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Abstract This article presents a method for the development of vacthred fragility
functions, which are a function of more than one intensityaguge (IM, also known as
ground-motion parameters) for use within seismic risk @eatbn of buildings. As an ex-
ample, a simple unreinforced masonry structure is modeis#agy state-of-the-art software
and hundreds of nonlinear time-history analyses are cdaduo compute the response of
this structure to earthquake loading. Dozens of differbte (e.g. peak ground acceleration
and velocity, response spectral accelerations at varietsds, Arias intensity and vari-
ous duration and number of cycle measures) are considerdthtacterize the earthquake
shaking. It is demonstrated through various statisticdineues (including Receiver Oper-
ating Characteristic analysis) that the use of more thanldneads to a better prediction
of the damage state of the building than just a single IM, Whgcthe current practice. In
addition, it is shown that the assumption of the lognormatritiution for the derivation
of fragility functions leads to more robust functions thagiktic, log-logistic or kernel re-
gression. Finally, actual fragility surfaces using tworpaif IMs (one pair are uncorrelated
while the other are correlated) are derived and comparecklarsbased fragility curves us-
ing only a single IM and a significant reduction in the undetiaof the predicted damage

level is observed. This type of fragility surface would beey kkomponent of future risk
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evaluations that take account of recent developments smsehazard assessment, such as

vector-valued probabilistic seismic hazard assessments.

Keywords unreinforced masonryuncertainties fragility functions - ground-motion

parametersintensity measuresearthquake risk evaluation

1 Introduction

Seismic fragility analysis is inherently probabilistic @sch of its constituents (e.g. hazard
level, material properties, structural model and limétstdefinition) is uncertain. The uncer-
tainties can be split into two categories: aleatory (valiiggy which are inherently random,
and epistemic, which are consequences of lack of knowlédgst engineering applications
are affected by both types of uncertainties. Although soesearchers suggest that a clear
distinction must be made between them (e.g. Pate-Cod896), it is often difficult to de-
termine whether an uncertainty is aleatory or epistemimfaomodelling point of view (Der
Kiureghian and Ditlevsen, 2010). Practically speakings thistinction is rather a choice of
the modeller. Separating the uncertainties into these &ategories helps us to determine
which ones can be reduced (Der Kiureghian and DitlevserQ201

Two main sources of uncertainty, namely the variabilitytie ground motion and me-
chanical properties of the target building are considendte following. A literature review
shows several attempts at taking into account this randcemacter on seismic response
(e.g. Kwon and Elnashai, 2007; Ellingwood, 2007; Fragisslakd Vamvatsikos, 2010).
Kwon and Elnashai (2007) investigated the effects of stimagion variability and random
structural parameters on vulnerability curves of a reicddr concrete (RC) building and
they conclude that the effect of strong-motion variabilgymuch more important than the
randomness in material parameters. Fragiadakis and Vaikest(2010) introduced a static
pushover-based method to estimate the uncertainty in Eep@rformance of a nine-storey
steel-frame structure due to the variability of materiaparties.

Masonry constructions (the focus here) exhibit more véditgkin their mechanical
properties compared to RC and steel frame structures.Hus éxpected that such a rank-
ing obtained for RC or steel structures cannot be applieztthir to masonry constructions.
This belief is supported by two recent studies that seekdesssthe relative importance of
the various sources of uncertainty in vulnerability asssesit for masonry buildings: seis-

mic demand, structural capacity and limit-state defini{iGattari et al, 2010; Pagnini et al,
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2011). They find, based on the capacity-spectrum approaatyariability in the structural

capacity is the main contributor to the global dispersiotheffragility curves.

The estimate of the uncertainty accompanying calculasggllity can be integrated in a
risk assessment analysis. As an example, Ellingwood (20@f)osed such a coupled risk
assessment analysis. Estimates of the annual probatiléyxoceeding pre-defined perfor-

mance levels can then be computed.

On the other hand, a considerable source of epistemic @amegrin seismic risk anal-
ysis is present in the construction of fragility curves. Adility curve, by definition, repre-
sents the conditional probability of reaching a given daenstgite for a given hazard level
characterized by one intensity measure (IM, also known asoang-motion parameter).
The standard method to develop fragility curves negleasuticertainty in the estimated
damage caused by the use of a single IM, which cannot regraierharacteristics of a
ground motion. Recently, some efforts have been made to Inleel@ffect of several IMs
on structural damage. Baker and Cornell (2005) proposec@ivbased IM made of two
parameters: spectral acceleration (SA) and epsilon, wikickefined as the difference be-
tween the logarithms of observed SA and predicted SA at angieeiod. They showed that
considering two IMs instead of one can improve the collapsbability calculation for a
multi-degree-of-freedom structure. Kafali and Grigor20Q7) used an alternative IM ex-
pressed by two parameters: earthquake magnitude and gowsite distance. Rajeev et al
(2007) used SA at the firsT{) and second eigenperiod$) of the structure as the IMs.
With reference to an example RC-frame structure, the acgwaprediction of the seis-
mic risk using the considered vector IM versus a conventiscalar IM is presented. They
showed that an effective choice ©f leads to a better estimate of the seismic risk than that
obtained employing a scalar IM consisting of SATatonly, while reducing the associated
dispersion in the estimate. However, for the studied exarsplcture, the reduction is neg-
ligible in light of the effort required in switching from a alar to a vector IM. Seyedi et al
(2010) went the extra step in developing fragility funcgdior various damage states ex-
plicitly involving more than one IM (i.e. fragility surfasg for an eight-storey RC building
using nonlinear time-history analysis. Koutsourelaki81(@) introduced a Bayesian frame-
work to derive vector-valued fragility functions from thienited data available. He used a
statistical-learning model based on logistic regressinassess the relative importance of

different IMs: peak ground acceleration (PGA), root-megoared (RMS) intensity, Arias
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(1970) intensity and the power of the excitation spectrura period close to that of the
structure.

