frequency content of the signals.

[Table 3 about here.]

2.4 Receiver Operating Characteristic (ROC) analysis

The efficiency of each of the IMs for the prediction of the damage state (none, yielding or

collapse) of the structure must be evaluated. A convenient way of measuring the accuracy of

a ‘predictor’ is to perform a ROC analysis on the data (e.g. Fawcett, 2003). This approach

has previously been applied to earthquake risk evaluation by Koutsourelakis (2010). For a

given IM, a set of data for ‘model training’ (e.g. development of a fragility model based on

the chosen IM, which will then be compared to a second datasetin the ‘validation’ phase)

is used. The first data set is used to build a fragility curve for a given damage state, based

on a lognormal distribution, using the procedure describedby Shinozuka et al (2000). This

approach consists of fitting the damage probability to a cumulative lognormal density func-

tion, the curve’s parameters being estimated through a maximum-likelihood method, as the

outcome of a Bernoulli experiment. Then, using a second set of (validation) data, a confu-

sion matrix is built for different thresholds of damage probabilities. First, for each data point
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xi, the damage probability (for instance, yielding or collapse) is evaluated using the previ-

ously defined lognormal distribution:pi = P(di ≥ DS|xi). Then, for a range of probability

thresholdsp0 varying from 0 to 1,p0 and pi are compared: ifpi ≥ p0, then the predicted

damagedi is 1, and−1 otherwise. The predicteddi are compared to their actual value to

assess whether the damage state is accurately estimated or not. Thus, for each value of the

thresholdp0, all data points can be classified into four possible combinations, which form

the so-called confusion matrix:

– predictedd = 1 and actuald = 1: true positive or ‘hits’,

– predictedd = 1 and actuald =−1: false positive or ‘false alarms’,

– predictedd =−1 and actuald = 1: false negative or ‘misses’,

– predictedd =−1 and actuald =−1: true negative or ‘correct rejections’.

It can be observed that the most efficient IM will be the one that minimizes both ‘misses’

and ‘false alarms’. Two measures that assess the quality of aprediction model are: sensi-

tivity, which is the ratio of the number of hits to hits and misses, and specificity, which

is the ratio of the number of correct rejections to correct rejections plus false alarms. The

ROC curve is then constructed by plotting the different values of these ratios obtained for all

thresholdsp0, the vertical axis being the sensitivity and the horizontalone the complement

of specificity (Figure 3).

[Fig. 3 about here.]

One way to read these ROC curves is to check if they are close tothe(0,1) corner, which

is the sign of a satisfactory model. In contrast, the 45◦ line represents a perfectly random

predictor and any ROC curve near that region implies a mediocre prediction model. As a

result, whereas the shape of a curve cannot be easily exploited, a commonly-used indicator

is the area under the ROC curve (AUC). AUC close to unity denotes an efficient model,

whereas values close to 0.5 indicate little advantage over chance. However, it must bekept

in mind that AUC is useful in evaluating the global performance of a parameter but two ROC

curves may overlap locally. It has been proven that AUC is equivalent to the probability that

this model will rank a randomly chosen positive instance (e.g. damage occurrence) higher

than a randomly chosen negative instance (e.g no occurrenceof damage) (Fawcett, 2006).
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2.5 Performance of single IMs

AUC values are computed for each of the fifty IMs regressed over a lognormal distribution,

and for each of the two considered damage states (yielding and collapse), to assess which

ones are the most useful in predicting the effect of earthquake shaking for this structure.

Since no extra data are available to compose a validation set, a ten-fold cross-validation is

performed, which is a commonly-used technique when data arelimited. Two equal-sized

bins are randomly formed out of the data (777 simulation results) and the probability model

is built based on one bin, while the other is used to evaluate the model and perform the ROC

analysis. This process is repeated ten times and the averagevalue of AUC is used to obtain

a performance indicator for each of the fifty IMs, for both damage states independently (see

Table 4).

[Table 4 about here.]

