Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Porphyry copper deposits distribution along the western Tethyan and Andean subductions: insights from a paleogeographic approach

Abstract : The genesis of many types of mineral deposits is closely linked to tectonic and petrographic conditions resulting from specific geodynamic contexts. Porphyry deposits, for instance, are associated to calc-alkaline magmatism of subduction zones. In order to better understand the relationships between ore deposit distribution and their tectonic context, and help identifying geodynamic-related criteria of favorability that would, in turn, help mineral exploration, we propose a paleogeographic approach. Paleogeographic reconstructions, based on global or regional plate tectonic models, are crucial tools to assess tectonic and kinematic contexts of the past. We use this approach to study the distribution of porphyry copper deposits along the western Tethyan and Andean subductions since Lower Cretaceous and Paleocene, respectively. For both convergent contexts, databases of porphyry copper deposits, including, among other data, their age and location, were compiled. Spatial and temporal distribution of the deposits is not random and show that they were emplaced in distinct clusters. Five clusters are identified along the western Tethyan suture, from Lower Cretaceous to Pleistocene, and at least three along the Andes, from Paleocene to Miocene. Two clusters in the Aegean-Balkan-Carpathian area, that were emplaced in Upper Cretaceous and Oligo-Miocene, and two others in the Andes, that were emplaced in late Eocene and Miocene, are studied in details and correlated with the past kinematics of the Africa-Eurasia and Nazca-South America plate convergences, respectively. All these clusters are associated with a similar polyphased kinematic context that is closely related to the dynamics of the subductions. This context is characterized by 1) a relatively fast convergence rate, shortly followed by 2) a drastic decrease of this rate. To explain these results, we propose a polyphased genetic model for porphyry copper deposits with 1) a first stage of rapid subduction rate, favoring high melt production in the mantle wedge, by dehydration of the subducted oceanic crust, and increased influx of mafic magmas in the MASH (Melting, Assimilation, Storage, Homogenization) zone, and 2) a subsequent significant decrease in subduction rate, favoring extensional regime within the upper plate and easing upward migration of fertile magmas to the upper crust. This second effect seems to be confirmed in the Aegean-Balkan-Carpathian area where the two clusters are spatially and temporally correlated with known extensional regimes. Although preliminary, these results highlight the control of the geodynamic context, and especially the subduction kinematics, on the spatial and temporal distribution of porphyry copper deposits. This study also confirms that the paleogeographic approach is a promising tool that could help identifying geodynamic and tectonic criteria favoring the genesis of various ore deposit types. Correlatively, ore deposits may be considered, in future studies, as possible markers of past geodynamic contexts.
Liste complète des métadonnées

https://hal-brgm.archives-ouvertes.fr/hal-00745226
Contributeur : Guillaume Bertrand <>
Soumis le : jeudi 25 octobre 2012 - 09:03:07
Dernière modification le : lundi 4 mai 2020 - 11:31:51

Identifiants

  • HAL Id : hal-00745226, version 1

Collections

Citation

Guillaume Bertrand. Porphyry copper deposits distribution along the western Tethyan and Andean subductions: insights from a paleogeographic approach. AGU fall meeting, Dec 2012, San Francisco, United States. pp.1. ⟨hal-00745226⟩

Partager

Métriques

Consultations de la notice

152