The main goal of the present article is to introduce a coredietmework to develop
vector-valued fragility functions characterizing the ploal vulnerability of buildings against
earthquakes. A stochastic approach based on the resubtserbshundred nonlinear time-
history analysis is proposed. The selected IMs should loagly correlated to the seismic
response of the target structure. To this end, the damagédéan unreinforced masonry
(URM) building is evaluated by the use of nonlinear numérgzlculations. The whole
structure is modeled by specific macro-elements repreggtite seismic behaviour of ma-
sonry panels. The maximum transient displacement at thefttige structure is used as the
damage indicator. A statistical analysis is proposed ttuata the correlation between dif-
ferent IMs and their correlation with the structural resp@nFor each structural typology,
a specific vector-valued IM can thus be defined. A method foividg fragility surfaces
is then proposed for the studied structure. Note that thieetbsurfaces are not proposed
for use in practice because the example structure is a smeadiyipe building without the
geometrical complexity of real buildings. However, thegmeted method and discussion

provide new insights on risk analysis of masonry structures

2 General framework

The method described in this paper mainly relies on the éspion of numerous nonlinear
dynamic analyses because their use, as opposed to pushoves and response spectra, al-
lows study of the influence of many IMs. At first, a structuraldel of the studied building
is considered and characterized. Modal analysis is peddrta identify dynamic proper-
ties of the model. Damage limit states are determined thrqughover analysis. Several
variants of the structural model are also considered inrdaaccount for variability in its
mechanical properties. Then the model is subjected to meegierograms that have been
selected based on the seismotectonic context of the refjiotecest.

The results enable the study of the effects of many grountismaharacteristics on
the building response, using various data mining techisigsiech as: the variable cluster-
ing method, comparison of standard deviations and ROC (Rec®perating Character-
istics) analysis. The performance of single IMs can thendrmapared to combinations of

two (or more) IMs, with respect to their ability to reduce ttlispersion in fragility func-
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tions. Fragility curves, based on a lognormal distributiowl a hybrid parameter, can finally
be represented as fragility functions (or surfaces) witlpeesto two IMs. The proposed
method is applied here, as an example, to a two-storey URMibgi Each step is detailed
in the following sections.

The proposed method aims to progress beyond the state at ihelze following ways.
The selection of adequate couples of IMs is based on a rigguoacedure and not solely
on linear correlations (e.g. use of ROC analysis and creaticlusters of variables). The
generally strong correlation between IMs had not been addckin previous works (e.g.
Seyedi et al, 2010). This issue is tackled thanks to thednirton of confidence bounds.
Besides, a review of the various probabilistic models thatearecently proposed is made
at the end of the paper, and the efficiency of different moetxamined by considering
the damage estimates obtained from the dynamic analyseslyi-ia set of vector-valued
IMs are introduced. The use of a combination of these IMs lesathhe development of
robust and analytical fragility functions that take the aldorm of fragility curves and can

be incorporated directly into existing seismic risk evaluaprocedures.

2.1 Test structure

A numerical model was developed based on the results of ariexgnt at the University of
Pavia (Magenes et al, 1995) on a real-scale building. Thetgaometry of the real build-
ing is considered, while the mechanical properties digalay Table 1 were either taken
from Magenes et al (1995) (i.e. shear and compressive $teagselected from common
features of brick masonry and calibrated using the experiah@ushover curve. The struc-
ture is 64 m high, with plan dimensions of:64.4m. The mock-up consists in a single-cell
building, without any internal walls. As axial forces plagmcial role in the strength of the
masonry, concrete blocks were added on each floor to accoulitd loads: this is trans-
lated into the model by a vertical load of around 250kN on dbdr. The numerical model
was built using the TREMURI code (Lagomarsino et al, 2008)jclv allows a masonry
wall to be discretized into several components (verticairents, named ‘piers’, horizontal
ones, named ‘spandrels’, and rigid zones), through an algmit-frame approach (see Fig-
ure 1). The behaviour of the masonry panel is representedrhgcoelement developed
by Gambarotta and Lagomarsino (1996), and later improvelddmna (2002) and Galasco

et al (2006). This nonlinear macromodel takes into accdumtcommon in-plane damage



6 Pierre Gehl et al.

mechanisms of a masonry panel, namely: shear failure rfglidi diagonal cracking) and
bending failure (tensile and compressive cracking). Theobplane failure mechanism of
wall is not taken into account. Even though out-of-planedvéur may play an important
role in local damage, this mechanism is commonly neglecteehvihe overall behaviour of

a structure is being considered (Calderini et al, 2009).
[Fig. 1 about here.]
[Table 1 about here.]