A first comment to make is that the AUC are generally very high (close to unity), with

only slight differences (around one decimal) between the IMs. The standard deviation of the

lognormal distribution are also shown as a measure of the model dispersion, to demonstrate

that the dispersion of the lognormal distribution (e.g. theslope of the fragility curve) does

not totally determine the predictive power of the model. Forexample, Arias intensity leads

to a fragility model with a fairly high standard deviation, even though its AUC is one of the

highest.

It can be observed that one IM that is the best for both damage states cannot be found.

Acceleration-related parameters (e.g. PGA, A95, ARMS, ASIand cyclic damage param-

eters) and response spectral accelerations at short periods (up to 0.25s) are efficient in

predicting yielding, whereas, parameters like PGV, PGD, absolute durations and spectral

accelerations at longer periods are more efficient for the prediction of collapse. It is also

worth noting that the two groups of IMs that are emerging fromthe ROC analysis are more

or less the same as those in clusters A and B identified by the variable clustering analysis

performed above. This observation reinforces the idea thata combination of two IMs may

improve the prediction of damage, as the first could be usefulin predicting slight damage,

and the second more efficient for higher damage states.

The spectral accelerations at the two periods of interest for the studied structure (0.15s

and 0.05s) are useful for the prediction of damage, especially foryield, yet these parameters
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are outranked by SA(0.25s) and SA(0.5s), even for yield. This may be explained by the

rapid loss of initial stiffness of the masonry model, even for light damage. This issue has also

been raised by Bommer et al (2004), where the authors proposeto use a spectral acceleration

averaged over a period interval of width several times the initial eigenperiod.

2.6 Linear combinations of two IMs

In the previous section, ROC analysis showed that two IMs might lead to more accurate

assessment of both yield and collapse. For slight damage, anappropriate IM (IM1) could

be chosen from cluster A (see Figure 3), whereas an IM (IM2) selected from cluster B

should accurately predict heavier damage. A hybrid IM is, therefore, proposed using a linear

combination of IM1 and IM2:

logXi =
α1

α1+α2
logIM1i +

α2

α1+α2
logIM2i (1)

whereα1 andα2 are regression coefficients. This new parameter can now be considered as

a single variable and the probability of reaching or exceeding a given damage state given X

can then be expressed via the usual lognormal distribution (Shinozuka et al, 2000):

P(damage≥ DS|X) =
1
2

[

1+erf

(

logX−µ
σ
√

2

)]

(2)

whereµ is the mean,σ the standard deviation,DS damage state anderf is the error function.

Then, by expressing X as a function of IM1 and IM2 and by introducingβ1 =
α1

(α1+α2)σ
√

2
,

β2 =
α2

(α1+α2)σ
√

2
andβ0 =

µ
σ
√

2
, the following relation is obtained:

P(damage≥ DS|IM1, IM2) =
1
2
[1+erf(β1 logIM1+β2 log IM2−β0)] (3)

Finally, the coefficientsβi are evaluated through the maximization of the following like-

lihood function:

L =
n

∏
i=1

Pi
yi(1−Pi)

1−yi (4)

whereyi is the so-called binomially distributed variable and equals unity when the damage

state is reached, and null otherwise andPi is the probability of reaching or exceeding the

damage state given(IM1 i, IM2i).
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Using the relations presented above, several combinationsof IMs are tested and these

new fragility models are evaluated through a ROC analysis, using again a ten-fold cross-

validation scheme. The results obtained for some pairs of IMs are presented in Table 5.

[Table 5 about here.]

Comparing the AUC found for two IMs (Table 5) with those in Table 4 shows a gen-

eral improvement in the prediction of damage states. Also, the standard deviations have

been reduced for both damage states, in comparison to singleIM models, thus showing the

performance of multivariate fragility functions in terms of uncertainty reduction. It is now

possible to accurately predict both damage states (yield and collapse) at the same time, by

using a combination of IMs from clusters A and B. Nonetheless, it is not strictly correct

to speak of ‘hybrid’ parameters (e.g. a function of two IMs) because the coefficients in the

linear combination are specific to each damage state, depending on the relative influence

of each parameter. It is thus preferable to refer to them as vector-valued parameters, whose

scalar components can be linearly combined in a regression model.