The building tested by Magenes et al (1995) was subjectedct@lic lateral loading
on each of the two facade walls: the facade with the dodel(red as the 'door wall’, see
Figure 1) is disconnected from the transverse walls in tpeement, thus allowing focus on
the in-plane mechanism of a masonry panel. It was decidedtiehthe same facade wall
to calibrate the model. Therefore, pushover analysis ofdtiwr wall’ was compared to the
results of the experiment and a good agreement, in termétiaf stiffness, maximum shear
strength and yield displacements, between the model armbtieviour of the tested building
was found (see Figure 2a). The experiment carried out by Neget al (1995) consisted
of a series of cyclic loadings of increasing amplitude: ¢fiere only the extrema of each
cyclic loading have been used to compare to the monotonibgwes analysis performed
on the TREMURI model. Finally, the actual pushover curve tfeg whole building has
also been computed using the results from the single wallysisa(Figure 2b). A force
distribution according to the first modal shape has been, ugaeteas the pushover analysis
on the fagcade wall is based on a uniform force distributian {n the same conditions as the

experiment).
[Fig. 2 about here.]

Modal analysis of the 3D model gives the first mode along tlgada of the build-
ing (referred to as th&-direction), with a periodl = 0.149s. Higher modes along the
X-axis (torsion and opposite-floor displacements) are eksewith periods around.05s.
Pushover analysis of the building in tiedirection enables estimation of the ultimate dis-
placementdy = 18.8mm) as well as the elastic-limit poirdy(= 5.6 mm for a shear force of
210KkN), using an idealized bilinear curve that has beerdfttbethe actual pushover curve
(see Figure 2b). The bilinear curve is calculated based erktirocode-8 criteria for the

computation of ULS (ultimate limit-state) and DLS (damaigeit-state).
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The evaluation of damage states for the complete buildimpidrivial, as the criteria
used to define the local damage level of a macroelement céensimply extrapolated to
the global level. Numerous damage indicators are availalitee literature, such as indices
based on hysteretic-energy dissipation (e.g. Park and 2885), the determinant of the
stiffness matrix or the maximum strain at various locatiansl floor displacements. The
maximum transient displacement at the top of the structsingsed in the following be-
cause its evaluation is straightforward and many cor@iatibetween floor displacement
and damage states are available. Milutinovic and Trend&fik2003) propose relations to
link top displacementsl, andd, to the EMS-98 (Council of Europe, 1998) damage scale
(see Table 2). The studied structure has a predominant fadenwhich corresponds to a
uniform distribution of deformations along the buildingidit®. The pushover analysis has
been carried out with an adaptive scheme based on the firstlrsloape, thus ensuring that
the damage thresholds estimated from the static analysi®ased on top displacement
are adequate proxies for the floor drifts and a relevant atdicfor both local and global
damage. Still, it is noted that the choice of a given damadeator may affect the results
(e.g. identification of optimal IMs), as displacement-badathage measures are strongly
correlated with ‘peak’ IMs (e.g. PGA and PGV), whereas epdugsed indexes are more
influenced by IMs representing the energy content of thea$igng. Arias intensity or cyclic

damage parameters).

[Table 2 about here.]

Once the reference building model has been developed, tegtamties in the mechan-
ical properties of the brick masonry can be taken into accbyreriving a set of variants
with respect to the basic model. These variants are dewetlopeandomly sampling mate-
rial properties, which are assumed to follow a normal distiobn. These distributions are
defined by using the mean values in Table 1 and by setting cieeffs of variation between
10 and 20% (Rota et al, 2008, 2010). For each parameter, bgdsatatt-20) prevent gen-
eration of unrealistic buildings. Twenty variant modele generated out of the parametric
distribution. A Latin hypercube sampling scheme is usedapture the possible combi-
nations with a reduced number of models. Thus, with 20 modaisrvals of 5% can be
defined and, for each parameter, an aleatory interval pitkedmple the value for a given

model. This procedure results in a total of 21 structures (wasic model plus 20 variants):
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for each of them, a pushover analysis is performed to idetité boundaries of the EMS-98

damage states, which are specific to each variant.

2.2 Nonlinear dynamic analyses

Dynamic analyses of the models require a large set of stnootipn records to build ro-
bust fragility functions. A dataset of 777 accelerograms haen assembled, using both
a sample of records from the European Strong-Motion Datbasbraseys et al, 2004)
and synthetic signals generated using the non-stationachastic procedure proposed by
Pousse et al (2006). The records correspond to shallowatreastthquakes of magnitude
(My) between 4% and 65 and epicentral distances between 10 and 100km . The sigisals
sample the five Eurocode-8 soil classes to account for lateaVariability. The consistency
between real records and synthetic accelerograms has beekec for a wide selection of
ground-motion parameters: the overall distribution oftilve datasets (mean and standard-
deviation) shows good agreement, except for duratioriegliMs, which have a tendency
to be underestimated in the synthetic signals used heres¢eai al, 2006).

The selected accelerograms are then applied at the base sfrtitture, along thx-
direction. The number of simulations has been optimizedthadlataset of 777 accelero-
grams divided into 37 groups of 21 records each. Thus, wihith group, it is possible to
randomly assign each accelerogram to one of the 21 modédswhrth noting that the 37
groups were selected by ranking all accelerograms withesgp PGA (IM selected pri-
ori to represent the ‘damage potential’ of the signal). Thisissthat each group contains
comparable signals, and as a result it can be assumed ti#dt aibdels are subjected to
accelerograms with similar intensity levels.

Finally, all nonlinear dynamic analyses are carried out #edmaximum transient dis-
placement at the top of the building is used to identify thiéedknt damage states, based
on Table 2. The results of the analyses show that 63% of thelaiion runs did not dam-
age the structure, while about 17% of them induced colldpsermediate levels (slight to
very heavy damage) are clearly under-represented: only f2%ecsimulations stopped in
the ‘slight damage’ state, 5% in ‘moderate’, 6% in ‘extersand 7% in ‘very heavy’. As a
result, it appears that EMS-98 intermediate damage stegeé®@ narrow. The five damage
states are thus merged into only two. As proposed by recediest (Crowley et al, 2011),

damage states from ‘slight’ to 'extensive’ are consideretyield’; the damage states ‘very
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heavy’ and ‘collapse’ are also merged into one (near-cedi&amllapse), as the numerical
simulations near the ultimate deformation limits of the noetements are usually less ac-

curate and there is no benefit in setting a clear boundarydestthese damage states.

2.3 Studied IMs

For each of the accelerograms used in the simulations, ff$ydre calculated, ranging from
PGA to cyclic and duration parameters and elastic respgresetral ordinates. One useful
approach to present these parameters is to rank them angoodheir cross-correlation. To
do this a variable clustering technique is performed usiegTANAGRA software (Rako-
tomalala, 2005). It consists of a succession of principaipanent analyses and the merging
of the parameters with strong correlation into distinct leariables, called ‘clusters’. This
procedure is helpful in reducing the many IMs to only threéoor less-correlated parame-
ters that are representative of the range of studied IMsTaele 3). For each accelerogram,
the ratios PGA/PGV and PGA/SA(@®b s) are also computed, as such ratios roughly charac-

terize the frequency content of the signals.

[Table 3 about here.]

2.4 Receiver Operating Characteristic (ROC) analysis

The efficiency of each of the IMs for the prediction of the dgmatate (none, yielding or
collapse) of the structure must be evaluated. A conveniagtaffmeasuring the accuracy of
a ‘predictor’ is to perform a ROC analysis on the data (e.gvdedt, 2003). This approach
has previously been applied to earthquake risk evaluatyoidutsourelakis (2010). For a
given IM, a set of data for ‘model training’ (e.g. developreha fragility model based on
the chosen IM, which will then be compared to a second datagke ‘validation’ phase)
is used. The first data set is used to build a fragility curveafgiven damage state, based
on a lognormal distribution, using the procedure descriipe&hinozuka et al (2000). This
approach consists of fitting the damage probability to a dative lognormal density func-
tion, the curve’s parameters being estimated through armartlikelihood method, as the
outcome of a Bernoulli experiment. Then, using a secondfg@atidation) data, a confu-

sion matrix is built for different thresholds of damage mabliities. First, for each data point
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xi, the damage probability (for instance, yielding or collgpis evaluated using the previ-
ously defined lognormal distributiom; = P(di > DSx;). Then, for a range of probability
thresholdspg varying from 0 to 1,pp and p; are compared: if > po, then the predicted
damaged; is 1, and—1 otherwise. The predicted] are compared to their actual value to
assess whether the damage state is accurately estimatet ®has, for each value of the
thresholdpp, all data points can be classified into four possible contling, which form

the so-called confusion matrix:

— predictedd = 1 and actuatl = 1: true positive or ‘hits’,
— predictedd = 1 and actuatl = —1: false positive or ‘false alarms’,
— predictedd = —1 and actuatl = 1: false negative or ‘misses’,

— predictedd = —1 and actuatl = —1: true negative or ‘correct rejections’.

It can be observed that the most efficient IM will be the oné thiaimizes both ‘misses’
and ‘false alarms’. Two measures that assess the qualitypoédiction model are: sensi-
tivity, which is the ratio of the number of hits to hits and sgs, and specificity, which
is the ratio of the number of correct rejections to correfations plus false alarms. The
ROC curve is then constructed by plotting the different galaf these ratios obtained for all
thresholdspy, the vertical axis being the sensitivity and the horizootsé the complement

of specificity (Figure 3).

[Fig. 3 about here.]

One way to read these ROC curves is to check if they are cldke t0, 1) corner, which
is the sign of a satisfactory model. In contrast, thé We represents a perfectly random
predictor and any ROC curve near that region implies a meelipeediction model. As a
result, whereas the shape of a curve cannot be easily eeghleitcommonly-used indicator
is the area under the ROC curve (AUC). AUC close to unity demein efficient model,
whereas values close tof0indicate little advantage over chance. However, it mudidpt
in mind that AUC is useful in evaluating the global perforroamf a parameter but two ROC
curves may overlap locally. It has been proven that AUC isvedgnt to the probability that
this model will rank a randomly chosen positive instancg.(damage occurrence) higher

than a randomly chosen negative instance (e.g no occurcéntzenage) (Fawcett, 2006).
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2.5 Performance of single IMs

AUC values are computed for each of the fifty IMs regressed avegnormal distribution,
and for each of the two considered damage states (yieldidgallapse), to assess which
ones are the most useful in predicting the effect of eartkeshaking for this structure.
Since no extra data are available to compose a validatiom $en-fold cross-validation is
performed, which is a commonly-used technique when datdirareed. Two equal-sized
bins are randomly formed out of the data (777 simulationltgsand the probability model
is built based on one bin, while the other is used to evallertodel and perform the ROC
analysis. This process is repeated ten times and the avesgeof AUC is used to obtain
a performance indicator for each of the fifty IMs, for both @daye states independently (see
Table 4).

[Table 4 about here.]

A first comment to make is that the AUC are generally very higbge to unity), with
only slight differences (around one decimal) between the. [Mhe standard deviation of the
lognormal distribution are also shown as a measure of theshtispersion, to demonstrate
that the dispersion of the lognormal distribution (e.g. shape of the fragility curve) does
not totally determine the predictive power of the model. &xample, Arias intensity leads
to a fragility model with a fairly high standard deviatiowea though its AUC is one of the
highest.