Table 5 indicates that the optimal combination of IMs would be the couple SA(0.25s)-

SA(0.5s). However, the spectral acceleration at the first vibration mode (i.e. 0.15s) could

also be used, as this choice seems more in line with the structural study. One also has to keep

in mind that other considerations can influence the choice ofthe IM, such as its ability to be

predicted via GMPEs (e.g. Douglas, 2012). It is assumed thatthe very slight differences in

AUC values displayed in Table 5 are not significant; therefore, any couples of IMs presented

in this table can be considered for use, as they are at least asefficient as any single IM (see

Table 4).

Finally, it is interesting to observe that some parameters that have little effect on the

structural response when considered alone [e.g. the ratiosPGA/PGV or PGA/SA(0.15s)]

can have a positive impact on the prediction model when combined with a second IM. For

example, the couple (PGV, PGA/PGV) has a greater AUC (Table 5) than just PGV or PGA

alone (Table 4). Kwon and Elnashai (2007) also stress the role of the PGA/PGV ratio as an

indicator of the dynamic characteristics of ground-motion, since impulsive records with a

low PGA/PGV ratio are usually characterized by high energy contents and low frequencies.
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3 Development of bivariate fragility functions

Considering Table 5, there is a wide choice of adequate couples of IMs to use as variables

in fragility functions. The following section details the development of fragility functions

and their implications in terms of dispersion reduction, through two distinct examples that

highlight the importance of accounting for the correlations between IMs.

3.1 Case of uncorrelated IMs

Since the couple (PGV, PGA/PGV) is efficient and these two parameters are almost orthogo-

nal (correlation coefficient equal to−0.1548), they are chosen for the first example fragility

surface (see Figure 4), using the formulation of Equation 3.The regression coefficients ob-

tained through the likelihood method are given in Table 6.

[Fig. 4 about here.]

[Table 6 about here.]

The choice of two parameters that are uncorrelated or almostorthogonal is convenient,

as it allows evaluation of the vulnerability on the whole 2D space defined by PGV and

PGA/PGV, even in the corners that contain high values of one parameter and low values of

the second. To study the effect of the second parameter, single-variable fragility curves are

plotted by keeping the second IM constant and then compared with a fragility curve built by

considering only the first parameter (see Figure 5).

[Fig. 5 about here.]

First, it can be noticed that the use of a second parameter (here the ratio PGA/PGV)

induces a steady increase in the damage probability. For instance, in the case of small PGVs

(PGV around 0.05m/s), the single-variable curve shows almost zero probability of damage;

however, the fragility surface indicates that if this signal is accompanied by high accelera-

tions (e.g. high PGA/PGV ratios around 20 or 30), then there is actually a non-negligible

probability of damage (around 0.25). A crucial observation is that the single-variable curve

is flatter than those extracted from the surface: this confirms that fragility models built with

a single IM have a greater dispersion than surfaces and they are associated with higher epis-

temic uncertainty because earthquake signals are only characterized by a single number.
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3.2 Case of correlated IMs

The IMs chosen above are convenient to demonstrate the benefit of fragility surfaces be-

cause they are almost orthogonal. However, the ratio PGA/PGV is not a standard IM and its

estimation by ground-motion prediction equations in the framework of seismic hazard as-

sessment is not easy. Therefore, a fragility function with respect to SA at different periods is

derived here. These IMs are more convenient for joint estimation and they are well adapted

to vector-valued probabilistic seismic hazard assessment(VPSHA) proposed by Bazzurro

and Cornell (2002). The SA at the first eigenperiod (0.15s) and a second one at a longer

period are chosen, based on the results from the ROC analysis(see Table 5). For this second

period 0.5s was chosen as it has the ability to represent the response of the building once

its initial stiffness has been reduced due to damage. The AUCfor collapse for SA(0.5s) is

the highest of all of the IMs considered (Table 4) hence it waspreferred over SA at other

periods. The optimum IMs for the construction of fragility curves depends on the structure.