It can be observed that one IM that is the best for both damigesscannot be found.
Acceleration-related parameters (e.g. PGA, A95, ARMS, A&d cyclic damage param-
eters) and response spectral accelerations at short pefipdto 025s) are efficient in
predicting yielding, whereas, parameters like PGV, PGBphlie durations and spectral
accelerations at longer periods are more efficient for tleeliption of collapse. It is also
worth noting that the two groups of IMs that are emerging fitben ROC analysis are more
or less the same as those in clusters A and B identified by th&bl@ clustering analysis
performed above. This observation reinforces the ideaalwambination of two IMs may
improve the prediction of damage, as the first could be ugefptedicting slight damage,
and the second more efficient for higher damage states.

The spectral accelerations at the two periods of intereshfostudied structure (05s

and Q055s) are useful for the prediction of damage, especiallyitdd, yet these parameters
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are outranked by SA(R5s) and SA(®s), even for yield. This may be explained by the
rapid loss of initial stiffness of the masonry model, everliffht damage. This issue has also
been raised by Bommer et al (2004), where the authors prapase a spectral acceleration

averaged over a period interval of width several times th&lreigenperiod.

2.6 Linear combinations of two IMs

In the previous section, ROC analysis showed that two IMshinligad to more accurate
assessment of both yield and collapse. For slight damagapjamopriate IM (IM1) could
be chosen from cluster A (see Figure 3), whereas an IM (IMBcsed from cluster B
should accurately predict heavier damage. A hybrid IM iereéfore, proposed using a linear

combination of IM1 and IM2:

o a
E logIM1; + 2
+a» a1+az

logX; = a log IM2; (1)

wherea; anda; are regression coefficients. This new parameter can nowrmdared as
a single variable and the probability of reaching or excegdi given damage state given X

can then be expressed via the usual lognormal distribuBbimpzuka et al, 2000):

P(damage> DSX) = % [1+erf (Iog;)(i\/:zu)} 2

wherep is the meang the standard deviatioDSdamage state ar@f is the error function.

ay

Then, by expressing X as a function of IM1 and IM2 and by intridg 31 = (

aj+az)ov/2’
_ a __u ; AN i i .
B = m andfy = 573 the following relation is obtained:
P(damage> DSIM1,IM2) = %[l—k erf(B11ogIM1 + By logIM2 — fBy)] 3)

Finally, the coefficientg; are evaluated through the maximization of the following4ik

lihood function:

L= ﬁP.yi(l— R)HY @)

wherey; is the so-called binomially distributed variable and equality when the damage
state is reached, and null otherwise dhds the probability of reaching or exceeding the

damage state givefiM1;,IM2;).
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Using the relations presented above, several combinatibids are tested and these
new fragility models are evaluated through a ROC analysigiguagain a ten-fold cross-

validation scheme. The results obtained for some pairs sfdk presented in Table 5.

[Table 5 about here.]

Comparing the AUC found for two IMs (Table 5) with those in T@d shows a gen-
eral improvement in the prediction of damage states. Alse,standard deviations have
been reduced for both damage states, in comparison to $Mgteodels, thus showing the
performance of multivariate fragility functions in termsuncertainty reduction. It is now
possible to accurately predict both damage states (yielccaliapse) at the same time, by
using a combination of IMs from clusters A and B. Nonetheléss not strictly correct
to speak of ‘hybrid’ parameters (e.g. a function of two IMeghuse the coefficients in the
linear combination are specific to each damage state, deygeod the relative influence
of each parameter. It is thus preferable to refer to them e®realued parameters, whose

scalar components can be linearly combined in a regressiaieim

Table 5 indicates that the optimal combination of IMs wouddtbe couple SA(@5s)-
SA(0.5s). However, the spectral acceleration at the first vibrathode (i.e. A5s) could
also be used, as this choice seems more in line with the stelstudy. One also has to keep
in mind that other considerations can influence the choitkeofM, such as its ability to be
predicted via GMPEs (e.g. Douglas, 2012). It is assumedtligatery slight differences in
AUC values displayed in Table 5 are not significant; theefany couples of IMs presented
in this table can be considered for use, as they are at leaficient as any single IM (see
Table 4).

Finally, it is interesting to observe that some parameteas have little effect on the
structural response when considered alone [e.g. the RBSPGV or PGA/SA(AL5S)]
can have a positive impact on the prediction model when coetbwith a second IM. For
example, the couple (PGV, PGA/PGV) has a greater AUC (Taptkah just PGV or PGA
alone (Table 4). Kwon and Elnashai (2007) also stress tleeafdhe PGA/PGV ratio as an
indicator of the dynamic characteristics of ground-matisimce impulsive records with a

low PGA/PGYV ratio are usually characterized by high eneytents and low frequencies.
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3 Development of bivariate fragility functions

Considering Table 5, there is a wide choice of adequate esugflIMs to use as variables
in fragility functions. The following section details thewklopment of fragility functions
and their implications in terms of dispersion reductiomptlgh two distinct examples that

highlight the importance of accounting for the correlatidietween IMs.

3.1 Case of uncorrelated IMs

Since the couple (PGV, PGA/PGV) is efficient and these twaipaters are almost orthogo-
nal (correlation coefficient equal te0.1548), they are chosen for the first example fragility
surface (see Figure 4), using the formulation of Equationh& regression coefficients ob-

tained through the likelihood method are given in Table 6.
[Fig. 4 about here.]
[Table 6 about here.]

The choice of two parameters that are uncorrelated or alordsdgonal is convenient,
as it allows evaluation of the vulnerability on the whole 2pase defined by PGV and
PGA/PGYV, even in the corners that contain high values of @marpeter and low values of
the second. To study the effect of the second parametetesimagable fragility curves are
plotted by keeping the second IM constant and then compaitedaviragility curve built by

considering only the first parameter (see Figure 5).
[Fig. 5 about here.]

First, it can be noticed that the use of a second parametez {he ratio PGA/PGV)
induces a steady increase in the damage probability. F@rios, in the case of small PGVs
(PGV around M5 ny/s), the single-variable curve shows almost zero probglufidamage;
however, the fragility surface indicates that if this sigissaccompanied by high accelera-
tions (e.g. high PGA/PGYV ratios around 20 or 30), then theractually a non-negligible
probability of damage (aroundZb). A crucial observation is that the single-variable eurv
is flatter than those extracted from the surface: this cosfiimat fragility models built with
a single IM have a greater dispersion than surfaces and teesaociated with higher epis-

temic uncertainty because earthquake signals are onlpctesized by a single number.
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3.2 Case of correlated IMs

The IMs chosen above are convenient to demonstrate the behéfagility surfaces be-
cause they are almost orthogonal. However, the ratio PGX/B@ot a standard IM and its
estimation by ground-motion prediction equations in ttarfework of seismic hazard as-
sessment is not easy. Therefore, a fragility function wetfpect to SA at different periods is
derived here. These IMs are more convenient for joint esiimand they are well adapted
to vector-valued probabilistic seismic hazard assessvWi?BHA) proposed by Bazzurro
and Cornell (2002). The SA at the first eigenperiodlf&) and a second one at a longer
period are chosen, based on the results from the ROC an@dgsiJable 5). For this second
period 05s was chosen as it has the ability to represent the respénise building once
its initial stiffness has been reduced due to damage. The fd€ollapse for SA((BS) is
the highest of all of the IMs considered (Table 4) hence it prgerred over SA at other
periods. The optimum IMs for the construction of fragiliyrees depends on the structure.
For example, for a building with a higher eigenperiod (e.talker building) SAs at longer
periods will probably be more effective as a basis of fragiturves. Similarly the level of

nonlinearity in the building response will also affect whpatiods are optimum.

The spectral accelerations ab and 05s are, however, strongly correlatdRl-€ 0.81)
and caution must be taken in the construction of the surfandsheir interpretation. Due
to the strong correlation between the two IMs, the data poiftt not cover the whole
space defined by SAD5s)-SA(05s) and one can question the relevance of defining a
fragility model for extreme values (e.g. low IM1 and high IM2Jsing the data points,
a regression analysis is performed between S&®) and SA(®s), allowing a median
line representing the linear relation between the two patera to be plotted, as well as
95% confidence intervals (see Figure 6). The median linepgsesented by the equation
logSA(0.5) = log SA(0.15) — 0.7236+ d, with the 5— 95% lower and upper bounds esti-
mated withd = 1.417. Iso-probability lines are also represented for bothalge states and
the grey area between the confidence intervals can be coedids the validity domain for
the fragility surfaces. Like in the previous example, tragflity surfaces are built assuming
a lognormal distribution (Equation 3); the correspondiegression parameters are listed in
Table 6.

[Fig. 6 about here.]
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Finally, as described previously, single-variable friagiturves can be plotted with re-
spect to the first IM, by fixing the second one. However, in thesent case, the two IMs
are correlated and plotting the fragility function usingediM while keeping the other one
constant may lead to erroneous conclusions, especiallgx¥iveme values. Thus, one so-
lution may be to cut ‘slices’ along the affine lines within thalidity domain defined on
Figure 6, to account for the correlation between the two IM® results for yield damage
state are shown on Figure 7, for both IMs, and for a few cadimahypotheses (median
relation between the two IMs, and 95% upper and lower bourgin, the effect of the
introduction of a second IM can be observed, which allowsfolearer identification of the
damage states, as shown by the steeper slopes of the jréilidtions extracted from the

surfaces.

[Fig. 7 about here.]

4 Discussion

The fragility functions derived here result from sever&l on which probability distribu-
tion to adopt for the surfaces. First, a logistic regressamsuggested by Koutsourelakis
(2010) was tested. This approach contains some drawbdwekkadistic function has a sup-
port on both positive and negative real numbers, which léadspossibility of having non-
zero probabilities even when IMs are equal to zero (this kigttosis can be an problem
when a risk assessment is performed for low hazard sitegjadtattempted to overcome
this problem by using the log-logistic distribution (i.egistic distribution of the logarithm
of a variable), which constrained the probabilities at thgin. However, a ROC analysis
of the models showed that the distribution presented in fimud (based on a lognormal
formulation) yielded slightly higher AUC values than themgistic distribution.

Gehl et al (2011) proposed an alternative solution, usingraet density estimation
procedure (or Parzen-Rosenblatt method), which allowsnapamametric definition of the
probability density and is, thus, applicable to higher-livsion problems (Parzen, 1962).
The main merit of this approach is that the shape of the cuivelaensity function is
not biased by the choice of the distribution and it can actéomall the specificities of
a bivariate probability density. However, the Parzen-Rbtat formulation relies strongly
on a ‘smoothing’ parameter (e.g. a standard-deviation éohelata point), which greatly

influences the slopes of the surfaces and is also specifie etta used (quantity of points



Vector-valued fragility functions for seismic risk evafiom 17

and distribution). Moreover, the kernel density estimatiannot be represented by a simple
analytical relation and it is numerically estimated, whadn be a problem if the fragility

function is to be used in risk assessments.
[Fig. 8 about here.]