For example, for a building with a higher eigenperiod (e.g. ataller building) SAs at longer

periods will probably be more effective as a basis of fragility curves. Similarly the level of

nonlinearity in the building response will also affect whatperiods are optimum.

The spectral accelerations at 0.15 and 0.5s are, however, strongly correlated (R = 0.81)

and caution must be taken in the construction of the surfacesand their interpretation. Due

to the strong correlation between the two IMs, the data points do not cover the whole

space defined by SA(0.15s)-SA(0.5s) and one can question the relevance of defining a

fragility model for extreme values (e.g. low IM1 and high IM2). Using the data points,

a regression analysis is performed between SA(0.15s) and SA(0.5s), allowing a median

line representing the linear relation between the two parameters to be plotted, as well as

95% confidence intervals (see Figure 6). The median line is represented by the equation

logSA(0.5) = logSA(0.15)− 0.7236± δ, with the 5− 95% lower and upper bounds esti-

mated withδ = 1.417. Iso-probability lines are also represented for both damage states and

the grey area between the confidence intervals can be considered as the validity domain for

the fragility surfaces. Like in the previous example, the fragility surfaces are built assuming

a lognormal distribution (Equation 3); the corresponding regression parameters are listed in

Table 6.

[Fig. 6 about here.]
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Finally, as described previously, single-variable fragility curves can be plotted with re-

spect to the first IM, by fixing the second one. However, in the present case, the two IMs

are correlated and plotting the fragility function using one IM while keeping the other one

constant may lead to erroneous conclusions, especially forextreme values. Thus, one so-

lution may be to cut ‘slices’ along the affine lines within thevalidity domain defined on

Figure 6, to account for the correlation between the two IMs.The results for yield damage

state are shown on Figure 7, for both IMs, and for a few correlation hypotheses (median

relation between the two IMs, and 95% upper and lower bounds). Again, the effect of the

introduction of a second IM can be observed, which allows fora clearer identification of the

damage states, as shown by the steeper slopes of the fragility functions extracted from the

surfaces.

[Fig. 7 about here.]

4 Discussion

The fragility functions derived here result from several trials on which probability distribu-

tion to adopt for the surfaces. First, a logistic regression, as suggested by Koutsourelakis

(2010) was tested. This approach contains some drawbacks: the logistic function has a sup-

port on both positive and negative real numbers, which leadsto a possibility of having non-

zero probabilities even when IMs are equal to zero (this highkurtosis can be an problem

when a risk assessment is performed for low hazard sites). Itwas attempted to overcome

this problem by using the log-logistic distribution (i.e. logistic distribution of the logarithm

of a variable), which constrained the probabilities at the origin. However, a ROC analysis

of the models showed that the distribution presented in Equation 3 (based on a lognormal

formulation) yielded slightly higher AUC values than the log-logistic distribution.

Gehl et al (2011) proposed an alternative solution, using a kernel density estimation

procedure (or Parzen-Rosenblatt method), which allows a non-parametric definition of the

probability density and is, thus, applicable to higher-dimension problems (Parzen, 1962).

The main merit of this approach is that the shape of the cumulative density function is

not biased by the choice of the distribution and it can account for all the specificities of

a bivariate probability density. However, the Parzen-Rosenblatt formulation relies strongly

on a ‘smoothing’ parameter (e.g. a standard-deviation for each data point), which greatly

influences the slopes of the surfaces and is also specific to the data used (quantity of points
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and distribution). Moreover, the kernel density estimation cannot be represented by a simple

analytical relation and it is numerically estimated, whichcan be a problem if the fragility

function is to be used in risk assessments.