In Figure 8, for the same data [yield damage state based aotipe (PGV, PGA/PGV)]
the iso-probability lines for the four models discussechis section are plotted. The logis-
tic distribution is not very adapted to the studied problesnit fails to accurately represent
the damage for low PGA/PGV (near tieaxis of the plot). The kernel density estimation
approach has the ability to best represent the resultshigeempirical distribution has to
be smoothed to reduce local irregularities, which has thedesired effect of flattening
the slope of the surface (e.g. widening of the 16-84% peileertine). Both log-logistic
and lognormal distribution are able to fit the general shdpheokernel density estimation
curve and they are very similar. The lognormal distributicas finally selected to build the
fragility surfaces because, as explained above, the ROg@samaf this model gave slightly
better results than the log-logistic one. Also, this dsttion is consistent with the lognor-

mal distribution commonly used for single-IM fragility cres.

5 Conclusions

Current methods used to evaluate seismic risk are basedgititir curves representing the
ground motion by a single IM (e.g. PGA). Different types otartainty affect the results of
such evaluations. Three sources of aleatory and epistamertainty are addressed in the
present work. The variability of the ground motion and randess of the material proper-
ties of the buildings are taken into account through a latgelyer of nonlinear time-history
calculations. Several hundred accelerograms and se\aiahts of the target building are
used to this end. Moreover, representing earthquake sipakia single IM introduces epis-
temic uncertainties in the risk evaluation as such a modelatelly represent the effect of
an earthquake on the response of the structure. It is shatmathincrease from one to two
IMs leads to a significant reduction in the scatter in theifitggfunction and consequently
a potential reduction in the uncertainty in evaluated epréke risk.

Suggestions for future research are the following. It wdagduseful to investigate the

effect of the out-of-plane failure on fragility curves of WRbuildings. In large-scale seismic
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risk assessments, the behaviour of a typology of buildisgenerally studied. The effect of
geometrical variability on the vulnerability of a given tipgy must be taken into account
by introducing a population of different buildings belongito the same typology. To make
use of the vector-valued fragility function like those pospd here within risk evaluations,
it would be necessary to conduct a VPSHA (Bazzurro and Cior2@02) so that the joint

probability of surpassing thresholds for two (or more) IMas/correctly estimated. VPSHA
has yet to become a standard procedure in risk evaluatiarisanks to recent developments

of the method (e.g. Bazzurro et al, 2010) this approachéhfito become more widespread.
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Fig. 1 Numerical model of the building tested by Magenes et al (1995
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Fig. 4 Example of a fragility surface for ‘Collapse’ state, usihg touple (PGV, PGA/PGV) as earthquake
descriptors.
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Table 1 Mechanical properties of the building model.

Parameter Value

E Young modulus 3600MPa
G Shear modulus 600 MPa
p Density 1800kgm?®
fm Compressive strength .BMPa
fan Shear strength .23MPa
D4,  Shear ultimate drift ratio 8%
Df;  Rocking ultimate drift ratioc 3%

Friction coefficient (0%
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Table 2 Correlation between EMS-98 damage states and the transedisplacement, for URM buildings,
according to Milutinovic and Trendafiloski (2003).

Damage state  Limit-displacement equation Limitdiofmm)
Slight d=0.7dy 3.94
Moderate d =0.7dy +0.05(0.9d, — 0.7dy) 4.59
Extensive d = 0.7dy +0.2(0.9d, — 0.7dy) 6.54
Very heavy  d =0.7dy +0.5(0.9dy — 0.7d) 1043

Collapse d = 0.9d, 16.92
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Table 3 Clusters generated from the set of accelerograms.

Cluster A Cluster B Cluster C

PGA PGV Relative bracketed duration
Arias (1970) intensity PGD Relative uniform duration
A95 Absolute bracketed duration Relative significant dorat
SLOPE75 Absolute uniform duration Nb of effective cycles
SLOPE95 Absolute significant duration

ARMS SA(T =0.5to5s)

ASI

Cyclic damage parameters
SA(T =0.05t0T =0.25s)

Note: The spectral accelerations (SA) were computed for a 5% dagngaitio, for the following periods:
0.05 (second eigenperiod),d¥5, 01, 0.15 (first eigenperiod), @5, 05, 0.75, 1, 125, 15, 175, 2 and 5s.
A95 is the level of acceleration that contains 95% of the é\irgensity (Sarma and Yang, 1987). SLOPE75
(and SLOPE95) are the slope of the Husid plot (e.g. cumeldinas intensity over time) between 5% and
75% (and 95%) of the total Arias intensity. ARMS (root-mesjuare acceleration) is the square-root of the
integral of squared acceleration over time. ASI (Acceleraspectral intensity) is the integral of SA between
two periods (here, .@s and (6s). Cyclic damage parameters are obtained through the &time squared
amplitude of all half-cycles, which are obtained througteéhdifferent counting methods (rainflow and peak
counting, with or without non-zero crossings) (Hancock &uinmer, 2005). Nb of effective cycles is the
same as the cyclic damage parameters, except that theybbs@amplitudes are normalized by the ampli-
tude of the largest half-cycles in the signal (Hancock anchBer, 2005). Absolute bracketed duration is
the length of interval between the first and last time the gdoacceleration exceeds a threshold value (here
0.059). Absolute uniform duration is the total length of tinoe ¥hich ground acceleration exceeds a thresh-
old value (here @5g). Absolute significant (effective) duration is the léngf interval between when Arias
intensity first exceeds a threshold value (hef@L@n/s) and the time when Arias intensity first exceeds to-
tal Arias intensity of record minus some threshold valuegh®125nys) (Bommer and Martinez-Pereira,
1999). Relative bracketed duration is the length of intielbesween the first and last time the ground acceler-
ation exceeds 5% of PGA. Relative uniform duration is theltength of time for which ground acceleration
exceeds 5% of PGA. Relative significant duration is the lergtnterval between when Arias intensity first
exceeds 5% of total value and time when Arias intensity fkseeds 95% of total value (Trifunac and Brady,
1975).
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Table 4 Computed AUC values for the IMs and for the two damage statietd(and collapse). In italics,
parameters with AUC over.95, and in bold IMs with AUC above.98. The standard-deviatioa of the
lognormal distribution for both damage states is also given

IM AUC AUC o o
(Yield) (Collapse) (Yield) (Collapse)
PGA 0.9856 0.9680 0.2885 04957
PGV 0.9674 09786 04211 03467
PGD Q08333 08804 14637 14694
Arias intensity 0.9817 0.9834 0.6047 06846
A95 0.9883 0.9710 0.2626 04943
ARMS 0.9832 0.9677 0.3296 05174
ASI 0.9771 0.9683 0.4291 05413
SLOPE75 0.9878 0.9679 0.5826 11240
SLOPE95 0.9870 0.9691 0.5887 10710
SA(0.15s) 0.9682 0.9536  0.4530 06184
SA(5.0s) Q8576 08980 12480 10102
SA(20s) 09208 09492 08517 06567
SA(L75s) 09274 0.9515 0.7995 06110
SA(15s) Q9306 0.9623  0.7487 05491
SA(125s) 09348 0.9665 0.7136 04998
SA(10s) Q9410 0.9728 0.6328 04490
SA(0.75s) 0.9610 0.9799  0.4966 03498
SA(0.5s) 0.9814 09876 0.3291 02585
SA(0.25s) 0.9873 09712 0.2724 04483
SA(0.1s) 0.9571 0.9353 05161 Q07917
SA(0.075s) 0.9633 0.9427 05108 07808
SA(0.05s) 0.9714 0.9496 04700 06981
Duration bracketed absolute 9284 09264 08970 07662
Duration uniform absolute 0.9746 0.9781  0.6607 04997
Cycle damage paramater (rainflow) 0.9722 0.9641 0.8484 10554

Note: Only the cyclic damage parameters based on rainflow coumtiedisted (peak counting methods
yield almost identical results). Also, IMs that did not pedw be efficient for damage prediction (AUC values
around 06): relative bracketed duration, relative uniform durafifrelative and absolute) significant duration,
equivalent number of cycles, ratios PGA/SA(®s) and PGA/PGYV, are not listed.
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Table 5 Computed AUC values for the most efficient couples of IMs far two damage states (yield and
collapse). In the fifth column, the linear correlation cazéfint R between the two IMs is given. The standard
deviationso of the lognormal distribution for both damage states are ligged in the final two columns.

M1 IM2 AUC AUC  PearsorR [ o
(Yield)  (Collapse) (Yield)  (Collapse)
SA(0.255s) SA(05s) 09932 09916 08798 02007 02424
PGA SA(05s) 09928 09902 08674 01927 02484
ASI SA(05s) Q09906 09910 08766 02554 02572
SA(0.05s) SA(05s) Q09909 09903 07789 02308 02575
SA(0.15s) SA(05s) 09904 09891 08116 02293 02537
Al SA(0.55) 09874 09920 07731 03532 02966
ARMS SA(05s) 09896 09898 07979 02291 02686
Cyclic damage (rainflow)  SA(Bs) Q09879 09906 07073 03139 02831
PGV PGA/PGV (9923 09845  —-0.1548 01313 02234
SA(0.25s) PGV 09916 09848 08516 02233 03008
SA(0.25s) SA(10s) 09897 09864 08111 02340 03046
PGA SA(10s) 09899 09854 08168 02409 03140
PGA PGV 09912 09840 08720 02088 03118
ASI PGV 09888 09862 07988 02495 03043
PGA PGA/PGV (9911 09834 01450 03538 07883
Al PGV 0.9860 09874 07830 04044 04168
SA(0.25s) Duni.abs. @898 09836 08064 02866 03702
SA(0.05s) PGV 09896 09831 07897 02413 03268
ARMS SA(10s) 09867 09858 07598 02742 03382
PGA Duni.abs. (883 09833 07397 02994 03733
ARMS PGV 09888 09824 08257 02379 03284
SA(0.15s) PGV 09873 09835 08126 02541 03178
Al SA(1.0s) 09831 09872 07331 05399 04699

ARMS D uni. abs. 0867 09836 06846 03397 03858
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Table 6 Regression coefficients computed for the couples (PGV, PGAJ) and [SA(015s), SA(05s)] for

damage states ‘yield’ and ‘collapse’.

IMs Damage state Bo B1 B>
PGV, PGA/PGV Yield —34541 38347 22634
Collapse —2.2180 26557 10504
SA(0.15s), SA(05s)  Yield 15155 09112 17173
Collapse 31160 06605 21999