[Fig. 8 about here.]

In Figure 8, for the same data [yield damage state based on thecouple (PGV, PGA/PGV)]

the iso-probability lines for the four models discussed in this section are plotted. The logis-

tic distribution is not very adapted to the studied problem,as it fails to accurately represent

the damage for low PGA/PGV (near theX-axis of the plot). The kernel density estimation

approach has the ability to best represent the results, yet this empirical distribution has to

be smoothed to reduce local irregularities, which has the non-desired effect of flattening

the slope of the surface (e.g. widening of the 16–84% percentile zone). Both log-logistic

and lognormal distribution are able to fit the general shape of the kernel density estimation

curve and they are very similar. The lognormal distributionwas finally selected to build the

fragility surfaces because, as explained above, the ROC analysis of this model gave slightly

better results than the log-logistic one. Also, this distribution is consistent with the lognor-

mal distribution commonly used for single-IM fragility curves.

5 Conclusions

Current methods used to evaluate seismic risk are based on fragility curves representing the

ground motion by a single IM (e.g. PGA). Different types of uncertainty affect the results of

such evaluations. Three sources of aleatory and epistemic uncertainty are addressed in the

present work. The variability of the ground motion and randomness of the material proper-

ties of the buildings are taken into account through a large number of nonlinear time-history

calculations. Several hundred accelerograms and several variants of the target building are

used to this end. Moreover, representing earthquake shaking by a single IM introduces epis-

temic uncertainties in the risk evaluation as such a model cannot fully represent the effect of

an earthquake on the response of the structure. It is shown that an increase from one to two

IMs leads to a significant reduction in the scatter in the fragility function and consequently

a potential reduction in the uncertainty in evaluated earthquake risk.

Suggestions for future research are the following. It wouldbe useful to investigate the

effect of the out-of-plane failure on fragility curves of URM buildings. In large-scale seismic
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risk assessments, the behaviour of a typology of buildings is generally studied. The effect of

geometrical variability on the vulnerability of a given typology must be taken into account

by introducing a population of different buildings belonging to the same typology. To make

use of the vector-valued fragility function like those proposed here within risk evaluations,

it would be necessary to conduct a VPSHA (Bazzurro and Cornell, 2002) so that the joint

probability of surpassing thresholds for two (or more) IMs was correctly estimated. VPSHA

has yet to become a standard procedure in risk evaluations but thanks to recent developments

of the method (e.g. Bazzurro et al, 2010) this approach is likely to become more widespread.
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Fig. 1 Numerical model of the building tested by Magenes et al (1995).
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Fig. 2 a) On the left, pushover results for a façade wall and comparison between the TREMURI model and
the experimental data by Magenes et al (1995). b) On the right, modal pushover on the whole building model
and corresponding bilinear idealization.
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for both IMs.
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Table 1 Mechanical properties of the building model.

Parameter Value
E Young modulus 3600MPa
G Shear modulus 600MPa
ρ Density 1800kg/m3

fm Compressive strength 6.2MPa
fsh Shear strength 0.23MPa
Dsh Shear ultimate drift ratio 0.6%
D f l Rocking ultimate drift ratio 0.8%
µ Friction coefficient 0.2
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Table 2 Correlation between EMS-98 damage states and the transienttop displacement, for URM buildings,
according to Milutinovic and Trendafiloski (2003).

Damage state Limit-displacement equation Limit ford (mm)
Slight d = 0.7dy 3.94
Moderate d = 0.7dy +0.05(0.9du −0.7dy) 4.59
Extensive d = 0.7dy +0.2(0.9du −0.7dy) 6.54
Very heavy d = 0.7dy +0.5(0.9du −0.7dy) 10.43
Collapse d = 0.9du 16.92
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Table 3 Clusters generated from the set of accelerograms.

Cluster A Cluster B Cluster C
PGA PGV Relative bracketed duration
Arias (1970) intensity PGD Relative uniform duration
A95 Absolute bracketed duration Relative significant duration
SLOPE75 Absolute uniform duration Nb of effective cycles
SLOPE95 Absolute significant duration
ARMS SA(T = 0.5 to 5s)
ASI
Cyclic damage parameters
SA(T = 0.05 toT = 0.25s)

Note: The spectral accelerations (SA) were computed for a 5% damping ratio, for the following periods:
0.05 (second eigenperiod), 0.075, 0.1, 0.15 (first eigenperiod), 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 and 5s.
A95 is the level of acceleration that contains 95% of the Arias intensity (Sarma and Yang, 1987). SLOPE75
(and SLOPE95) are the slope of the Husid plot (e.g. cumulative Arias intensity over time) between 5% and
75% (and 95%) of the total Arias intensity. ARMS (root-mean-square acceleration) is the square-root of the
integral of squared acceleration over time. ASI (Acceleration spectral intensity) is the integral of SA between
two periods (here, 0.1s and 0.5s). Cyclic damage parameters are obtained through the sum of the squared
amplitude of all half-cycles, which are obtained through three different counting methods (rainflow and peak
counting, with or without non-zero crossings) (Hancock andBommer, 2005). Nb of effective cycles is the
same as the cyclic damage parameters, except that the half-cycles amplitudes are normalized by the ampli-
tude of the largest half-cycles in the signal (Hancock and Bommer, 2005). Absolute bracketed duration is
the length of interval between the first and last time the ground acceleration exceeds a threshold value (here
0.05g). Absolute uniform duration is the total length of time for which ground acceleration exceeds a thresh-
old value (here 0.05g). Absolute significant (effective) duration is the length of interval between when Arias
intensity first exceeds a threshold value (here 0.01m/s) and the time when Arias intensity first exceeds to-
tal Arias intensity of record minus some threshold value (here 0.125m/s) (Bommer and Martı́nez-Pereira,
1999). Relative bracketed duration is the length of interval between the first and last time the ground acceler-
ation exceeds 5% of PGA. Relative uniform duration is the total length of time for which ground acceleration
exceeds 5% of PGA. Relative significant duration is the length of interval between when Arias intensity first
exceeds 5% of total value and time when Arias intensity first exceeds 95% of total value (Trifunac and Brady,
1975).
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Table 4 Computed AUC values for the IMs and for the two damage states (yield and collapse). In italics,
parameters with AUC over 0.95, and in bold IMs with AUC above 0.98. The standard-deviationσ of the
lognormal distribution for both damage states is also given.

IM AUC AUC σ σ
(Yield) (Collapse) (Yield) (Collapse)

PGA 0.9856 0.9680 0.2885 0.4957
PGV 0.9674 0.9786 0.4211 0.3467
PGD 0.8333 0.8804 1.4637 1.4694
Arias intensity 0.9817 0.9834 0.6047 0.6846
A95 0.9883 0.9710 0.2626 0.4943
ARMS 0.9832 0.9677 0.3296 0.5174
ASI 0.9771 0.9683 0.4291 0.5413
SLOPE75 0.9878 0.9679 0.5826 1.1240
SLOPE95 0.9870 0.9691 0.5887 1.0710
SA(0.15s) 0.9682 0.9536 0.4530 0.6184
SA(5.0s) 0.8576 0.8980 1.2480 1.0102
SA(2.0s) 0.9208 0.9492 0.8517 0.6567
SA(1.75s) 0.9274 0.9515 0.7995 0.6110
SA(1.5s) 0.9306 0.9623 0.7487 0.5491
SA(1.25s) 0.9348 0.9665 0.7136 0.4998
SA(1.0s) 0.9410 0.9728 0.6328 0.4490
SA(0.75s) 0.9610 0.9799 0.4966 0.3498
SA(0.5s) 0.9814 0.9876 0.3291 0.2585
SA(0.25s) 0.9873 0.9712 0.2724 0.4483
SA(0.1s) 0.9571 0.9353 0.5161 0.7917
SA(0.075s) 0.9633 0.9427 0.5108 0.7808
SA(0.05s) 0.9714 0.9496 0.4700 0.6981
Duration bracketed absolute 0.9284 0.9264 0.8970 0.7662
Duration uniform absolute 0.9746 0.9781 0.6607 0.4997
Cycle damage paramater (rainflow) 0.9722 0.9641 0.8484 1.0554

Note: Only the cyclic damage parameters based on rainflow countingare listed (peak counting methods
yield almost identical results). Also, IMs that did not prove to be efficient for damage prediction (AUC values
around 0.5): relative bracketed duration, relative uniform duration, (relative and absolute) significant duration,
equivalent number of cycles, ratios PGA/SA(0.15s) and PGA/PGV, are not listed.
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Table 5 Computed AUC values for the most efficient couples of IMs for the two damage states (yield and
collapse). In the fifth column, the linear correlation coefficientR between the two IMs is given. The standard
deviationsσ of the lognormal distribution for both damage states are also listed in the final two columns.

IM1 IM2 AUC AUC PearsonR σ σ
(Yield) (Collapse) (Yield) (Collapse)

SA(0.25s) SA(0.5s) 0.9932 0.9916 0.8798 0.2007 0.2424
PGA SA(0.5s) 0.9928 0.9902 0.8674 0.1927 0.2484
ASI SA(0.5s) 0.9906 0.9910 0.8766 0.2554 0.2572
SA(0.05s) SA(0.5s) 0.9909 0.9903 0.7789 0.2308 0.2575
SA(0.15s) SA(0.5s) 0.9904 0.9891 0.8116 0.2293 0.2537
AI SA(0.5s) 0.9874 0.9920 0.7731 0.3532 0.2966
ARMS SA(0.5s) 0.9896 0.9898 0.7979 0.2291 0.2686
Cyclic damage (rainflow) SA(0.5s) 0.9879 0.9906 0.7073 0.3139 0.2831
PGV PGA/PGV 0.9923 0.9845 −0.1548 0.1313 0.2234
SA(0.25s) PGV 0.9916 0.9848 0.8516 0.2233 0.3008
SA(0.25s) SA(1.0s) 0.9897 0.9864 0.8111 0.2340 0.3046
PGA SA(1.0s) 0.9899 0.9854 0.8168 0.2409 0.3140
PGA PGV 0.9912 0.9840 0.8720 0.2088 0.3118
ASI PGV 0.9888 0.9862 0.7988 0.2495 0.3043
PGA PGA/PGV 0.9911 0.9834 0.1450 0.3538 0.7883
AI PGV 0.9860 0.9874 0.7830 0.4044 0.4168
SA(0.25s) D uni. abs. 0.9898 0.9836 0.8064 0.2866 0.3702
SA(0.05s) PGV 0.9896 0.9831 0.7897 0.2413 0.3268
ARMS SA(1.0s) 0.9867 0.9858 0.7598 0.2742 0.3382
PGA D uni. abs. 0.9883 0.9833 0.7397 0.2994 0.3733
ARMS PGV 0.9888 0.9824 0.8257 0.2379 0.3284
SA(0.15s) PGV 0.9873 0.9835 0.8126 0.2541 0.3178
AI SA(1.0s) 0.9831 0.9872 0.7331 0.5399 0.4699
ARMS D uni. abs. 0.9867 0.9836 0.6846 0.3397 0.3858
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Table 6 Regression coefficients computed for the couples (PGV, PGA/PGV) and [SA(0.15s), SA(0.5s)] for
damage states ‘yield’ and ‘collapse’.

IMs Damage state β0 β1 β2

PGV, PGA/PGV Yield −3.4541 3.8347 2.2634
Collapse −2.2180 2.6557 1.0504

SA(0.15s), SA(0.5s) Yield 1.5155 0.9112 1.7173
Collapse 3.1160 0.6605 2.1999


